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Preface
Corings and comodules are fundamental algebraic structures that can be

thought of as both dualisations and generalisations of rings and modules.
Corings were introduced by Sweedler in 1975 as a generalisation of coalgebras
and as a means of presenting a semi-dual version of the Jacobson-Bourbaki
Theorem, but their origin can be traced back to 1968 in the work of Jonah on
cohomology of coalgebras in monoidal categories. In the late seventies they
resurfaced under the name of bimodules over a category with a coalgebra
structure, BOCSs for short, in the work of Rojter and Kleiner on algorithms
for matrix problems. For a long time, essentially only two types of examples
of corings truly generalising coalgebras were known – one associated to a
ring extension, the other to a matrix problem. The latter example was also
studied in the context of differential graded algebras and categories. This lack
of examples hindered the full appreciation of the fundamental role of corings
in algebra and obviously hampered their progress in general coring theory.

On the other hand, from the late seventies and throughout the eighties
and nineties, various types of Hopf modules were studied. Initially these were
typically modules and comodules of a common bialgebra or a Hopf algebra
with some compatibility condition, but this evolved to modules of an algebra
and comodules of a coalgebra with a compatibility condition controlled by
a bialgebra. In fact, even the background bialgebra has been shown now to
be redundant provided some relations between a coalgebra and an algebra
are imposed in terms of an entwining. The progress and interest in such
categories of modules were fuelled by the emergence of quantum groups and
their application to physics, in particular gauge theory in terms of principal
bundles and knot theory.

By the end of the last century, M. Takeuchi realised that the compatibility
condition between an algebra and a coalgebra known as an entwining can
be recast in terms of a coring. From this, it suddenly became apparent
that various properties of Hopf modules, including entwined modules, can be
understood and more neatly presented from the point of view of the associated
coring. It also emerged, on the one hand, that coring theory is rich in many
interesting examples and, on the other, that – based on the knowledge of
Hopf-type modules – there is much more known about the general structure
of corings than has been previously realised. It also turned out that corings
might have a variety of unexpected and wide-ranging applications, to topics
in noncommutative ring theory, category theory, Hopf algebras, differential
graded algebras, and noncommutative geometry. In summary, corings appear
to offer a new, exciting possibility for recasting known results in a unified
general manner and for the development of ring and module theory from a
completely different point of view.

vii



viii

As indicated above, corings can be viewed as generalisations of coalgebras,
the latter an established and well-studied theory, in particular over fields.
More precisely, a coalgebra over a commutative ring R can be defined as a
coalgebra in the monoidal category of R-modules – a notion that is well known
in general category theory. On the other hand, an A-coring is a coalgebra
in the monoidal category of (A,A)-bimodules, where A is an arbitrary ring.
With the emergence of quantum groups in the works of Drinfeld [110], Jimbo
[135] and Woronowicz [214], new interest arose in the study of coalgebras,
mainly those with additional structures such as bialgebras and Hopf algebras,
because of their importance in various applications. In the majority of books
on Hopf algebras and coalgebras, such as the now classic texts of Sweedler [45]
and Abe [1] or in the more recent works of Montgomery [37] and Dǎscǎlescu,
Nǎstǎsescu and Raianu [14] together with texts motivated by quantum group
theory (e.g., Lusztig [30]; Majid [33, 34]; Chari and Pressley [11]; Shnider and
Sternberg [43]; Kassel [25]; Klimyk and Schmüdgen [26]; Brown and Goodearl
[7]), coalgebras are considered over fields. The vast variety of applications and
new developments, in particular in ring and module theory, manifestly show
that there is still a need for a better understanding of coalgebras over arbitrary
commutative rings, as a preliminary step towards the theory of corings. Let
us mention a few aspects of particular interest to the classical module and
ring theory.

There are parts of module theory over algebras A that provide a perfect
setting for the theory of comodules. Given any left A-module M , denote
by σ[M ] the full subcategory of the category AM of left A-modules that is
subgenerated by M . This is the smallest Grothendieck subcategory of AM
containing M . Internal properties of σ[M ] strongly depend on the module
properties of M , and there is a well-established theory that explores this
relationship. Although, in contrast to AM, there need not be projectives
in σ[M ], its Grothendieck property enables the use of techniques such as
localisation and various homological methods in σ[M ]. Consequently, one
can gain a very good understanding of the inner properties of σ[M ]. On the
other hand, by definition, σ[M ] is closed under direct sums, submodules and
factor modules in AM, and so it is a hereditary pretorsion class in AM. If
σ[M ] is also closed under extensions in AM, it is a (hereditary) torsion class.
Torsion theory then provides many characterisations of the outer properties
of σ[M ], that is, the behaviour of σ[M ] as a subclass of AM.

Both the inner and outer properties of the categories of type σ[M ] are
important in the study of coalgebras and comodules. If C is a coalgebra
over a commutative ring R, then the dual C∗ is an R-algebra and C is a
left and right module over C∗. The link to the module theory mentioned
above is provided by the basic observation that the category MC of right
C-comodules is subgenerated by C, and there is a faithful functor from MC
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to the category C∗M of left C∗-modules. Further properties of MC and of
this relationship depend on the properties of C as an R-module. First, if

RC is (locally) projective, then MC is the same as the category σ[C∗C], the
full subcategory of C∗M subgenerated by C. In this case, results for module
categories of type σ[M ] can be transferred directly to comodules, with no
new proofs required. This affords a deeper understanding of old results about
comodules (for coalgebras over fields) and provides new proofs that readily
apply to coalgebras over rings. For example, the inner properties of σ[M ]
reveal the internal structure and decomposition properties of C, while the
outer properties allow one to study when MC is closed under extensions in

C∗M. Second, if RC is flat, then, althoughM
C is no longer a full subcategory

of C∗M, it is still an Abelian (Grothendieck) category, and the pattern of
proofs for σ[M ] can often be followed literally to prove results for comodules.
Third, in the absence of any condition on the R-module structure of RC,
the category MC may lack kernels, and monomorphisms in MC need not be
injective maps. However, techniques from module theory may still be applied,
albeit with more caution. For example, typical properties for Hopf algebras
H do not need any restriction on RH. Finally, it turns out that practically
all of the traditional results, in the case of when R is a field, remain true over
QF rings provided RC is flat.

Various properties of coalgebras over a commutative ring R extend to A-
corings, provided one carefully addresses the noncommutativity of the base
ring A in the latter case. For example, given an A-coring C, one can consider
three types of duals of C, namely, the right A-module, the left A-module,
or the (A,A)-bimodule dual. In each case one obtains a ring, but, since
these rings are no longer isomorphic to each other, one has to carefully study
relations between them. This then transfers to the study of categories of
comodules of a coring and their relationship to various possible categories of
modules over dual rings.

The aim of the present book is to give an introduction to the general theory
of corings and to indicate their numerous applications. We would like to stress
the role of corings as one of the most fundamental algebraic structures, which,
in a certain sense, lie between module theory and category theory. From the
former point of view, they give a unifying and general framework for rings
and modules, while from the latter they are concrete realisations of adjoint
pairs of functors or comonads. We start, however, with a description of the
theory of coalgebras over commutative rings and their comodules. Therefore,
the first part of the book should give the reader a feeling for the typical
features of coalgebras over rings as opposed to fields, thus, in the first instance,
filling a gap in the existing literature. It is also a preparation for the second
part, which is intended to provide the reader with a reference to the wide
tapestry of known results on the structure of corings, possible applications
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and developments. It is not our aim to give a complete picture of this rapidly
developing theory. Instead we would like to indicate what is known and what
can be done in this new, emerging field. Thus we provide an overview of
known and, by now, standard results about corings scattered in the existing
established literature. Furthermore, we outline various aspects of corings
studied very recently by several authors in a number of published papers as
well as preprints still awaiting formal publication. We believe, however, that
a significant number of results included in this book are hereby published for
the first time. It is our hope that the present book will become a reference
and a starting point for further progress in this new exciting field. We also
believe that the first part of the book, describing coalgebras over rings, may
serve as a textbook for a graduate course on coalgebras and Hopf algebras
for students who would like to specialise in algebra and ring theory.

A few words are in order to explain the structure of the book. The book is
primarily intended for mathematicians working in ring and module theory and
related subjects, such as Hopf algebras. We believe, however, that it will also
be useful for (mathematically oriented) mathematical physicists, in particular
those who work with quantum groups and noncommutative geometry. In the
main text, we make passing references to how abstract constructions may be
seen from their point of view. Moreover, the attention of noncommutative
geometers should be drawn, in particular to the construction of connections
in Section 29.

The book also assumes various levels of familiarity with coalgebras. The
reader who is not familiar with coalgebras should start with Chapter 1. The
reader who is familiar with coalgebras and Hopf algebras can proceed directly
to Chapter 3 and return to preceding chapters when prompted. For the
benefit of readers who are not very confident with the language of categories
or with the structure of module categories, the main text is supplemented by
an appendix in which we recall well-known facts about categories in general
as well as module categories. This is done explicitly enough to provide a
helpful guidance for the ideas employed in the main part of the text. Also
included in the appendix are some new and less standard items that are used
in the development of the theory of comodules in the main text.

It is a great pleasure to acknowledge numerous discussions with and com-
ments of our friends and collaborators, in particular Jawad Abuhlail, Khaled
Al-Takhman, Kostia Beidar, Stefaan Caenepeel, Alexander Chamrad-Seidel,
John Clark, José Gómez-Torrecillas, Piotr Hajac, Lars Kadison, Christian
Lomp, Shahn Majid, Claudia Menini, Gigel Militaru, Mike Prest and Blas
Torrecillas. Special thanks are extended to Gabriella Böhm, who helped us
to clarify some aspects of weak Hopf algebras. Tomasz Brzeziński thanks
the UK Engineering and Physical Sciences Research Council for an Advanced
Research Fellowship.



Notations

tw the twist map tw :M ⊗R N → N ⊗RM , 40.1
Ke f (Cokef) the kernel (cokernel) of a linear map f

Im f the image of a map f

I, IX the identity morphism for an object X

A algebra over a commutative ring R, 40.2

µ, µA product of A as a map A⊗R A→ A, 40.2

ι, ιA the unit of A as a map R→ A, 40.2

Z(A), Jac(A) the centre and the Jacobson radical of A

AlgR(−,−) R-algebra maps

MA (AM) right (left) A-module M , 40.4

�M (M�) the A-action for a right (left) A-module M , 40.4

MA (AM) the category of right (left) A-modules, 40.4

HomA(−,−) homomorphisms of right A-modules, 40.4

AHom(−,−) homomorphisms of left A-modules

AMB the category of (A,B)-bimodules, 40.9

AHomB(−,−) homomorphisms of (A,B)-bimodules, 40.9

σ[M ] the full subcategory of MA (AM) of modules

subgenerated by a module M , 41.1

C (C) coalgebra over R (coring over A), 1.1, 17.1

∆, ∆C the coproduct of C as map C → C ⊗R C, 1.1, 17.1
ε, εC the counit of C as map C → R, 1.1

∆, ∆C the coproduct of C as map C → C ⊗A C, 17.1
ε, εC the counit of C as map C → A, 17.1

C∗ the dual (convolution) algebra of C, 1.3

C∗, ∗C, ∗C∗ the right, left, and bi-dual algebras of C, 17.8
�M (M�) the coaction of a right (left) comodule M , 3.1, 18.1

MC (MC) the category of right comodules over C (C), 3.1, 18.1
HomC(−,−) the colinear maps of right C-comodules, 3.3
CHom(−,−) the colinear maps of left C-comodules, 18.3
EndC(M) endomorphisms of a right C-comodule M , 3.12
CEnd(M) endomorphisms of a left C-comodule M , 18.12
CHomD(−,−) (C,D)-bicomodule maps, 11.1

RatC(M) the rational comodule of a left ∗C-module M , 7.1, 20.1
CMD the category of (C,D)-bicomodules, 22.1
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Chapter 1

Coalgebras and comodules

Coalgebras and comodules are dualisations of algebras and modules. In this
chapter we introduce the basic definitions and study several properties of
these notions. The theory of coalgebras over fields and their comodules is well
presented in various textbooks (e.g., Sweedler [45], Abe [1], Montgomery [37],
Dǎscǎlescu, Nǎstǎsescu and Raianu [14]). Since the tensor product behaves
differently over fields and rings, not all the results for coalgebras over fields
can be extended to coalgebras over rings. Here we consider base rings from
the very beginning, and part of our problems will be to find out which module
properties of a coalgebra over a ring are necessary (and sufficient) to ensure
the desired properties. In view of the main subject of this book, this chapter
can be treated as a preliminary study towards corings. Also for this reason
we almost solely concentrate on those properties of coalgebras and comodules
that are important from the module theory point of view. The extra care paid
to module properties of coalgebras will pay off in Chapter 3.

Throughout, R denotes a commutative and associative ring with a unit.

1 Coalgebras

Intuitively, a coalgebra over a ring can be understood as a dualisation of an
algebra over a ring. Coalgebras by themselves are equally fundamental ob-
jects as are algebras. Although probably more difficult to understand at the
beginning, they are often easier to handle than algebras. Readers with geo-
metric intuition might like to think about algebras as functions on spaces and
about coalgebras as objects that encode additional structure of such spaces
(for example, group or monoid structure). The main aim of this section is to
introduce and give examples of coalgebras and explain the (dual) relationship
between algebras and coalgebras.

1.1. Coalgebras. An R-coalgebra is an R-module C with R-linear maps

∆ : C → C ⊗R C and ε : C → R,

called (coassociative) coproduct and counit, respectively, with the properties

(IC ⊗∆) ◦∆ = (∆⊗ IC) ◦∆, and (IC ⊗ ε) ◦∆ = IC = (ε⊗ IC) ◦∆,

which can be expressed by commutativity of the diagrams

1
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C
∆ ��

∆
��

C ⊗R C
IC⊗∆
��

C ⊗R C
∆⊗IC�� C ⊗R C ⊗R C

C
∆ ��

IC

����
���

���
���

∆
��

C ⊗R C
ε⊗IC
��

C ⊗R C IC⊗ε
�� C .

A coalgebra (C,∆, ε) is said to be cocommutative if ∆ = tw ◦∆, where

tw : C ⊗R C → C ⊗R C, a⊗ b �→ b⊗ a,

is the twist map (cf. 40.1).

1.2. Sweedler’s Σ-notation. For an elementwise description of the maps
we use the Σ-notation, writing for c ∈ C

∆(c) =
k∑
i=1

ci ⊗ c̃i =
∑

c1 ⊗ c2.

The first version is more precise; the second version, introduced by Sweedler,
turnes out to be very handy in explicit calculations. Notice that c1 and c2 do
not represent single elements but families c1, . . . , ck and c̃1, . . . , c̃k of elements
of C that are by no means uniquely determined. Properties of c1 can only be
considered in context with c2. With this notation, the coassociativity of ∆ is
expressed by∑

∆(c1)⊗ c2 =
∑

c1 1 ⊗ c1 2 ⊗ c2 =
∑

c1 ⊗ c2 1 ⊗ c2 2 =
∑

c1 ⊗∆(c2),

and, hence, it is possible and convenient to shorten the notation by writing

(∆⊗ IC)∆(c) = (IC ⊗∆)∆(c) =
∑
c1 ⊗ c2 ⊗ c3,

(IC ⊗ IC ⊗∆)(IC ⊗∆)∆(c) =
∑
c1 ⊗ c2 ⊗ c3 ⊗ c4,

and so on. The conditions for the counit are described by∑
ε(c1)c2 = c =

∑
c1ε(c2).

Cocommutativity is equivalent to
∑
c1 ⊗ c2 =

∑
c2 ⊗ c1.

R-coalgebras are closely related or dual to algebras. Indeed, the module
of R-linear maps from a coalgebra C to any R-algebra is an R-algebra.

1.3. The algebra HomR(C,A). For any R-linear map ∆ : C → C⊗RC and
an R-algebra A, HomR(C,A) is an R-algebra by the convolution product

f ∗ g = µ ◦ (f ⊗ g) ◦∆, i.e., f ∗ g(c) =
∑

f(c1)g(c2),

for f, g ∈ HomR(C,A) and c ∈ C. Furthermore,
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(1) ∆ is coassociative if and only if HomR(C,A) is an associative R-algebra,
for any R-algebra A.

(2) C is cocommutative if and only if HomR(C,A) is a commutative R-
algebra, for any commutative R-algebra A.

(3) C has a counit if and only if HomR(C,A) has a unit, for all R-algebras
A with a unit.

Proof. (1) Let f, g, h ∈ HomR(C,A) and consider the R-linear map

µ̃ : A⊗R A⊗R A→ A, a1 ⊗ a2 ⊗ a3 �→ a1a2a3.

By definition, the products (f ∗ g) ∗ h and f ∗ (g ∗ h) in HomR(C,A) are the
compositions of the maps

C ⊗R C
∆⊗IC

����
���

���
���

�

C

∆
������������

∆ ����
���

���
��

C ⊗R C ⊗R C
f⊗g⊗h �� A⊗R A⊗R A

µ̃ �� A .

C ⊗R C
IC⊗∆

��������������

It is obvious that coassociativity of ∆ yields associativity of HomR(C,A).
To show the converse, we see from the above diagram that it suffices to

prove that, (at least) for one associative algebra A and suitable f, g, h ∈
HomR(C,A), the composition µ̃ ◦ (f ⊗ g ⊗ h) is a monomorphism. So let
A = T (C), the tensor algebra of the R-module C (cf. 15.12), and f = g = h,
the canonical mapping C → T (C). Then µ̃◦ (f⊗g⊗h) is just the embedding
C ⊗ C ⊗ C = T3(C)→ T (C).

(2) If C is cocommutative and A is commutative,

f ∗ g (c) =
∑

f(c1)g(c2) =
∑

g(c1)f(c2) = g ∗ f (c),

so that HomR(C,A) is commutative. Conversely, assume that HomR(C,A) is
commutative for any commutative A. Then

µ ◦ (f ⊗ g)(∆(c)) = µ ◦ (f ⊗ g)(tw ◦∆(c)).

This implies ∆ = tw ◦∆ provided we can find a commutative algebra A and
f, g ∈ HomR(C,A) such that µ ◦ (f ⊗ g) : C ⊗R C → A is injective. For this
take A to be the symmetric algebra S(C ⊕ C) (see 15.13). For f and g we
choose the mappings

C → C ⊕ C, x �→ (x, 0), C → C ⊕ C, x �→ (0, x),
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composed with the canonical embedding C ⊕ C → S(C ⊕ C).
With the canonical isomorphism h : S(C)⊗S(C)→ S(C⊕C) (see 15.13)

and the embedding λ : C → S(C), we form h−1 ◦ µ ◦ (f ⊗ g) = λ⊗ λ. Since
λ(C) is a direct summand of S(C), we obtain that λ ⊗ λ is injective and so
µ ◦ (f ⊗ g) is injective.

(3) It is easy to check that the unit in HomR(C,A) is

C
ε−→ R

ι−→ A, c �→ ε(c)1A.

For the converse, consider the R-module A = R ⊕ C and define a unital
R-algebra

µ : A⊗R A→ A, (r, a)⊗ (s, b) �→ (rs, rb+ as).

Suppose there is a unit element in HomR(C,A),

e : C → A = R⊕ C, c �→ (ε(c), λ(c)),

with R-linear maps ε : C → R, λ : C → C. Then, for f : C → A, c �→ (0, c),
multiplication in HomR(C,A) yields

f ∗ e : C → A, c �→ (0, (IC ⊗ ε) ◦∆(c)).

By assumption, f = f ∗ e and hence IC = (IC ⊗ ε) ◦∆, one of the conditions
for ε to be a counit. Similarly, the other condition is derived from f = e ∗ f .

Clearly ε is the unit in HomR(C,R), showing the uniqueness of a counit
for C. �

Note in particular that C∗ = HomR(C,R) is an algebra with the convolu-
tion product known as the dual or convolution algebra of C.

Notation. From now on, C (usually) will denote a coassociative R-coalgebra
(C,∆, ε), and A will stand for an associative R-algebra with unit (A, µ, ι).

Many properties of coalgebras depend on properties of the base ring R.
The base ring can be changed in the following way.

1.4. Scalar extension. Let C be an R-coalgebra and S an associative com-
mutative R-algebra with unit. Then C ⊗R S is an S-coalgebra with the co-
product

∆̃ : C ⊗R S
∆⊗IS �� (C ⊗R C)⊗R S � �� (C ⊗R S)⊗S (C ⊗R S)

and the counit ε⊗ IS : C ⊗R S → S. If C is cocommutative, then C ⊗R S is
cocommutative.
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Proof. By definition, for any c⊗ s ∈ C ⊗R S,

∆̃(c⊗ s) =
∑
(c1 ⊗ 1S)⊗S (c2 ⊗ s).

It is easily checked that ∆̃ is coassociative. Moreover,

(ε⊗ IS ⊗ IC⊗RS) ◦ ∆̃(c⊗ s) =
∑

ε(c1)c2 ⊗ s = c⊗ s,

and similarly (IC⊗RS ⊗ ε⊗ IS) ◦ ∆̃ = IC⊗RS is shown.
Obviously cocommutativity of ∆ implies cocommutativity of ∆̃. �
To illustrate the notions introduced above we consider some examples.

1.5. R as a coalgebra. The ring R is (trivially) a coassociative, cocommu-
tative coalgebra with the canonical isomorphism R → R ⊗R R as coproduct
and the identity map R→ R as counit.

1.6. Free modules as coalgebras. Let F be a free R-module with basis
(fλ)Λ, Λ any set. Then there is a unique R-linear map

∆ : F → F ⊗R F, fλ �→ fλ ⊗ fλ,

defining a coassociative and cocommutative coproduct on F . The counit is
provided by the linear map ε : F → R, fλ �−→ 1.

1.7. Semigroup coalgebra. Let G be a semigroup. A coproduct and counit
on the semigroup ring R[G] can be defined by

∆1 : R[G]→ R[G]⊗R R[G], g �→ g ⊗ g, ε1 : R[G]→ R, g �→ 1.

If G has a unit e, then another possibility is

∆2 : R[G]→ R[G]⊗R R[G], g �→
{
e⊗ e if g = e,
g ⊗ e+ e⊗ g if g �= e.

ε2 : R[G]→ R, g �→
{
1 if g = e,
0 if g �= e.

Both ∆1 and ∆2 are coassociative and cocommutative.

1.8. Polynomial coalgebra. A coproduct and counit on the polynomial
ring R[X] can be defined as algebra homomorphisms by

∆1 : R[X]→ R[X]⊗R R[X], X i �→ X i ⊗X i,

ε1 : R[X]→ R, X i �→ 1, i = 0, 1, 2, . . . .

or else by

∆2 : R[X]→ R[X]⊗R R[X], 1 �→ 1, X i �→ (X ⊗ 1 + 1⊗X)i,

ε2 : R[X]→ R, 1 �→ 1, X i �→ 0, i = 1, 2, . . . .

Again, both ∆1 and ∆2 are coassociative and cocommutative.
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1.9. Coalgebra of a projective module. Let P be a finitely generated
projective R-module with dual basis p1, . . . , pn ∈ P and π1, . . . , πn ∈ P ∗.
There is an isomorphism

P ⊗R P ∗ → EndR(P ), p⊗ f �→ [a �→ f(a)p],

and on P ∗ ⊗R P the coproduct and counit are defined by

∆ : P ∗ ⊗R P → (P ∗ ⊗R P )⊗R (P ∗ ⊗R P ), f ⊗ p �→
∑
i

f ⊗ pi ⊗ πi ⊗ p,

ε : P ∗ ⊗R P → R, f ⊗ p �→ f(p).

By properties of the dual basis,

(IP⊗RP ∗ ⊗ ε)∆(f ⊗ p) =
∑
i

f ⊗ piπi(p) = f ⊗ p,

showing that ε is a counit, and coassociativity of ∆ is proved by the equality

(IP⊗RP ∗⊗∆)∆(f⊗p) =
∑

i,j
f⊗pi⊗πi⊗pj⊗πj⊗p = (∆⊗IP⊗RP ∗)∆(f⊗p).

The dual algebra of P ∗ ⊗R P is (anti)isomorphic to EndR(P ) by the bi-
jective maps

(P ∗ ⊗R P )∗ = HomR(P ∗ ⊗R P,R) � HomR(P, P
∗∗) � EndR(P ),

which yield a ring isomorphism or anti-isomorphism, depending from which
side the morphisms are acting.

For P = R we obtain R = R∗, and R∗ ⊗R R � R is the trivial coalgebra.
As a more interesting special case we may consider P = Rn. Then P ∗ ⊗R P
can be identified with the matrix ring Mn(R), and this leads to the

1.10. Matrix coalgebra. Let {eij}1≤i,j≤n be the canonical R-basis for
Mn(R), and define the coproduct and counit

∆ :Mn(R)→Mn(R)⊗RMn(R), eij �→
∑

k
eik ⊗ ekj,

ε :Mn(R)→ R, eij �→ δij .

The resulting coalgebra is called the (n, n)-matrix coalgebra over R, and we
denote it by M c

n(R).

Notice that the matrix coalgebra may also be considered as a special case
of a semigroup coalgebra in 1.7.

From a given coalgebra one can construct the
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1.11. Opposite coalgebra. Let ∆ : C → C ⊗R C define a coalgebra. Then

∆tw : C
∆−→ C ⊗R C tw−→ C ⊗R C, c �→

∑
c2 ⊗ c1,

where tw is the twist map, defines a new coalgebra structure on C known
as the opposite coalgebra with the same counit. The opposite coalgebra is
denoted by Ccop. Note that a coalgebra C is cocommutative if and only if C
coincides with its opposite coalgebra (i.e., ∆ = ∆tw).

1.12. Duals of algebras. Let (A, µ, ι) be an R-algebra and assume RA to
be finitely generated and projective. Then there is an isomorphism

A∗ ⊗R A∗ → (A⊗R A)∗, f ⊗ g �→ [a⊗ b �→ f(a)g(b)],

and the functor HomR(−, R) = (−)∗ yields a coproduct

µ∗ : A∗ → (A⊗R A)∗ � A∗ ⊗R A∗

and a counit (as the dual of the unit of A)

ε := ι∗ : A∗ → R, f �→ f(1A).

This makes A∗ an R-coalgebra that is cocommutative provided µ is commu-
tative. If RA is not finitely generated and projective, the above construction
does not work. However, under certain conditions the finite dual of A has a
coalgebra structure (see 5.7).

Further examples of coalgebras are the tensor algebra 15.12, the symmet-
ric algebra 15.13, and the exterior algebra 15.14 of any R-module, and the
enveloping algebra of any Lie algebra.

1.13. Exercises
LetM c

n(R) be a matrix coalgebra with basis {eij}1≤i,j≤n (see 1.10). Prove that
the dual algebra M c

n(R)
∗ is an (n, n)-matrix algebra.

(Hint: Consider the basis of M∗ dual to {eij}1≤i,j≤n.)

References. Abuhlail, Gómez-Torrecillas and Wisbauer [50]; Bourbaki
[5]; Sweedler [45]; Wisbauer [210].



8 Chapter 1. Coalgebras and comodules

2 Coalgebra morphisms

To discuss coalgebras formally, one would like to understand not only isolated
coalgebras, but also coalgebras in relation to other coalgebras. In a word, one
would like to view coalgebras as objects in a category.1 For this one needs
the notion of a coalgebra morphism. Such a morphism can be defined as an
R-linear map between coalgebras that respects the coalgebra structures (co-
products and counits). The idea behind this definition is of course borrowed
from the idea of an algebra morphism as a map respecting the algebra struc-
tures. Once such morphisms are introduced, relationships between coalgebras
can be studied. In particular, we can introduce the notions of a subcoalgebra
and a quotient coalgebra. These are the topics of the present section.

2.1. Coalgebra morphisms. Given R-coalgebras C and C ′, an R-linear
map f : C → C ′ is said to be a coalgebra morphism provided the diagrams

C
f ��

∆
��

C ′

∆′
��

C ⊗R C
f⊗f �� C ′ ⊗R C ′ ,

C
f ��

ε
����

���
���

�� C ′

ε′
��
R

are commutative. Explicitly, this means that

∆′ ◦ f = (f ⊗ f) ◦∆, and ε′ ◦ f = ε,

that is, for all c ∈ C,∑
f(c1)⊗ f(c2) =

∑
f(c)1 ⊗ f(c)2, and ε′(f(c)) = ε(c).

Given an R-coalgebra C and an S-coalgebra D, where S is a commuta-
tive ring, a coalgebra morphism between C and D is defined as a pair (α, γ)
consisting of a ring morphism α : R → S and an R-linear map γ : C → D
such that

γ′ : C ⊗R S → D, c⊗ s �→ γ(c)s,

is an S-coalgebra morphism. Here we consider D as an R-module (induced
by α) and C ⊗R S is the scalar extension of C (see 1.4).

As shown in 1.3, for an R-algebra A, the contravariant functor HomR(−, A)
turns coalgebras to algebras. It also turns coalgebra morphisms into algebra
morphisms.

1The reader not familiar with category theory is referred to the Appendix, §38.
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2.2. Duals of coalgebra morphisms. For R-coalgebras C and C ′, an
R-linear map f : C → C ′ is a coalgebra morphism if and only if

Hom(f, A) : HomR(C
′, A)→ HomR(C,A)

is an algebra morphism, for any R-algebra A.

Proof. Let f be a coalgebra morphism. Putting f ∗ = HomR(f, A), we
compute for g, h ∈ HomR(C ′, A)

f ∗(g ∗ h) = µ ◦ (g ⊗ h) ◦∆′ ◦ f = µ ◦ (g ⊗ h) ◦ (f ⊗ f) ◦∆
= (g ◦ f) ∗ (h ◦ f) = f∗(g) ∗ f ∗(h).

To show the converse, assume that f ∗ is an algebra morphism, that is,

µ ◦ (g ⊗ h) ◦∆′ ◦ f = µ ◦ (g ⊗ h) ◦ (f ⊗ f) ◦∆,

for any R-algebra A and g, h ∈ HomR(C
′, A). Choose A to be the tensor

algebra T (C) of the R-module C and choose g, h to be the canonical em-
bedding C → T (C) (see 15.12). Then µ ◦ (g ⊗ h) is just the embedding
C ⊗R C → T2(C)→ T (C), and the above equality implies

∆′ ◦ f = (f ⊗ f) ◦∆,

showing that f is a coalgebra morphism. �

2.3. Coideals. The problem of determining which R-submodules of C are
kernels of a coalgebra map f : C → C ′ is related to the problem of describing
the kernel of f ⊗ f (in the category of R-modulesMR). If f is surjective, we
know that Ke (f ⊗ f) is the sum of the canonical images of Ke f ⊗R C and
C ⊗R Ke f in C ⊗R C (see 40.15). This suggests the following definition.

The kernel of a surjective coalgebra morphism f : C → C ′ is called a
coideal of C.

2.4. Properties of coideals. For an R-submodule K ⊂ C and the canonical
projection p : C → C/K, the following are equivalent:

(a) K is a coideal;

(b) C/K is a coalgebra and p is a coalgebra morphism;

(c) ∆(K) ⊂ Ke (p⊗ p) and ε(K) = 0.

If K ⊂ C is C-pure, then (c) is equivalent to:

(d) ∆(K) ⊂ C ⊗R K +K ⊗R C and ε(K) = 0.

If (a) holds, then C/K is cocommutative provided C is also.



10 Chapter 1. Coalgebras and comodules

Proof. (a) ⇔ (b) is obvious.
(b) ⇒ (c) There is a commutative exact diagram

0 �� K ��

��

C
p ��

∆

��

C/K

∆̄
��

��

��

0

0 �� Ke (p⊗ p) �� C ⊗R C
p⊗p �� C/K ⊗R C/K �� 0,

where commutativity of the right square implies the existence of a morphism
K → Ke (p⊗p), thus showing ∆(K) ⊂ Ke (p⊗p). For the counit ε̄ : C/K →
R of C/K, ε̄ ◦ p = ε and hence ε(K) = 0

(c) ⇒ (b) Under the given conditions, the left-hand square in the above
diagram is commutative and the cokernel property of p implies the existence
of ∆̄. This makes C/K a coalgebra with the properties required.

(c) ⇔ (d) If K ⊂ C is C-pure, Ke (p⊗ p) = C ⊗R K +K ⊗R C. �

2.5. Factorisation theorem. Let f : C → C ′ be a morphism of R-
coalgebras. If K ⊂ C is a coideal and K ⊂ Ke f , then there is a commutative
diagram of coalgebra morphisms

C
p ��

f 		�
��

��
��

��
C/K

f̄

��
C ′ .

Proof. Denote by f̄ : C/K → C ′ the R-module factorisation of f : C →
C ′. It is easy to show that the diagram

C/K
f̄ ��

∆̄
��

C ′

∆′
��

C/K ⊗R C/K
f̄⊗f̄ �� C ′ ⊗R C ′

is commutative. This means that f̄ is a coalgebra morphism. �

2.6. The counit as a coalgebra morphism. View R as a trivial R-
coalgebra as in 1.5. Then, for any R-coalgebra C,

(1) ε is a coalgebra morphism;

(2) if ε is surjective, then Ke ε is a coideal.

Proof. (1) Consider the diagram

C
ε ��

∆

��

R

�
��

c � ��
	

��

ε(c)
	

��
C ⊗R C

ε⊗ε �� R⊗R R
∑
c1 ⊗ c2

� ��
∑
ε(c1)⊗ ε(c2) .



2. Coalgebra morphisms 11

The properties of the counit yield∑
ε(c1)⊗ ε(c2) =

∑
ε(c1)ε(c2)⊗ 1 = ε(

∑
c1ε(c2))⊗ 1 = ε(c)⊗ 1,

so the above diagram is commutative and ε is a coalgebra morphism.
(2)This is clear by (1) and the definition of coideals. �

2.7. Subcoalgebras. An R-submodule D of a coalgebra C is called a sub-
coalgebra provided D has a coalgebra structure such that the inclusion map
is a coalgebra morphism.

Notice that a pure R-submodule (see 40.13 for a discussion of purity) D ⊂
C is a subcoalgebra provided ∆D(D) ⊂ D⊗RD ⊂ C ⊗R C and ε|D : D → R
is a counit for D. Indeed, since D is a pure submodule of C, we obtain

∆D(D) = D ⊗R C ∩ C ⊗R D = D ⊗R D ⊂ C ⊗R C,

so that D has a coalgebra structure for which the inclusion is a coalgebra
morphism, as required.

From the above observations we obtain:

2.8. Image of coalgebra morphisms. The image of any coalgebra map
f : C → C ′ is a subcoalgebra of C ′.

2.9. Remarks. (1) In a general categoryA, subobjects of an object A inA are
defined as equivalence classes of monomorphisms D → A. In the definition
of subcoalgebras we restrict ourselves to subsets (or inclusions) of an object.
This will be general enough for our purposes.

(2) The fact that – over arbitrary rings – the tensor product of injective
linear maps need not be injective leads to some unexpected phenomena. For
example, a submodule D of a coalgebra C can have two distinct coalgebra
structures such that, for both of them, the inclusion is a coalgebra map (see
Exercise 2.15(3)). It may also happen that, for a submodule V of a coalgebra
C, ∆(V ) is contained in the image of the canonical map V ⊗R V → C ⊗R C,
yet V has no coalgebra structure for which the inclusion V → C is a coalgebra
map (see Exercise 2.15(4)). Another curiosity is that the kernel of a coalgebra
morphism f : C → C ′ need not be a coideal in case f is not surjective (see
Exercise 2.15(5)).

2.10. Coproduct of coalgebras. For a family {Cλ}Λ of R-coalgebras, put
C =

⊕
ΛCλ, the coproduct inMR, iλ : Cλ → C the canonical inclusions, and

consider the R-linear maps

Cλ
∆λ−→ Cλ ⊗ Cλ ⊂ C ⊗ C, ε : Cλ → R.

By the properties of coproducts of R-modules there exist unique maps
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∆ : C → C ⊗R C with ∆ ◦ iλ = ∆λ, ε : C → R with ε ◦ iλ = ελ.

(C,∆, ε) is called the coproduct (or direct sum) of the coalgebras Cλ. It is
obvious that the iλ : Cλ → C are coalgebra morphisms.

C is coassociative (cocommutative) if and only if all the Cλ have the
corresponding property. This follows – by 1.3 – from the ring isomorphism

HomR(C,A) = HomR(
⊕

ΛCλ, A) �
∏

ΛHomR(Cλ, A),

for any R-algebra A, and the observation that the left-hand side is an asso-
ciative (commutative) ring if and only if every component in the right-hand
side has this property.

Universal property of C =
⊕

ΛCλ. For a family {fλ : Cλ → C ′}Λ of coal-
gebra morphisms there exists a unique coalgebra morphism f : C → C ′ such
that, for all λ ∈ Λ, there are commutative diagrams of coalgebra morphisms

Cλ
iλ ��

fλ 		













 C

f

��
C ′ .

2.11. Direct limits of coalgebras. Let {Cλ, fλµ}Λ be a direct family of R-
coalgebras (with coalgebra morphisms fλµ) over a directed set Λ. Let lim−→Cλ
denote the direct limit in MR with canonical maps fµ : Cµ → lim−→Cλ. Then
the fλµ⊗ fλµ : Cλ⊗Cλ → Cµ⊗Cµ form a directed system (inMR) and there
is the following commutative diagram

Cµ
∆µ ��

fµ
��

Cµ ⊗ Cµ

��

fµ⊗fµ


���

����
����

���

lim−→Cλ
δ �� lim−→(Cλ ⊗ Cλ)

θ �� lim−→Cλ ⊗ lim−→Cλ,

where the maps δ and θ exist by the universal properties of direct limits. The
composition

∆lim = θ ◦ δ : lim−→Cλ → lim−→Cλ ⊗ lim−→Cλ

turns lim−→Cλ into a coalgebra such that the canonical map (e.g., [46, 24.2])

p :
⊕

ΛCλ → lim−→Cλ

is a coalgebra morphism. The counit of lim−→Cλ is the map εlim determined by
the commutativity of the diagrams

Cµ
fµ ��

εµ
���

��
��

��
��

lim−→Cλ

εlim

��
R .
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For any associative R-algebra A,

HomR(lim−→Cλ, A) � lim←−HomR(Cλ, A) ⊂
∏

ΛHomR(Cλ, A),

and from this we conclude – by 1.3 – that the coalgebra lim−→Cλ is coassociative
(cocommutative) whenever all the Cλ are coassociative (cocommutative).

Recall that for the definition of the tensor product of R-algebras A,B, the
twist map tw : A⊗R B → B ⊗R A, a⊗ b �→ b⊗ a is needed. It also helps to
define the

2.12. Tensor product of coalgebras. Let C and D be two R-coalgebras.
Then the composite map

C ⊗R D
∆C⊗∆D�� (C ⊗R C)⊗R (D ⊗R D)

IC⊗tw⊗ID �� (C ⊗R D)⊗R (C ⊗R D)

defines a coassociative coproduct on C ⊗R D, and with the counits εC of C
and εD of D the map εC⊗εD : C⊗RD → R is a counit of C⊗RD. With these
maps, C ⊗R D is called the tensor product coalgebra of C and D. Obviously
C ⊗R D is cocommutative provided both C and D are cocommutative.

2.13. Tensor product of coalgebra morphisms. Let f : C → C ′ and
g : D → D′ be morphisms of R-coalgebras. The tensor product of f and g
yields a coalgebra morphism

f ⊗ g : C ⊗R D → C ′ ⊗R D′.

In particular, there are coalgebra morphisms

IC ⊗ εD : C ⊗R D → C, εC ⊗ ID : C ⊗R D → D,

which, for any commutative R-algebra A, lead to an algebra morphism

HomR(C,A)⊗R HomR(D,A)→ HomR(C ⊗R D,A),

ξ ⊗ ζ �→ (ξ ◦ (IC ⊗ εD)) ∗ (ζ ◦ (εC ⊗ ID)),

where ∗ denotes the convolution product (cf. 1.3).

Proof. The fact that f and g are coalgebra morphisms implies commu-
tativity of the top square in the diagram

C ⊗R D
f⊗g ��

∆C⊗∆D

��

C ′ ⊗R D′

∆C′⊗∆D′
��

C ⊗R C ⊗R D ⊗R D
f⊗f⊗g⊗g ��

IC⊗tw⊗ID
��

C ′ ⊗R C ′ ⊗R D′ ⊗R D′

IC′⊗tw⊗ID′
��

C ⊗R D ⊗R C ⊗R D
f⊗g⊗f⊗g �� C ′ ⊗R D′ ⊗R C ′ ⊗R D′ ,
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while the bottom square obviously is commutative by the definitions. Com-
mutativity of the outer rectangle means that f ⊗ g is a coalgebra morphism.

By 2.2, the coalgebra morphisms C ⊗R D → C and C ⊗R D → D yield
algebra maps

HomR(C,A)→ HomR(C ⊗R D,A), HomR(D,A)→ HomR(C ⊗R D,A) ,

and with the product in HomR(C ⊗R D,A) we obtain a map

HomR(C,A)× HomR(D,A)→ HomR(C ⊗R D,A),

which is R-linear and hence factorises over HomR(C,A)⊗RHomR(D,A). This
is in fact an algebra morphism since the image of HomR(C,A) commutes with
the image of HomR(D,A) by the equalities

((ξ ◦ (IC ⊗ εD)) ∗ (ζ ◦ (εC ⊗ ID)))(c⊗ d)
=

∑
ξ ◦ (IC ⊗ εD)⊗ ζ ◦ (εC ⊗ ID)(c1 ⊗ d1 ⊗ c2 ⊗ d2)

=
∑

ξ(c1ε(d1)) ζ(ε(c2)d2)

=
∑

ξ(c1ε(c2), ζ(ε(d1)d2)

= ξ(c) ζ(d) = ζ(d) ξ(c)

= ((ζ ◦ (εC ⊗ ID)) ∗ (ξ ◦ (IC ⊗ εD)))(c⊗ d),

where ξ ∈ HomR(C,A), ζ ∈ HomR(D,A) and c ∈ C, d ∈ D. �

To define the comultiplication for the tensor product of two R-coalgebras
C,D in 2.12, the twist map tw : C ⊗R D → D ⊗R C was used. Notice that
any such map yields a formal comultiplication on C ⊗R D, whose properties
strongly depend on the properties of the map chosen.

2.14. Coalgebra structure on the tensor product. For R-coalgebras
(C,∆C , εC) and (D,∆D, εD), let ω : C ⊗R D → D⊗R C be an R-linear map.
Explicitly on elements we write ω(c⊗ d) =

∑
dω ⊗ cω. Denote by C�ωD the

R-module C ⊗R D endowed with the maps

∆̄ = (IC ⊗ ω ⊗ ID) ◦ (∆C ⊗∆D) : C ⊗R D → (C ⊗R D)⊗R (C ⊗R D),
ε̄ = εC ⊗ εD : C ⊗R D → R.

Then C�ωD is an R-coalgebra if and only if the following bow-tie diagram



2. Coalgebra morphisms 15

is commutative (tensor over R):

C⊗D⊗D

ω⊗ID

��










C⊗C⊗D

IC⊗ω

���
��

��
��

��
��

��
��

��
��

C⊗D

∆C⊗ID
�����������

IC⊗∆D

������������

εC⊗ID

����
���

���
���

�

ω

��

IC⊗εD

�����
���

���
���

D⊗C⊗D

ID⊗ω

���
��

��
��

��
��

��
��

��
��

C D C⊗D⊗C

ω⊗IC

����
��
��
��
��
��
��
��
��
�

D⊗C
ID⊗εC

������������εD⊗IC

��������������

ID⊗∆C ����
���

���
���

∆D⊗IC�����
���

���
�

D⊗D⊗C D⊗C⊗C .

If this holds, the coalgebra C �ω D is called a smash coproduct of C and D.

Proof. Notice that commutativity of the central trapezium (triangles)
means

(ID ⊗ εC)ω(c⊗ d) = εC(c)d, (εD ⊗ IC)ω(c⊗ d) = εD(d)c.

By definition, right counitality of ε̄ requires (IC⊗RD ⊗R ε̄) ◦ ∆̄ = IC⊗RD, that
is,

c⊗ d =
∑

c1 ⊗ (ID ⊗ εC)ω(c2 ⊗ d1)ε̄(d2) =
∑

c1 ⊗ (ID ⊗ εC)ω(c2 ⊗ d).

Applying εC⊗ID, we obtain the first equality (right triangle) for ω. Similarly,
the second equality (left triangle) is derived. A simple computation shows
that the two equalities imply counitality.

Coassociativity of ∆̄ means commutativity of the diagram

C⊗C⊗D⊗D I⊗ω⊗I�� C⊗D⊗C⊗DI⊗I⊗∆⊗∆�� C⊗D⊗C⊗C⊗D⊗D
I⊗I⊗I⊗ω⊗I
��

C⊗D

∆C⊗∆D

��

∆C⊗∆D

��

(∗) C⊗D⊗C⊗D⊗C⊗D

C⊗C⊗D⊗D I⊗ω⊗I �� C⊗D⊗C⊗D∆⊗∆⊗I⊗I�� C⊗C⊗D⊗D⊗C⊗D ,

I⊗ω⊗I⊗I⊗I
��

which is equivalent to the identity (∗)∑
c1⊗d1ω⊗c2ω1⊗d2 1

ω̄⊗c2ω2
ω̄⊗d2 2 =

∑
c1 1⊗d1ω1

ω̄⊗c1 2ω̄⊗d1ω2⊗c2
ω⊗d2.
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Applying the map εC ⊗ IC ⊗ ID ⊗ ID ⊗ IC ⊗ εD to the last module in the
diagram (∗) – or to formula (∗) – we obtain the commutative diagram and
formula

C ⊗D ⊗D
ω⊗I �� D ⊗ C ⊗D

I⊗∆C⊗I�� D ⊗ C ⊗ C ⊗D

I⊗I⊗ω
��

C ⊗D

I⊗∆D

��

∆C⊗I
��

(∗∗) D ⊗ C ⊗D ⊗ C

C ⊗ C ⊗D
I⊗ω �� C ⊗D ⊗ C

I⊗∆D⊗I�� C ⊗D ⊗D ⊗ C ,

ω⊗I⊗I
��

(∗∗)
∑

d1
ω ⊗ cω1 ⊗ d2

ω̄ ⊗ cω2
ω̄ =

∑
dω1

ω̄ ⊗ c1
ω̄ ⊗ dω2 ⊗ c2

ω.

Now assume formula (∗∗) to be given. Tensoring from the left with the
coefficients c1 and replacing c by the coefficients c2 we obtain∑

c1 ⊗ d1
ω ⊗ c2

ω
1
⊗ d2

ω̄ ⊗ c2
ω
2
ω̄ =

∑
c1 ⊗ dω1

ω̄ ⊗ c2 1
ω̄ ⊗ dω2 ⊗ c2 2

ω

=
∑
c1 1 ⊗ dω1

ω̄ ⊗ c1 2
ω̄ ⊗ dω2 ⊗ c2

ω.

Now, tensoring with the coefficients d2 from the right and replacing d by the
coefficients d1 we obtain formula (∗). So both conditions (∗∗) and (∗) are
equivalent to coassociativity of ∆̄.

Commutativity of the trapezium yields a commutative diagram

D ⊗ C ⊗ C ⊗D

ID⊗IC⊗ω
��

ID⊗εC⊗ω
������

�����
�����

�����

D ⊗ C ⊗D ⊗ C
ID⊗εC⊗ID⊗IC�� D ⊗D ⊗ C .

C ⊗D ⊗D ⊗ C

ω⊗ID⊗IC
��

εC⊗ID⊗ID⊗IC

���������������������

With this it is easy to see that the diagram (∗∗) reduces to the diagram

C ⊗D ⊗D
ω⊗ID �� D ⊗ C ⊗D

IC⊗ω
��

C ⊗D
ω ��

IC⊗∆D

��

D ⊗ C
∆D⊗IC�� D ⊗D ⊗ C,

and a similar argument with εD ⊗ IC yields the diagram

C ⊗D
ω ��

∆C⊗ID
��

D ⊗ C
ID⊗∆C�� D ⊗ C ⊗ C

C ⊗ C ⊗D
IC⊗ω �� C ⊗D ⊗ C .

ω⊗IC
��
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Notice that the two diagrams are the left and right wings of the bow-tie and
hence one direction of our assertion is proven.

Commutativity of these diagrams corresponds to the equations∑
d1
ω⊗d2ω̄⊗cωω̄ =

∑
dω1⊗dω2⊗cω,

∑
dω⊗cω1⊗cω2 =

∑
dωω̄⊗c1ω̄⊗c2ω,

and – alternatively – these can be obtained by applying ID ⊗ εC ⊗ ID ⊗ IC
and ID ⊗ IC ⊗ εD ⊗ IC to equation (∗∗).

For the converse implication assume the bow-tie diagram to be commuta-
tive. Then the trapezium is commutative and hence ε̄ is a counit. Moreover,
the above equalities hold. Tensoring the first one with the coefficients c1 and
replacing c by the coefficients c2 we obtain∑

c1 ⊗ d1
ω ⊗ d2

ω̃ ⊗ c2
ωω̃ =

∑
c1 ⊗ dω1 ⊗ dω2 ⊗ c2

ω.

Applying ω ⊗ ID ⊗ IC to this equation yields∑
d1
ωω̄ ⊗ c1

ω̄ ⊗ d2
ω̃ ⊗ c2

ωω̃ =
∑

dω1
ω̄ ⊗ c1

ω̄ ⊗ dω2 ⊗ c2
ω.

Now, tensoring the second equation with the coefficients d2 from the right,
replacing d by the coefficients d1 and then applying ID ⊗ IC ⊗ ω yields∑

d1
ω ⊗ cω1 ⊗ d2

ω̄ ⊗ cω2
ω̄ =

∑
d1
ωω̄ ⊗ c1

ω̄ ⊗ d2
ω̃ ⊗ c2

ωω̃.

Comparing the two equations we obtain (∗∗), proving the coassociativity of
∆̄. �

Notice that a dual construction and a dual bow-tie diagram apply for
the definiton of a general product on the tensor product of two R-algebras
A,B by an R-linear map ω′ : B ⊗R A → A ⊗R B. A partially dual bow-tie
diagram arises in the study of entwining structures between R-algebras and
R-coalgebras (cf. 32.1).

2.15. Exercises

(1) Let g : A → A′ be an R-algebra morphism. Prove that, for any R-coalgebra
C,

Hom(C, g) : HomR(C,A)→ HomR(C,A′)

is an R-algebra morphism.
(2) Let f : C → C ′ be an R-coalgebra morphism. Prove that, if f is bijective

then f−1 is also a coalgebra morphism.
(3) On the Z-module C = Z ⊕ Z/4Z define a coproduct

∆ : C → C ⊗Z C, (1, 0) �→ (1, 0)⊗ (1, 0),
(0, 1) �→ (1, 0)⊗ (0, 1) + (0, 1)⊗ (1, 0).
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On the submodule D = Z ⊕ 2Z/4Z ⊂ C consider the coproducts

∆1 : D → D ⊗Z D, (1, 0) �→ (1, 0)⊗ (1, 0),
(0, 2) �→ (1, 0)⊗ (0, 2) + (0, 2)⊗ (1, 0),

∆2 : D → D ⊗Z D, (1, 0) �→ (1, 0)⊗ (1, 0),
(0, 2) �→ (1, 0)⊗(0, 2) + (0, 2)⊗(0, 2) + (0, 2)⊗(1, 0).

Prove that (D,∆1) and (D,∆2) are not isomorphic but the canonical inclu-
sion D → C is an algebra morphism for both of them (Nichols and Sweedler
[168]).

(4) On the Z-module C = Z/8Z ⊕ Z/2Z define a coproduct

∆ : C → C ⊗Z C, (1, 0) �→ 0,
(0, 1) �→ 4(1, 0)⊗ (1, 0)

and consider the submodule V = Z(2, 0) + Z(0, 1) ⊂ C. Prove:

(i) ∆ is well defined.
(ii) ∆(V ) is contained in the image of V ⊗R V → C ⊗R C.
(iii) ∆ : V → C ⊗R C has no lifting to V ⊗R V (check the order of the

preimage of ∆(0, 1) in V ⊗R V ) (Nichols and Sweedler [168]).
(5) Let C = Z ⊕ Z/2Z ⊕ Z, denote c0 = (1, 0, 0), c1 = (0, 1, 0), c2 = (0, 0, 1) and

define a coproduct

∆(cn) =
n∑
i=0

ci ⊗ cn−i, n = 0, 1, 2.

Let D = Z ⊕ Z/4Z, denote d0 = (1, 0), d1 = (0, 1) and

∆(d0) = d0 ⊗ d0, ∆(d1) = d0 ⊗ d1 + d1 ⊗ d0.

Prove that the map

f : C → D, c0 �→ d0, c1 �→ 2d1, c2 �→ 0,

is a Z-coalgebra morphism and ∆(c2) �∈ c2 ⊗ C + C ⊗ c2 (which implies that
Ke f = Zc2 is not a coideal in C) (Nichols and Sweedler [168]).

(6) Prove that the tensor product of coalgebras yields the product in the category
of cocommutative coassociative coalgebras.

(7) Let (C,∆C , εC) and (D,∆D, εD) be R-coalgebras with an R-linear mapping
ω : C ⊗R D → D ⊗R C. Denote by C�ωD the R-module C ⊗R D endowed
with the maps ∆̄ and ε̄ as in 2.14. The map ω is said to be left or right
conormal if for any c ∈ C, d ∈ D,

(ID ⊗ εC)ω(c⊗ d) = ε(c)d or (εD ⊗ IC)ω(c⊗ d) = εD(d)c.

Prove:
(i) The following are equivalent:
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(a) ω is left conormal;
(b) εC ⊗ ID : C�ωD → D respects the coproduct;
(c) (IC⊗RD ⊗R ε̄) ◦ ∆̄ = IC⊗RD.

(ii) The following are equivalent:

(a) ω is right conormal;
(b) IC ⊗ εD : C�ωD → C respects the coproduct;
(c) (ε̄⊗R IC⊗RD) ◦ ∆̄ = IC⊗RD.

References. Caenepeel, Militaru and Zhu [9]; Nichols and Sweedler [168];
Sweedler [45]; Wisbauer [210].
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3 Comodules

In algebra or ring theory, in addition to an algebra, one would also like to
study its modules, that is, Abelian groups on which the algebra acts. Cor-
respondingly, in the coalgebra theory one would like to study R-modules
on which an R-coalgebra C coacts. Such modules are known as (right) C-
comodules, and for any given C they form a category MC , provided mor-
phisms or C-comodule maps are suitably defined. In this section we define
the category MC and study its properties. The category MC in many re-
spects is similar to the category of modules of an algebra, for example, there
are Hom-tensor relations, there exist cokernels, and so on, and indeed there
is a close relationship between MC and the modules of the dual coalgebra
C∗ (cf. Section 4). On the other hand, however, there are several marked
differences between categories of modules and comodules. For example, the
category of modules is an Abelian category, while the category of comodules
of a coalgebra over a ring might not have kernels (and hence it is not an
Abelian category in general). This is an important (lack of) property that is
characteristic for coalgebras over rings (if R is a field then MC is Abelian),
that makes studies of such coalgebras particularly interesting. The ring struc-
ture of R and the R-module structure of C play in these studies an important
role, which requires careful analysis of R-relative properties of a coalgebra or
both C- and R-relative properties of comodules.

As before, R denotes a commutative ring,MR the category of R-modules,
and C, more precisely (C,∆, ε), stands for a (coassociative) R-coalgebra (with
counit). We first introduce right comodules over C.

3.1. Right C-comodules. For M ∈ MR, an R-linear map �M : M →
M ⊗R C is called a right coaction of C on M or simply a right C-coaction.
To denote the action of �M on elements of M we write �M(m) =

∑
m0⊗m1.

A C-coaction �M is said to be coassociative and counital provided the
diagrams

M
�M ��

�M

��

M ⊗R C
IM⊗∆
��

M ⊗R C
�M⊗IC ��M ⊗R C ⊗R C,

M
�M ��

IM ����
���

���
��

M ⊗R C
IM⊗ε
��
M

are commutative. Explicitly, this means that, for all m ∈M ,∑
�M(m0)⊗m1 =

∑
m0 ⊗∆(m1), m =

∑
m0ε(m1).

In view of the first of these equations we can shorten the notation and write

(IM ⊗∆) ◦ �M(m) =
∑

m0 ⊗m1 ⊗m2,
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and so on, in a way similar to the notation for a coproduct. Note that
the elements with subscript 0 are in M while all the elements with positive
subscripts are in C.

An R-module with a coassociative and counital right coaction is called a
right C-comodule.

Recall that any semigroup induces a coalgebra (R[G],∆1, ε1) (see 1.7) and
for this the comodules have the following form.

3.2. Graded modules. Let G be a semigroup. Considering R with the
trivial grading, an R-module M is G-graded (see 40.6) if and only if it is an
R[G]-comodule.

Proof. Let M =
⊕

GMg be a G-graded module. Then a coaction of
(R[G],∆1, ε1) on M is defined by

�M :M −→M ⊗R R[G], mg �→ m⊗ g.

It is easily seen that this coaction is coassociative and, for any m ∈M ,

(IM ⊗ ε1)�
M(m) = (IM ⊗ ε1)(

∑
g∈G

mg ⊗ g) =
∑
g∈G

mg = m.

Now assume that M is a right R[G]-comodule and for all m ∈ M write
�M(m) =

∑
g∈Gmg⊗g. By coassociativity,

∑
g∈G(mg)h⊗h⊗g =

∑
g∈Gmg⊗

g ⊗ g, which implies (mg)h = δg,hmg and also �
M(mg) = mg ⊗ g. Then

Mg = {mg |m ∈ M} is an independent family of R-submodules of M . Now
counitality ofM implies m = (IM⊗ε1)(

∑
g∈Gmg⊗g) =

∑
g∈Gmg, and hence

M =
⊕

GMg. �
Maps between comodules should respect their structure, that is, they have

to commute with the coactions. This leads to

3.3. Comodule morphisms. LetM , N be right C-comodules. An R-linear
map f : M → N is called a comodule morphism or a morphism of right
C-comodules if and only if the diagram

M
f ��

�M

��

N

�N

��
M ⊗R C

f⊗IC �� N ⊗R C

is commutative. Explicitly, this means that �N ◦ f = (f ⊗ IC) ◦ �M ; that is,
for all m ∈M we require∑

f(m)0 ⊗ f(m)1 =
∑

f(m0)⊗m1.
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Instead of comodule morphism we also say C-morphism or (C-)colinear
map. It is easy to see that the sum of two C-morphisms is again a C-
morphism. In fact, the set HomC(M,N) of C-morphisms from M to N is
an R-module, and it follows from the definition that it is determined by the
exact sequence in MR,

0→ HomC(M,N)→ HomR(M,N)
γ−→ HomR(M,N ⊗R C),

where γ(f) := �N ◦ f − (f ⊗ IC) ◦ �M . Notice that it can also be determined
by the pullback diagram

HomC(M,N) ��

��

HomR(M,N)

�N◦−
��

HomR(M,N)
(−⊗IC)◦�M�� HomR(M,N ⊗R C) .

Obviously the class of right comodules over C together with the colinear maps
form an additive category. This category is denoted by MC .

3.4. Left C-comodules. Symmetrically, for an R-moduleM , left C-coaction
is defined as an R-linear map M� :M → C⊗RM . It is said to be coassociative
and counital if it induces commutative diagrams

M
M� ��

M�
��

C ⊗RM
∆⊗IM
��

C ⊗RM
IC⊗M� �� C ⊗R C ⊗RM,

M
M� ��

=
����

���
���

��
C ⊗RM

ε⊗IM
��

M.

For m ∈M we write M�(m) =
∑
m−1 ⊗m0, and coassociativity is expressed

as
∑
m−1⊗M�(m0) =

∑
∆(m−1)⊗m0 =

∑
m−2⊗m−1⊗m0, where the final

expression is a notation. The axiom for the counit reads m =
∑
ε(m−1)m0.

An R-module with a coassociative and counital left C-coaction is called a
left C-comodule. C-morphisms between left C-comodules M , N are defined
symmetrically, and the R-module of all such C-morphisms is denoted by
CHom (M,N). Left C-comodules and their morphisms again form an additive
category that is denoted by CM.

An example of a left and right C-comodule is provided by C itself. In
both cases coaction is given by ∆. Unless explicitly stated otherwise, C is
always viewed as a C-comodule with this coaction. In this context ∆ is often
referred to as a left or right regular coaction.

In what follows we mainly study the category of right comodules. The
corresponding results for left comodules can be obtained by left-right symme-
try. Similarly to the case of coalgebras, several constructions for C-comodules
build upon the corresponding constructions for R-modules.
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3.5. Kernels and cokernels in MC. Let f : M → N be a morphism in
MC . The cokernel g of f in MR yields the exact commutative diagram

M
f ��

�M

��

N
g ��

�N

��

L �� 0

M ⊗R C
f⊗IC �� N ⊗R C

g⊗IC �� L⊗R C �� 0,

which can be completed commutatively inMR by some �
L : L→ L⊗R C for

which we obtain the diagram

N
�N ��

g

��

N ⊗R C
�N⊗IC ��
IN⊗∆

��

g⊗IC
��

N ⊗R C ⊗R C
g⊗IC⊗IC
��

L
�L �� L⊗R C

�L⊗IC ��
IL⊗∆

�� L⊗R C ⊗R C .

The outer rectangle is commutative for the upper as well as for the lower
morphisms, and hence

(�L ⊗ IC) ◦ �L ◦ g = (IL ⊗∆) ◦ �L ◦ g .

Now, surjectivity of g implies (�L ⊗ IC) ◦ �L = (IL ⊗ ∆) ◦ �L, showing that
�L is coassociative. Moreover,

(IL ⊗ ε) ◦ �L ◦ g = (IL ⊗ ε) ◦ (g ⊗ IC) ◦ �N = g,

which shows that (IL ⊗ ε) ◦ �L = IL. Thus �
L is counital, and so it makes L

a comodule such that g is a C-morphism. This shows that cokernels exist in
the category MC .

Dually, for the kernel h of f in MR there is a commutative diagram

0 �� K
h �� M

f ��

�M

��

N

�N

��
0 �� K ⊗R C

h⊗IC ��M ⊗R C
f⊗IC �� N ⊗R C ,

where the top sequence is always exact while the bottom sequence is exact
provided f is C-pure as R-morphism (see 40.13). If this is the case, the
diagram can be extended commutatively by a coaction �K : K → K ⊗R C,
and (dual to the proof for cokernels) it can be shown that �K is coassociative
and counital. Thus kernels of C-morphisms are induced from kernels in MR

provided certain additional conditions are imposed, for example, when C is
flat as an R-module.
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3.6. C-subcomodules. Let M be a right C-comodule. An R-submodule
K ⊂ M is called a C-subcomodule of M provided K has a right comodule
structure such that the inclusion is a comodule morphism.

This definition displays a number of typical features of coalgebras over a
ring as opposed to coalgebras over a field. In the case in which R = F is
a field, one defines a C-subcomodule of M as a subspace K ⊂ M such that
�M(K) ⊂ K ⊗F C ⊂ M ⊗F C. In the case of a general commutative ring
R, however, the fact that K is an R-submodule of M does not yet imply
that K ⊗R C is a submodule of M ⊗R C, since the tensor functor is only
right but not left exact. However, if K is a C-pure R-submodule of M ,
then K ⊗R C ⊂ M ⊗R C as well, and K is a subcomodule of M provided
�M(K) ⊂ K ⊗R C ⊂ M ⊗R C. By the same token, the kernel K in MR of a
comodule morphism f : M → N need not be a subcomodule of M unless f
is a C-pure morphism (compare 3.5).

3.7. Coproducts in MC. Let {Mλ, �
M
λ }Λ be a family of C-comodules. Put

M =
⊕

ΛMλ, the coproduct in MR, iλ : Mλ → M the canonical inclusions,
and consider the linear maps

Mλ

�Mλ−→Mλ ⊗R C ⊂M ⊗R C.

Note that the inclusions iλ are R-splittings, so that Mλ⊗R C ⊂M ⊗R C is a
pure submodule. By the properties of coproducts of R-modules there exists
a unique coaction

�M :M →M ⊗R C, such that �M ◦ iλ = �Mλ ,

which is coassociative and counital since all the �Mλ are, and thus it makes
M a C-comodule for which the iλ : Mλ → M are C-morphisms with the
following universal property:

Let {fλ :Mλ → N}Λ be a family of morphisms in MC. Then there exists
a unique C-morphism f : M → N such that, for each λ ∈ Λ, the following
diagram of C-morphisms commutes:

Mλ
iλ ��

fλ ��













 M

f

��
N .

Similarly to the coproduct, the direct limit of direct families of C-como-
dules is derived from the direct limit in MR. Both constructions are special
cases of a more general observation on colimits of F -coalgebras in 38.25.

3.8. Comodules and tensor products. Let M be inMC and consider any
morphism f : X → Y of R-modules. Then:
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(1) X ⊗RM is a right C-comodule with the coaction

IX ⊗ �M : X ⊗RM −→ X ⊗RM ⊗R C,

and the map f ⊗ IM : X ⊗RM → Y ⊗RM is a C-morphism.

(2) In particular, X ⊗R C has a right C-coaction

IX ⊗∆ : X ⊗R C −→ X ⊗R C ⊗R C,

and the map f ⊗ IC : X ⊗R C → Y ⊗R C is a C-morphism.

(3) For any index set Λ, R(Λ)⊗R C � C(Λ) as comodules and there exists a
surjective C-morphism

C(Λ′) →M ⊗R C, for some Λ′.

(4) The structure map �M : M → M ⊗R C is a comodule morphism, and
hence M is a subcomodule of a C-generated comodule.

Proof. (1) and (2) are easily verified from the definitions.

(3) Take a surjective R-linear map h : R(Λ′) →M . Then, by (2),

h⊗ IC : R
(Λ′) ⊗R C →M ⊗R C

is a surjective comodule morphism.

(4) By coassociativity, �M is a comodule morphism (where M ⊗R C has
the comodule structure from (1)). Note that ρM is split by IM ⊗ ε as an R-
module; thusM is a pure submodule ofM⊗RC and hence is a subcomodule.

�

Similarly to the classical Hom-tensor relations (see 40.18), we obtain

3.9. Hom-tensor relations in MC. Let X be any R-module.

(1) For any M ∈MC, the R-linear map

ϕ : HomC(M,X ⊗R C)→ HomR(M,X), f �→ (IX ⊗ ε) ◦ f,

is bijective, with inverse map h �→ (h⊗ IC) ◦ �M .
(2) For any M,N ∈MC, the R-linear map

ψ : HomC(X⊗RM,N)→ HomR(X,Hom
C(M,N)), g �→ [x �→ g(x⊗−)],

is bijective, with inverse map h �→ [x⊗m �→ h(x)(m)].
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Proof. (1) For any f ∈ HomC(M,X ⊗R C) the diagram

M
f ��

�M

��

X ⊗R C
IX⊗∆

��

=

����
���

���
���

��

M ⊗R C f⊗IC
�� X ⊗R C ⊗R CIX⊗ε⊗IC

�� X ⊗R C

is commutative, that is,

f = (IX ⊗ ε⊗ IC) ◦ (f ⊗ IC) ◦ �M = (ϕ(f)⊗ IC) ◦ �M .

This implies that ϕ is injective.
Since �M is a C-morphism, so is (h⊗ IC) ◦ �M , for any h ∈ HomR(M,X).

Therefore

ϕ((h⊗ IC) ◦ ρM) = (IX ⊗ ε) ◦ (h⊗ IC) ◦ �M = h ◦ (IM ⊗ ε) ◦ �M = h,

implying that ϕ is surjective.
(2) The Hom-tensor relations for modules provide one with an isomor-

phism of R-modules,

ψ : HomR(X ⊗RM,N)→ HomR(X,HomR(M,N)). (∗)

For any x ∈ X, by commutativity of the diagram

M
x⊗− ��

�M

��

X ⊗RM
IX⊗�M
��

m � ��
	

��

x⊗m	

��
M ⊗R C

(x⊗−)⊗IC�� X ⊗RM ⊗R C, �M(m) � �� x⊗ �M(m) ,

the map x ⊗ − is a C-morphism. Hence, for any g ∈ HomC(X ⊗R M,N),
the composition g ◦ (x⊗−) is a C-morphism. On the other hand, there is a
commutative diagram, for all h ∈ HomR(X,HomC(M,N)),

X ⊗RM ��

IX⊗�M
��

N

�N

��

x⊗m � ��
	

��

h(x)(m)
	

��
X ⊗RM ⊗R C �� N ⊗R C , x⊗�M(m) � �� (h(x)⊗IC) ◦ �M(m) .

This shows that ψ−1(h) lies in HomC(X ⊗R M,N) and therefore implies
that ψ in (∗) restricts to the bijective map ψ : HomC(X ⊗R M,N) →
HomR(X,Hom

C(M,N)), as required. �
For completeness we formulate the left-sided version of 3.9.
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3.10. Hom-tensor relations in CM. Let X be any R-module.

(1) For any left C-comodule M , there is an isomorphism

ϕ′ : CHom (M,C ⊗R X)→ HomR(M,X), f �→ (ε⊗ IX) ◦ f,

with inverse map h �→ (IC ⊗ h) ◦ M�.
(2) For any M,N ∈ CM, there is an isomorphism

ψ′ : CHom (M⊗RX,N)→ HomR(X,
CHom(M,N)), g �→ [x �→g(−⊗x)],

with inverse map h �→ [m⊗ x �→ h(x)(m)].

Unlike for A-modules (see 40.8), the R-dual of a right C-comodule need
not be a left C-comodule unless additional conditions are imposed. To specify
such sufficient conditions, first recall that, for a finitely presented R-module
M and a flat R-module C, there is an isomorphism (compare 40.12)

νM : C ⊗R HomR(M,R)→ HomR(M,C), c⊗ h �→ c⊗ h(−) .

3.11. Comodules finitely presented as R-modules. Let RC be flat and
M ∈ MC such that RM is finitely presented. Then M∗ = HomR(M,R) is a
left C-comodule by the structure map

M∗
� :M∗ → HomR(M,C) � C ⊗RM∗, g �→ (g ⊗ IC) ◦ �M .

Proof. The comodule property ofM∗ follows from the commutativity of
the following diagram (with obvious maps), the central part of which arises
from the coassociativity of C (tensor over R):

M∗ � ��

��

HomC(M,C) ��

��

HomC(M,C⊗C) � ��

��

C⊗M∗

∆⊗IM∗
��

C⊗M∗ � �� HomC(M,C⊗C) �� HomC(M,C⊗C⊗C) � �� C⊗C⊗M∗ .

�
For X = R and M = C, the isomorphism ϕ describes the comodule

endomorphisms of C.

3.12. Comodule endomorphisms of C.

(1) There is an algebra anti-isomorphism ϕ : EndC(C) → C∗, f �→ ε ◦ f ,
with the inverse map h �→ (h ⊗ IC) ◦ ∆ and so h ∈ C∗ acts on c ∈ C
from the right by

c↼h = (h⊗ IC)∆(c) =
∑

h(c1)c2.
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(2) There is an algebra isomorphism ϕ′ : CEnd(C) → C∗, f �→ ε ◦ f, with
the inverse map h �→ (IC ⊗ h) ◦∆ and so h ∈ C∗ acts on c ∈ C from
the left by

h⇀c = (IC ⊗ h)∆(c) =
∑

c1h(c2).

(3) For any f ∈ C∗ and c ∈ C,

∆(f⇀c) =
∑
c1 ⊗ (f⇀c2),

∆(c↼f) =
∑
(c1↼f)⊗ c2,

∆(f⇀c↼g) =
∑
(c1↼g)⊗ (f⇀c2),∑

c1 ⊗ (c2↼f) =
∑
(f⇀c1)⊗ c2.

(4) ϕ and ϕ′ are homeomorphisms for the finite topologies (cf. 42.1).

(5) The coproduct ∆ yields the embedding

C∗ � HomC(C,C)→ HomC(C,C ⊗R C) � EndR(C).

Proof. (1) By 3.9(1), ϕ is R-linear and bijective. Take any f , g ∈
EndC(C), recall that (f ⊗ IC) ◦ ∆ = ∆ ◦ f , and consider the convolution
product applied to any c ∈ C,

(ε ◦ f) ∗ (ε ◦ g)(c) =
∑
ε(f(c1)) ε(g(c2))

= ε ◦ g [(ε⊗ IC) ◦ (f ⊗ IC) ◦∆(c)]
= ε ◦ g [(ε⊗ IC) ◦∆ ◦ f(c)] = ε ◦ (g ◦ f)(c) .

This shows that ϕ is an anti-isomorphism.
(2) For all f, g ∈ CEnd (C), (IC ⊗ g) ◦∆ = ∆ ◦ g, and hence

(ε ◦ f) ∗ (ε ◦ g)(c) =
∑
ε(f(c1)) ε(g(c2))

= ε ◦ f [(IC ⊗ ε) ◦ (IC ⊗ g) ◦∆(c)]
= ε ◦ g [(IC ⊗ ε) ◦∆ ◦ g(c)] = ε ◦ (f ◦ g)(c) .

(3) By definition,

∆(f⇀c) = ∆(
∑
c1f(c2) =

∑
c11 ⊗ c12f(c2)

=
∑
c1 ⊗ c21f(c22) =

∑
c1 ⊗ (f⇀c2).

The remaining assertions are shown similarly.
(4) We show that both ϕ and ϕ−1 map open neighbourhoods of zero

to open neighbourhoods of zero. For any x1, . . . , xk ∈ C, writing ∆(xi) =∑
xi1 ⊗ xi2,

{h∈C∗ |h(xi1) = 0, i = 1, . . . , k}⊂ϕ({f ∈EndC(C) | f(xi) = 0, i = 1, . . . , k}),
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where the left-hand side denotes an open subset in C∗ and

{f ∈EndC(C) | f(xi) = 0, i=1, . . . , k}⊂ϕ−1({h∈C∗ |h(xi) = 0, i=1, . . . , k}),

with the left-hand side an open subset in EndC(C). This shows that ϕ is a
homeomorphism.

(5) This follows from the Hom-tensor relations 3.9 for M = C = X . �

Notice that in 3.12(1) the comodule morphisms are written on the left of
the argument. By writing morphisms of right comodules on the right side, we
obtain an isomorphism between C∗ and the comodule endomorphism ring.

The next theorem summarises observations on the category of comodules.

3.13. The category MC.

(1) The category MC has direct sums and cokernels, and C is a subgener-
ator.

(2) MC is a Grothendieck category provided that C is a flat R-module.

(3) The functor −⊗RC :MR →MC is right adjoint to the forgetful functor
(−)R :MC →MR.

(4) For any monomorphism f : K → L of R-modules,

f ⊗ IC : K ⊗R C → L⊗R C

is a monomorphism in MC.

(5) For any family {Mλ}Λ of R-modules, (
∏

ΛMλ) ⊗R C is the product of
the Mλ ⊗R C in MC.

Proof. (1) The first assertions follow from 3.5 and 3.7. By 3.8(4), any
comodule M is a subcomodule of the C-generated comodule M ⊗R C.

(2) By 3.5, MC has kernels provided C is a flat R-module. This implies
that the intersection of two subcomodules and the preimage of a (sub)co-
module is again a comodule. It remains to show that MC has (a set of)
generators. For any right C-comodule M , there exists a surjective comodule
map g : C(Λ) →M ⊗RC (see 3.8). Then L := g−1(M) ⊂ C(Λ) is a subcomod-
ule. Furthermore, for any m ∈ M there exist k ∈ N and an element x in the
comodule Ck ∩ L ⊂ Ck such that g(x) = m. Therefore m ∈ g(Ck ∩ L). This
shows that M is generated by comodules of the form Ck ∩ L, k ∈ N. Hence
the subcomodules of Ck, k ∈ N, form a set of generators of MC .

(3) For all M ∈ MC and X ∈ MR, let ϕM,X denote the isomorphism
constructed in 3.9(1). We need to show that ϕM,X is natural in M and X.
First take any right C-comodule N and any g ∈ HomC(M,N). Then, for all
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f ∈ HomC(N,X ⊗R C),

(ϕM,X ◦ HomC(g,X ⊗R C))(f) = (IX ⊗ ε) ◦ HomC(g,X ⊗R C)(f)
= (IX ⊗ ε) ◦ f ◦ g
= HomR(g,X)((IX ⊗ ε) ◦ f)
= (HomR(g,X) ◦ ϕN,X)(f).

Similarly, take any R-module Y and g ∈ HomR(X, Y ). Then, for any map
f ∈ HomC(M,X ⊗R C),

(ϕM,Y ◦ HomC(M, g ⊗ IC))(f) = (IY ⊗ ε) ◦ (HomC(M, g ⊗ IC)(f))

= (IY ⊗ ε) ◦ (g ⊗ IC) ◦ f
= (g ⊗ ε) ◦ f = g ◦ (IX ⊗ ε) ◦ f
= (HomR(M, g) ◦ ϕM,X)(f).

This proves the naturality of ϕ and thus the adjointness property. Note that
the unit of this adjunction is provided by the coaction �M : M → M ⊗R C,
while the counit is IX ⊗ ε : X ⊗R C → X.

(4) Any functor that has a left adjoint preserves monomorphisms (cf.
38.21). Note that monomorphisms inMC need not be injective maps, unless

RC is flat.
(5) By (3), for all X ∈MC there are isomorphisms

HomC(X, (
∏

ΛMλ)⊗R C) � HomR(X,
∏

ΛMλ)

�
∏

ΛHomR(X,Mλ)

�
∏

ΛHom
C(X,Mλ ⊗R C).

These isomorphisms characterise (
∏

ΛMλ)⊗R C as product of the Mλ ⊗R C
in MC . �

3.14. C as a flat R-module. The following are equivalent:

(a) C is flat as an R-module;

(b) every monomorphism in MC is injective;

(c) every monomorphism U → C in MC is injective;

(d) the forgetful functor MC →MR respects monomorphisms.

Proof. (a) ⇒ (b) Consider a monomorphism f : M → N . Since

RC is flat, the inclusion i : Ke f → M is a morphism in MC (by 3.5) and
f ◦ i = f ◦ 0 = 0 implies i = 0, that is, Ke f = 0.

(b) ⇒ (c) and (b) ⇔ (d) are obvious.
(c) ⇒ (a) For every ideal J ⊂ R, the canonical map J ⊗R C → R⊗R C is

a monomorphism in MC by 3.13(4), and hence it is injective by assumption.
This implies that RC is flat (e.g., [46, 12.16]). �
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3.15. −⊗RC as a left adjoint functor. If the functor −⊗RC :MR →MC

is left adjoint to the forgetful functorMC →MR, then C is finitely generated
and projective as an R-module.

Proof. As a right adjoint functor, the forgetful functor respects mono-
morphisms and products (see 38.21). Hence C is a flat R-module (by 3.14),
and by 3.13, for any family {Mλ}Λ of R-modules there is an isomorphism

(
∏

ΛMλ)⊗R C �
∏

Λ(Mλ ⊗R C).
By 40.17 this implies that C is a finitely presented R-module, and hence it is
projective. �

3.16. Finiteness Theorem (1). Assume C to be flat as an R-module and
let M ∈MC.

(1) Every finite subset of M is contained in a subcomodule of M that is
contained in a finitely generated R-submodule.

(2) If C is a Mittag-Leffler R-module (cf. 40.17), then every finite subset
of M is contained in a subcomodule of M that is finitely generated as
R-module.

Proof. (1) Obviously it is enough to prove this for a single element
m ∈ M . Write �M(m) = m1 ⊗ c1 + · · ·+mk ⊗ ck and M

′ =
∑
iRmi. Let N

denote the kernel of the composition of the canonical maps

M
�M ��M ⊗R C �� (M ⊗R C)/(M ′ ⊗R C).

Then N is a C-comodule, m ∈ N , and �N(N) ⊂M ′ ⊗R C, implying

N ⊂ (IM ′ ⊗ ε)(M ′ ⊗R C) ⊂M ′.

(2) For m ∈ M , let {Mλ}Λ denote the family of all R-submodules of M
such that �M(m)∈Mλ ⊗R C. Consider the commutative diagram

0 �� (
⋂

ΛMλ)⊗R C ��

��

M ⊗R C ��

=

��

(
∏

ΛM/Mλ)⊗R C
ϕC
��

0 ��
⋂

Λ(Mλ ⊗R C) ��M ⊗R C ��
∏

Λ(M/Mλ ⊗R C),

where ϕC is injective by the Mittag-Leffler property of C (see 40.17) and
hence – by diagram lemmata – we obtain (

⋂
ΛMλ)⊗R C =

⋂
Λ(Mλ ⊗R C).

Putting M ′ =
⋂

ΛMλ and defining N as above, we can write �M(m) =

n1⊗c1+· · ·+nl⊗cl, where all ni ∈M ′. This impliesN ⊂M ′ =
∑k
i=1Rni ⊂ N ,

and so N =
∑k
i=1Rni is finitely generated. �
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Special cases of these finiteness properties are considered in 4.12 and 4.16.
Recall that a monomorphism i : N → L inMR is a coretraction provided

there exists p : L→ N in MR with p ◦ i = IN (see 38.8).

3.17. Relative injective comodules. A right C-comodule M is said to be
relative injective or (C,R)-injective if, for every C-comodule map i : N → L
that is an R-module coretraction, and for every morphism f : N → M in
MC , there exists a right C-comodule map g : L→M such that g ◦ i = f . In
other words, we require that every diagram in MC

N
i ��

f ���
��

��
��

� L

M

can be completed commutatively by some C-morphism g : L→M , provided
there exists an R-module map p : L→ N such that p ◦ i = IN .

3.18. (C,R)-injectivity. Let M be a right C-comodule.

(1) The following are equivalent:

(a) M is (C,R)-injective;

(b) any C-comodule map i : M → L that is a coretraction in MR is
also a coretraction in MC;

(c) the coaction �M :M →M ⊗R C is a coretraction in MC.

(2) For any X ∈MR, X ⊗R C is (C,R)-injective.

(3) If M is (C,R)-injective, then, for any L ∈MC, the canonical sequence

0 �� HomC(L,M)
i �� HomR(L,M)

γ �� HomR(L,M ⊗R C)

splits in MB, where B = EndC(L) and γ(f) = �M ◦ f − (f ⊗ IC) ◦ �L
(see 3.3).

In particular, EndC(C) � C∗ is a C∗-direct summand in EndR(C).

Proof. (1) (a)⇒ (b) Suppose thatM is (C,R)-injective and takeN =M
and f = IM in 3.17 to obtain the assertion.

(b)⇒ (c) View M ⊗RC as a right C-comodule with the coaction IM ⊗∆,
and note that �M : M → M ⊗R C is a right C-comodule map that has an
R-linear retraction IM ⊗ ε. Therefore �M is a coretraction in MC .

(c)⇒ (a) Suppose there exists a right C-comodule map h :M⊗RC →M
such that h ◦ ρM = IM , consider a diagram

N
i ��

f ���
��

��
��

� L

M
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as in 3.17, and assume that there exists an R-module map p : L → N such
that p ◦ i = IN . Define an R-linear map g : L→M as a composition

g : L
�L �� L⊗R C

f◦p⊗IC�� M ⊗R C h ��M .

Clearly, g is a right C-comodule map as a composition of C-comodule maps.
Furthermore,

g ◦ i = h ◦ (f ◦ p⊗ IC) ◦ �L ◦ i = h ◦ (f ◦ p ◦ i⊗ IC) ◦ �N

= h ◦ (f ⊗ IC) ◦ �N = h ◦ �M ◦ f = f,

where we used that both i and f are C-colinear. Thus the above diagram
can be completed to a commutative diagram inMC , and hence M is (C,R)-
injective.

(2) The coaction for X ⊗R C is given by �X⊗RC = IX ⊗∆, and it is split
by a right C-comodule map IX ⊗ ε⊗ IC . Thus X ⊗R C is (C,R)-injective by
part (1).

(3) Denote by h : M ⊗A C → M the splitting map of �M in MC . Then
the map

HomR(L,M) � HomC(L,M ⊗A C)→ HomC(L,M), f �→ h ◦ (f ⊗ IC) ◦ �L,

splits the first inclusion in MB, and the map

HomR(L,M ⊗A C)→ HomR(L,M), g �→ h ◦ g

yields a splitting map HomR(L,M⊗AC)→ HomR(L,M)/Hom
C(L,M), since

for any f ∈ HomR(L,M),

h ◦ γ(f) = f − h ◦ (f ⊗ IC) ◦ �L ∈ f +HomC(L,M).

�

If RC is flat, MC is a Grothendieck category by 3.13, so exact sequences
are defined in MC and we can describe

3.19. Exactness of the HomC-functors. Assume RC to be flat and let
M ∈MC. Then:

(1) HomC(−,M) :MC →MR is a left exact functor.

(2) HomC(M,−) :MC →MR is a left exact functor.
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Proof. (1) From any exact sequence X → Y → Z → 0 inMC we derive
the commutative diagram (tensor over R)

0

��

0

��

0

��

0 �� HomC(Z,M) ��

��

HomC(Y,M) ��

��

HomC(X,M)

��
0 �� HomR(Z,M) ��

��

HomR(Y,M) ��

��

HomR(X,M)

��
0 �� HomR(Z,M⊗C) �� HomR(Y,M⊗C) �� HomR(X,M⊗C),

where the columns are exact by the characterisation of comodule morphisms
(in 3.3). The second and third rows are exact by exactness properties of the
functors HomR. Now the diagram lemmata imply that the first row is exact,
too.

Part (2) is shown with a similar diagram. �

3.20. (C,R)-exactness. If RC is flat, exact sequences in MC are called
(C,R)-exact provided they split in MR. A functor on MC is called left
(right) (C,R)-exact if it is left (right) exact on short (C,R)-exact sequences.
From properties of the functors given in 3.9 and 3.19, and from properties
of (C,R)-injective comodules in 3.18, we immediately obtain the following
characterisation of (C,R)-injective comodules in case RC is flat:

M ∈MC is (C,R)-injective if and only if HomC(−,M) :MC →MR is a
(C,R)-exact functor.

An object Q ∈MC is injective in MC if, for any monomorphism M → N
in MC , the canonical map HomC(N,Q)→ HomC(M,Q) is surjective.

3.21. Injectives in MC. Assume RC to be flat.

(1) Q ∈MC is injective if and only if HomC(−, Q) :MC →MR is exact.

(2) If X ∈MR is injective in MR, then X ⊗R C is injective in MC.

(3) If M ∈MC is (C,R)-injective and injective inMR, then M is injective
in MC.

(4) C is (C,R)-injective, and it is injective in MC provided that R is in-
jective in MR.

(5) If RM is flat and N is injective in MC, then HomC(M,N) is injective
in MR.
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Proof. (1) The assertion follows by 3.19.
(2) This follows from the isomorphism in 3.9(1).
(3) Since M is R-injective, assertion (2) implies that M ⊗R C is injective

inMC . Moreover, by 3.18,M is a direct summand ofM⊗RC as a comodule,
and hence it is also injective in MC .

Part (4) is a special case of (2).
(5) This follows from the isomorphism in 3.9(2). �
An object P ∈MC is projective in MC if, for any epimorphism M → N

in MC , the canonical map HomC(P,M)→ HomC(P,N) is surjective.

3.22. Projectives in MC. Consider any P ∈MC.

(1) If P is projective in MC, then P is projective in MR.

(2) If RC is flat, the following are equivalent:

(a) P is projective in MC;

(b) HomC(P,−) :MC →MR is exact.

Proof. (1) For any epimorphism f : K → L inMR, K⊗RC
f⊗IC−→ L⊗RC

is an epimorphism in MC and the projectivity of P implies the exactness of
the top row in the commutative diagram

HomC(P,K ⊗R C) ��

�
��

HomC(P,L⊗R C) ��

�
��

0

HomR(P,K)
Hom(P,f) �� HomR(P,L) ,

where the vertical maps are the functorial isomorphisms from 3.9(1). From
this we see that Hom(P, f) is surjective, proving that P is projective as an
R-module.

(2) This follows from left exactness of HomC(P,−) described in 3.19. �
Note that, although there are enough injectives inMC , there are possibly

no projective objects in MC . This remains true even if R is a field (see
Exercise 8.12).

3.23. Tensor product and HomC. Let RC be flat, and considerM,N ∈MC

and X ∈MR such that

(i) MR is finitely generated and projective, and N is (C,R)-injective; or

(ii) MR is finitely presented and X is flat in MR.

Then there exists a canonical isomorphism

ν : X ⊗R HomC(M,N) −→ HomC(M,X ⊗R N), x⊗ h �→ x⊗ h(−).
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Proof. Consider the defining exact sequence for HomC (see 3.3),

(∗) 0 �� HomC(M,N) �� HomR(M,N) �� HomR(M,N ⊗R C).

Tensoring with XR yields the commutative diagram (tensor over R)

0 �� X⊗HomC(M,N) ��

ν

��

X⊗HomR(M,N) ��

�
��

X⊗HomR(M,N⊗C)
�
��

0 �� HomC(M,X⊗N) �� HomR(M,X⊗N) �� HomR(M,X⊗N⊗C),

where the bottom row is exact (again by 3.3) and the vertical isomorphisms
follow from the finiteness assumptions in (i) and (ii) (cf. 40.12).

If X is flat, the top row is exact. On the other hand, if N is (C,R)-
injective, the sequence (∗) splits by 3.18, and hence the top row is exact, too.
Therefore, in either case, the exactness of the diagram implies that ν is an
isomorphism, as required. �

3.24. Bicomodules over C. An R-moduleM that is both a left and a right
C-comodule is called a (C,C)-bicomodule if the diagram

M

M�
��

�M ��M ⊗R C
M�⊗IC
��

C ⊗RM
IC⊗�M�� C ⊗RM ⊗R C ,

where M� is a left and �M is a right coaction, commutes.
An R-linear map f : M → N between two (C,C)-bicomodules is said to

be a (C,C)-bicomodule or (C,C)-bicolinear map if it is both a left and a right
comodule morphism. The set of these maps is denoted by CHomC(M,N).
The category whose objects are (C,C)-bicomodules and morphisms are the
(C,C)-bicolinear maps is denoted by CMC . By definition, any object, resp.
morphism, in CMC is also an object, resp. morphism, in both CM and MC ,
and the functor

C ⊗R −⊗R C :MR → CMC , M �→ C ⊗RM ⊗R C,

is simply the composition of the functors C⊗R− and −⊗RC. Consequently,
the proof of 3.9 can be extended to derive

3.25. Hom-tensor relations for bicomodules. Let X be an R-module.
For any M ∈ CMC, the R-linear map

ϕ : CHomC(M,C ⊗R X ⊗R C)→ HomR(M,X), f �→ (ε⊗ IX ⊗ ε) ◦ f,

is bijective, with inverse map h �→ (IC ⊗ h⊗ IC) ◦ (IC ⊗ �M) ◦ M�.
Several properties of comodules can be restricted to bicomodules.



3. Comodules 37

3.26. The category CMC. Let C be an R-coalgebra.

(1) The category CMC has direct sums and cokernels, and C ⊗R C is a
subgenerator.

(2) CMC is a Grothendieck category provided C is a flat R-module.

(3) The functor C⊗R−⊗RC :MR → CMC is right adjoint to the forgetful
functor CMC →MR.

(4) For any monomorphism f : K → L of R-modules,

IC ⊗ f ⊗ IC : C ⊗R K ⊗R C → C ⊗R L⊗R C

is a monomorphism in CMC.

(5) For any family {Mλ}Λ of R-modules, C⊗R (
∏

ΛMλ)⊗RC is the product
of the family {C ⊗RMλ ⊗R C}Λ in CMC.

Notice that CMC can also be considered as MCcop⊗RC , the category of
right comodules over the coalgebra Ccop ⊗R C. With this identification it is
obvious how to define relative injective (C,C)-bicomodules and relative exact
sequences in CMC .

3.27. Relative semismple coalgebras. An R-coalgebra C is said to be
left (C,R)-semisimple or left relative semisimple if every left C-comodule is
(C,R)-injective. Right relative semisimple coalgebras are defined similarly.

Furthermore, C is said to be relative semisimple as a (C,C)-bicomodule
if every bicomodule is relative injective in CMC . This means that Ccop ⊗R C
is a right relative semisimple coalgebra.

If C is flat as an R-module, then C is left (C,R)-semisimple if and only
if any (C,R)-splitting sequence of left C-comodules splits in CM. A similar
characterisation holds for right (C,R)-semisimple coalgebras.

Interesting examples of relative semisimple coalgebras are provided by

3.28. Coseparable coalgebras. C ⊗R C can be viewed as a (C,C)-bi-
comodule with the left coaction C⊗RC� = ∆ ⊗ IC and the right coaction
�C⊗RC = IC ⊗ ∆. Note that both of these coactions are split in MR by a
single (C,C)-bicomodule map IC ⊗ ε ⊗ IC : C ⊗R C ⊗R C → C ⊗R C. This
means that C ⊗R C is a relative injective (C,C)-bicomodule.

On the other hand, C is a (C,C)-bicomodule by the left and right regular
coaction ∆. Although ∆ is split as a left C-comodule map by IC ⊗ ε and as
a right C-comodule map by ε ⊗ IC , C is not necessarily a relative injective
(C,C)-bicomodule. Coalgebras that are relative injective (C,C)-bicomodules
are of particular interest because they are dual to separable algebras. Thus,
a coalgebra C is called a coseparable coalgebra if the structure map ∆ : C →
C ⊗R C splits as a (C,C)-bicomodule map. Explicitly this means that there
exists a map π : C ⊗R C → C with the properties
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(IC ⊗ π) ◦ (∆C ⊗ IC) = ∆C ◦ π = (π ⊗ IC) ◦ (IC ⊗∆C) and π ◦∆C = IC .

The coseparability of C can be described equivalently as the separability
of certain functors (cf. 38.18, 38.19 and 38.20 for the definition and discussion
of separable functors).

3.29. Properties of coseparable coalgebras. For an R-coalgebra C the
following are equivalent:

(a) C is coseparable;

(b) there exists an R-linear map δ : C ⊗R C → R satisfying

δ ◦∆ = ε and (IC ⊗ δ) ◦ (∆⊗ IC) = (δ ⊗ IC) ◦ (IC ⊗∆);

(c) the forgetful functor (−)R :MC →MR is separable;

(d) the forgetful functor R(−) : CM→MR is separable;

(e) the forgetful functor R(−)R : CMC →MR is separable;

(f) C is relative semisimple as a (C,C)-bicomodule;

(g) C is relative injective as a (C,C)-bicomodule.

If these conditions are satisfied, then C is left and right (C,R)-semisimple.

Proof. (a) ⇒ (b) Let π : C ⊗R C → C be left and right C-colinear with
π ◦∆ = IC and define δ = ε ◦ π : C ⊗R C → R. Then δ ◦∆ = ε ◦ π ◦∆ = ε
and

(IC ⊗ δ) ◦ (∆⊗ IC) = (IC ⊗ ε) ◦ (IC ⊗ π) ◦ (∆⊗ IC)

= (IC ⊗ ε) ◦∆ ◦ π = π

= (ε⊗ IC) ◦ (π ⊗ IC) ◦ (IC ⊗∆)
= (δ ⊗ IC) ◦ (IC ⊗∆).

Thus δ = ε ◦ π has all the required properties.
(b) ⇒ (c) Given δ : C ⊗R C → R with the stated properties, for any

N ∈MC define an R-linear map

νN : N ⊗R C
�N⊗IC�� N ⊗R C ⊗R C

IN⊗δ �� N .

Explicitly, νN : n ⊗ c �→
∑
n0δ(n1 ⊗ c). The map νN is a right C-comodule

map because – by the properties of δ – we obtain for all n ∈ N and c ∈ C∑
νN(n⊗ c1)⊗ c2 =

∑
n0 ⊗ δ(n1 ⊗ c1) · c2

=
∑
n0 ⊗ n1 · δ(n2 ⊗ c)

=
∑
νN(n⊗ c)0 ⊗ νN(n⊗ c)1 .

Note that νN is a retraction for �
N by the computation

νN ◦ �N = (IN ⊗ δ) ◦ (�N ⊗ IC) ◦ �N

= (IN ⊗ δ) ◦ (IN ⊗∆) ◦ �N = (IN ⊗ ε) ◦ �N = IN .
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Now, define a functorial morphism Φ : HomR((−)R, (−)R)→ HomC(−,−) by
assigning to any R-linear map f :M → N , where M,N ∈MC , the map

Φ(f) :M
�M ��M ⊗R C

f⊗IC �� N ⊗R C
νN �� N .

View M ⊗R C and N ⊗R C as right C-comodules via IM ⊗ ∆ and IN ⊗ ∆,
respectively. Then the map f ⊗ IC is right C-colinear, and so is Φ(f) as a
composition of right C-colinear maps. If, in addition, f is a morphism inMC ,
then (f ⊗ IC) ◦ �M = �N ◦ f , and, since νN is a retraction for �N , it follows
that Φ(f) = f . This shows that the forgetful functor is separable.

(c) ⇒ (a) Assume (−)R to be separable. Then there exists a functorial
morphism νC : C⊗RC → C inMC . Since the composition of (−)R with −⊗R
C preserves colimits and C ⊗R C is also a left C-comodule, we conclude that
νC is also left C-colinear (cf. 39.7). Thus νC is a (C,C)-bicolinear splitting
of ∆, and therefore C is a coseparable coalgebra.

(a) ⇔ (d) Since the condition in (a) is symmetric the proof of (a) ⇔ (c)
applies.

(a) ⇒ (e) The forgetful functor R(−)R : CMC →MR is the composition
of the forgetful functors R(−) and (−)R, and hence it is separable (by 38.20).

(e) ⇒ (c) Since the composition of the left and right forgetful functors is
separable, then so is each one of these (by 38.20).

(e) ⇒ (f) For a bicomodule N consider the maps N
N�−→ C ⊗R N

I⊗�N−→
C ⊗RN ⊗R C. By coseparability, both I ⊗ �N and N� are split by morphisms
from CMC .

(g) ⇒ (a) ∆ : C → C ⊗R C is R-split, and hence it splits in CMC .
If (−)R is a separable functor, it reflects retractions and hence C is (C,R)-

semisimple in MC and CM (see 38.19). �
Remark. While the relative semisimplicity of CMC is sufficient (equivalent)
to obtain the coseparability of C (by 3.29(f)), the relative semisimplicity of
MC need not imply the coseparability of C.

The forgetful functor is left adjoint to the tensor functor −⊗R C, and we
may ask when the latter is separable. This is dual to the separability of the
functor A⊗R − for an R-algebra A considered in 40.22.

3.30. Separability of −⊗R C. The following are equivalent for C:
(a) −⊗R C :MR →MC is separable;

(b) C ⊗R − :MR → CM is separable;

(c) C ⊗R −⊗R C :MR → CMC is separable;

(d) there exists e ∈ C with ε(e) = 1R.

Proof. Let ψ denote the counit of the adjoint pair ((−)R,−⊗R C), that
is, ψR = IR ⊗ ε : R⊗R C → R.
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(a)⇒ (d) By 38.24(2), ψR is split by some morphism νR : R→ C. Putting
e = νR(1R) yields ε(e) = ε ◦ νR(1R) = 1R.

(d) ⇒ (a) Suppose there exists e ∈ C such that ε(e) = 1R. For any
M ∈MR define an R-linear map νM :M →M ⊗R C, m �→ m⊗ e, for which
we get ψ ◦ νM(m) = mε(e) = m, that is, ψ ◦ νM = IM . Moreover, for any
f ∈ HomR(M,N) and m ∈M we compute

νN ◦ f(m) = f(m)⊗ e = (f ⊗ IC) ◦ νM(m) ,

so that νM is functorial in M .
The remaining implications follow by symmetry and the basic properties

of separable functors (see 38.20). �

3.31. Exercises
Let C be an R-coalgebra with RC flat. Prove that the following are equivalent:

(a) every (C,R)-injective right C-comodule is injective in MC ;
(b) every exact sequence in MC is (C,R)-exact.

References. Caenepeel, Ion and Militaru [84]; Caenepeel, Militaru and
Zhu [9]; Castaño Iglesias, Gómez-Torrecillas and Nǎstǎsescu [91]; Doi [104];
Gómez-Torrecillas [122]; Larson [148]; Rafael [180]; Sweedler [45]; Wisbauer
[210].
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4 C-comodules and C∗-modules

Let C be again an R-coalgebra. As explained in 1.3, the dual R-module C∗ =
HomR(C,R) is an associative algebra. As already mentioned at the beginning
of the previous section, there is a close relationship between the comodules of
C and the modules of C∗. More precisely, there is a faithful functor MC →
C∗M. It is therefore natural to ask whenMC is a full subcategory of the latter
(i.e., when all the (left) C∗-linear maps between right C-comodules arise from
(right) C-comodule morphisms) or when MC is isomorphic to the category
of left C∗-modules. This connection between the comodules of a coalgebra
and the modules of a dual algebra allows one to relate comodules to much
more familiar (from the classical ring theory) and often nicer (for example,
Abelian) categories of modules. In this section we study this relationship,
and in particular we introduce in 4.2 an important property of coalgebras
termed the α-condition. Coalgebras that satisfy the α-condition have several
nice module-theoretic properties that are revealed in a number of subsequent
sections, in particular in Sections 7, 8 and 9.

4.1. C-comodules and C∗-modules.

(1) Any M ∈MC is a (unital) left C∗-module by

⇀ : C∗ ⊗RM →M, f ⊗m �→ (IM ⊗ f) ◦ �M(m) =
∑

m0f(m1).

(2) Any morphism h : M → N in MC is a left C∗-module morphism, that
is,

HomC(M,N) ⊂ C∗Hom (M,N).

(3) There is a faithful functor from MC to σ[C∗C], the full subcategory of

C∗M consisting of all C∗-modules subgenerated by C (cf. 41.1).

Proof. (1) By definition, for all f, g ∈ C∗ and m ∈ M , the actions
f⇀(g⇀m) and (f ∗ g)⇀m are the compositions of the maps in the top and
bottom rows of the following commutative diagram:

M ⊗R C
�M⊗IC

����
���

���
���

��

M

�M
������������

�M ����
���

���
��

M ⊗R C ⊗R C
IM⊗f⊗g ��M .

M ⊗R C
IM⊗∆

���������������

Clearly, for each m ∈M , ε⇀m = m, and thus M is a C∗-module.
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(2) For any h :M → N in MC and f ∈ C∗, m ∈M , consider

h(f⇀m) =
∑
h(m0 f(m1)) = (IN ⊗ f) ◦ (h⊗ IC) ◦ �M(m)

= (IN ⊗ f) ◦ �N ◦ h(m) = f⇀h(m).

This shows that h is a C∗-linear map.
(3) By 3.13, C is a subgenerator inMC and hence all C-comodules are sub-

generated by C as C∗-modules (by (1),(2)); thus they are objects in σ[C∗C],
and hence (1)–(2) define a faithful functor MC → σ[C∗C]. �

Now, the question arises when MC is a full subcategory of σ[C∗C] (or

C∗M), that is, when HomC(M,N) = HomC∗(M,N), for any M,N ∈MC . In
answering this question the following property plays a crucial role.

4.2. The α-condition. C is said to satisfy the α-condition if the map

αN : N ⊗R C → HomR(C
∗, N), n⊗ c �→ [f �→ f(c)n],

is injective, for every N ∈MR. By 42.10, the following are equivalent:

(a) C satisfies the α-condition;

(b) for any N ∈ MR and u ∈ N ⊗R C, (IN ⊗ f)(u) = 0 for all f ∈ C∗,
implies u = 0;

(c) C is locally projective as an R-module.

In particular, this implies that C is a flat R-module, and that it is cogen-
erated by R.

The importance of the α-condition in the context of the category of co-
modules becomes clear from the following observations.

4.3. MC as a full subcategory of C∗M. The following are equivalent:

(a) MC = σ[C∗C];

(b) MC is a full subcategory of C∗M;

(c) for all M,N ∈MC, HomC(M,N) = C∗Hom(M,N);

(d) RC is locally projective;

(e) every left C∗-submodule of Cn, n ∈ N, is a subcomodule of Cn.

If (any of) these conditions are satisfied, then the inclusion functorMC →
C∗M has a right adjoint, and for any family {Mλ}Λ of R-modules,

(
∏

ΛMλ)⊗R C �
∏C

Λ(Mλ ⊗R C) ⊂
∏

Λ(Mλ ⊗R C),

where
∏C denotes the product in MC.
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Proof. (a)⇔ (b)⇔ (c) follow by the fact that C is always a subgenerator
of CM (see 3.13) and the definition of the category σ[C∗C] (cf. 41.1).

(a)⇒ (d) The equality obviously implies that monomorphisms inMC are
injective maps. Hence RC is flat by 3.13(4). For any N ∈MR we prove the
injectivity of the map αN : N ⊗R C → HomR(C

∗, N).
HomR(C

∗, N) is a left C∗-module by (see 40.8)

g · γ(f) = γ(f ∗ g), for γ ∈ HomR(C∗, N), f, g ∈ C∗,

and considering N ⊗R C as left C∗-module in the canonical way we have

αN(g⇀(n⊗ c))(f) =
∑
n f(c1)g(c2) = n f ∗ g(c) = [g · αN(n⊗ c)](f),

for all f, g ∈ C∗, n ∈ N , and c ∈ C. So αN is C
∗-linear, and for any right

C-comodule L there is a commutative diagram

C∗Hom(L,N ⊗R C)
Hom(L,αN ) ��

�
��

C∗Hom(L,HomR(C
∗, N))

�
��

HomR(L,N)
= �� HomR(L,N).

The first vertical isomorphism is obtained by assumption and the Hom-tensor
relations 3.9, explicitly,

C∗Hom(L,N ⊗R C) = HomC(L,N ⊗R C) � HomR(L,N).

The second vertical isomorphism results from the canonical isomorphisms

C∗Hom(L,HomR(C
∗, N)) � HomR(C

∗ ⊗C∗ L,N) � HomR(L,N).

This shows that Hom(L, αN) is injective for any L ∈ MC , and so, by 38.8,
(the corestriction of) αN is a monomorphism in MC (see 38.8). Since RC is
flat, this implies that αN is injective (by 3.14).

(d) ⇒ (e) We show that, for right C-comodules M , any C∗-submodule N
is a subcomodule. For this consider the map

ρN : N → HomR(C
∗, N), n �→ [f �→ f⇀n].

The inclusion i : N →M yields the commutative diagram with exact rows

0 �� N
i �� M

p ��

�M

��

M/N �� 0

0 �� N⊗RC
i⊗I ��

αN,C

��

M⊗RC
p⊗I ��

αM,C

��

M/N⊗RC ��

αM/N,C

��

0

0 �� HomR(C
∗,N)

Hom(C∗,i)�� HomR(C
∗,M) �� HomR(C

∗,M/N),
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where Hom(C∗, i)◦ρN = αM,C ◦�M ◦ i. Injectivity of αM/N,C implies (p⊗ I)◦
�M ◦ i = 0, and by the kernel property �M ◦ i factors through N → N ⊗R C,
thus yielding a C-coaction on N .

(e) ⇒ (a) First we show that every finitely generated C∗-module N ∈
σ[C∗C] is a C-comodule. There exist a C∗-submodule X ⊂ Cn, n ∈ N, and
an epimorphism h : X → N . By assumption, X and the kernel of h are
comodules and hence N is a comodule (see 3.5). So, for any L ∈ σ[C∗C],
finitely generated submodules are comodules and this obviously implies that
L is a comodule.

It remains to prove that, for M,N ∈MC , any C∗-morphism f : M → N
is a comodule morphism. Im f ⊂ N and Ke f ⊂ M are C∗-submodules
and hence – as just shown – are subcomodules of N and M , respectively.
Therefore the corestriction M → Im f and the inclusion Im f → N both are
comodule morphisms and so is f (as the composition of two comodule maps).

For the final assertions, recall that the inclusion σ[C∗C] → C∗M has a
right adjoint functor (trace functor, see 41.1) and this respects products (cf.
38.21). So the isomorphism follows from the characterisation of the products
of the Mλ ⊗R C in MC (see 3.13). �

4.4. Coaction and C∗-modules. Let RC be locally projective. For any
R-module M , consider an R-linear map � : M → M ⊗R C. Define a left
C∗-action on M by

⇀ : C∗ ⊗RM →M, f ⊗m �→ (IM ⊗ f) ◦ �(m).

Then the following are equivalent:

(a) � is coassociative and counital;

(b) M is a unital C∗-module by ⇀.

Proof. The implication (a) ⇒ (b) is shown in 4.1. Conversely, suppose
that M is a unital C∗-module by ⇀, that is,

(f ∗ g)⇀m = f⇀(g⇀m), for all f, g ∈ C∗, m ∈M.

By the definition of the action ⇀, this means that

(IM ⊗ f ⊗ g) ◦ (IM ⊗∆) ◦ �(m) = (IM ⊗ f ⊗ g) ◦ (�⊗ IC) ◦ �(m),

and from this RC locally projective implies (IM ⊗∆)◦�(m) = (�⊗ IC)◦�(m)
(see 4.2), showing that � is coassociative. Moreover, for any m ∈ M , m =
ε⇀m = (IM ⊗ ε) ◦ �(m). �

By symmetry, there is a corresponding relationship between left C-como-
dules and right C∗-modules, which we formulate for convenience.
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4.5. Left C-comodules and right C∗-modules.

(1) Any M ∈ CM is a (unital) right C∗-module by

↼ :M ⊗R C∗ →M, m⊗ f �→ (f ⊗ IM) ◦ M�(m) =
∑

f(m−1)m0.

(2) Any morphism h :M → N in CM is a right C∗-module morphism, so

CHom (M,N) ⊂ HomC∗(M,N)

and there is a faithful functor CM→ σ[CC∗ ] ⊂MC∗.

(3) RC is locally projective if and only if CM = σ[CC∗ ].

Since C is a left and right C-comodule by the regular coaction (cf. 3.4),
we can study the structure of C as a (C∗, C∗)-bimodule (compare 3.12).

4.6. C as a (C∗, C∗)-bimodule. C is a (C∗, C∗)-bimodule by

⇀ : C∗ ⊗ C → C, f ⊗ c �→ f⇀c = (IC ⊗ f) ◦∆(c),
↼ : C ⊗ C∗ → C, c⊗ g �→ c↼g = (g ⊗ IC) ◦∆(c) .

(1) For any f, g ∈ C∗, c ∈ C,

f ∗ g (c) = f(g⇀c) = g(c↼f).

(2) C is faithful as a left and right C∗-module.
(3) Assume C to be cogenerated by R. Then for any central element f ∈ C∗

and any c ∈ C, f⇀c = c↼f .

(4) If C satisfies the α-condition, it is a balanced (C∗, C∗)-bimodule, that
is,

C∗End(C) = EndC(C) � C∗ � CEnd(C) = EndC∗(C) and

C∗EndC∗(C) = CEndC(C) � Z(C∗),

where morphisms are written opposite to scalars and Z(C∗) denotes the
centre of C∗. In this case a pure R-submodule D ⊂ C is a subcoalgebra
if and only if D is a left and right C∗-submodule.

Proof. The bimodule property is shown by the equalities

(f⇀c)↼g = (g ⊗ IC ⊗ f) ◦ ((∆⊗ IC) ◦∆))(c)
= (g ⊗ IC ⊗ f) ◦ ((IC ⊗∆) ◦∆))(c) = f⇀(c↼g).

(1) From the definition it follows

f ∗ g (c) = (f ⊗ g) ◦∆(c) = (f ⊗ IC) ◦ (IC ⊗ g) ◦∆(c) = f(g⇀c)

= (IC ⊗ g) ◦ (f ⊗ IC) ◦∆(c) = g(c↼f).
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(2) For f ∈ C∗, assume f⇀c = 0 for each c ∈ C. Then applying (1) yields
f(c) = ε(f⇀c) = 0, and hence f = 0.

(3) For any central element f ∈ C∗, by (1),

g(c↼f) = f ∗ g(c) = g ∗ f(c) = g(f⇀c),

for all c ∈ C, g ∈ C∗. Since C is cogenerated by R, this can only hold if, for
all c ∈ C, c↼f = f⇀c.

(4) The isomorphisms follow from 3.12, 4.3 and 4.5. Let D ⊂ C be a
pure R-submodule. If D is a subcoalgebra of C, then it is a right and left
subcomodule and hence a left and right C∗-submodule. Conversely, suppose
that D is a left and right C∗-submodule. Then the restriction of ∆ yields a
left and right C-coaction on D and, by 40.16,

∆(D) ⊂ D ⊗R C ∩ C ⊗D = D ⊗R D ,

proving that D is a subcoalgebra. �

4.7. When is MC = C∗M? The following are equivalent:

(a) MC = C∗M;

(b) the functor −⊗R C :MR → C∗M has a left adjoint;

(c) RC is finitely generated and projective;

(d) RC is locally projective and C is finitely generated as right C∗-module;
(e) CM =MC∗.

Proof. (a) ⇒ (b) is obvious (by 3.13(3)).
(b) ⇒ (c) Since − ⊗R C is a right adjoint, it preserves monomorphisms

(injective morphisms) by 38.21. Therefore, RC is flat. Moreover −⊗R C
preserves products, so for any family {Mλ}Λ in MR there is an isomorphism

(
∏

ΛMλ)⊗R C �
∏

Λ(Mλ ⊗R C),

which implies that RC is finitely presented (see 40.17) and hence projective.
(c)⇒ (d) Clearly, projective modules are locally projective, and C finitely

generated as an R-module implies that C is finitely generated as a right (and
left) C∗-module.

(d) ⇒ (a) By 4.6, C is a faithful left C∗-module that is finitely gener-
ated as a module over its endomorphism ring C∗. This implies that C is a
subgenerator in C∗M, that is, MC = σ[C∗C] = C∗M (see 41.7). �

Recall from 38.23 that a functor is said to be Frobenius when it has the
same left and right adjoint. Recall also that an extension of rings is called
a Frobenius extension when the restriction of scalars functor is a Frobenius
functor (see 40.21 for more details).



4. C-comodules and C∗-modules 47

4.8. Frobenius coalgebras. The following are equivalent:

(a) the forgetful functor (−)R :MC →MR is Frobenius;

(b) RC is finitely generated and projective, and C � C∗ as left C∗-modules;
(c) RC is finitely generated and projective, and there is an element e ∈ C

such that the map C∗ → C, f �→ f⇀e, is bijective;

(d) the ring morphism R→ C∗, r �→ rε, is a Frobenius extension.

Proof. (a) ⇒ (b) By 3.15, RC is finitely generated and projective, and
4.7 implies that MC = C∗M; so the forgetful functor (−)R : C∗M → MR is
Frobenius. Now 40.21 applies.

In view of 4.7, the remaining assertions also follow from 40.21. �
The comodules of the coalgebra associated to any finitely generated pro-

jective R-module are of fundamental importance.

4.9. Projective modules as comodules. Let P be a finitely generated
projective R-module with dual basis p1, . . . , pn ∈ P and π1, . . . , πn ∈ P ∗. Then
P is a right P ∗ ⊗R P -comodule with the coaction

�P : P → P ⊗R (P ∗ ⊗R P ), p �→
∑
i pi ⊗ πi ⊗ p.

P is a subgenerator in MP ∗⊗RP , and there is a category isomorphism

MP ∗⊗RP �MEndR(P ).

The dual P ∗ is a left P ∗ ⊗R P -comodule with the coaction
P� : P → (P ∗ ⊗R P )⊗R P, f �→

∑
i f ⊗ pi ⊗ πi.

Proof. Coassociativity of �P follows from the equality

(I ⊗∆)�P (f ⊗ p) =
∑
i,j f ⊗ pi ⊗ πi ⊗ pj ⊗ πj ⊗ p = (�P ⊗ I)�P (f ⊗ p).

By properties of the dual basis, (IP ⊗ ε)�P (p) =
∑
i piπi(p) = p, so that P is

indeed a right comodule over P ∗⊗RP . There exists a surjective R-linear map
Rn → P ∗ that yields an epimorphism P n � Rn ⊗ P → P ∗ ⊗R P in MP ∗⊗RP .
So P generates P ∗ ⊗R P as a right comodule and hence is a subgenerator in
MP ∗⊗RP . Since P ∗⊗R P is finitely generated and projective as an R-module,
the category isomorphism follows by 4.7.

A simple computation shows that P ∗ is a left comodule over P ∗ ⊗R P . �
As a special case, for any n ∈ N, Rn may be considered as a right comodule

over the matrix coalgebra M c
n(R) (cf. 1.10).

For an algebra A, any two elements a, b ∈ A define a subalgebra aAb ⊂ A,
and for an idempotent e ∈ A, eAe is a subalgebra with a unit. Dually, one
considers
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4.10. Factor coalgebras. Let f, g, e ∈ C∗ with e ∗ e = e. Then:

(1) f⇀C↼g is a coalgebra (without a counit) and there is a coalgebra mor-
phism

C → f⇀C↼g, c �→ f⇀c↼g.

(2) e⇀C↼e is a coalgebra with counit e and coproduct

e⇀c↼e �→
∑

e⇀c1↼e⊗ e⇀c2↼e.

The kernel of C → e⇀C↼e is equal to (ε− e)⇀C + C↼(ε− e).

(3) If C is R-cogenerated, and e is a central idempotent, then e⇀C is a
subcoalgebra of C.

Proof. (1) For any f, g ∈ C∗ consider the left, respectively right, co-
module maps Lf : C → C, c �→ f⇀c, and Rg : C → C, c �→ c↼g. Construct
the commutative diagram

C
Lf ��

∆
��

C
Rg ��

∆
��

C

∆
��

C ⊗R C
IC⊗Lf�� C ⊗R C

Rg⊗IC�� C ⊗R C,

which leads to the identity ∆◦Rg◦Lf = (Rg⊗Lf )◦∆. Putting δ := Lf ◦Rg =
Rg ◦ Lf , we obtain the commutative diagram

C
∆ ��

δ
��

C ⊗R C
Rg⊗Lf
��

δ(C) ∆ �� Rg(C)⊗R Lf (C)
Lf⊗Rg �� δ(C)⊗R δ(C).

Thus ∆δ = (Lf ⊗Rg) ◦∆ makes δ(C) a coalgebra. It is easily verified that

C
∆ ��

δ
��

C ⊗R C
δ⊗δ
��

δ(C)
∆δ �� δ(C)⊗R δ(C)

is a commutative diagram, and hence δ is a coalgebra morphism.
(2) The form of the coproduct follows from (1). For c ∈ C, ε(e⇀c↼e) =

ε ∗ e(c↼e) = e(c) showing that e is the counit of e⇀C↼e.
For x ∈ C, e⇀x↼e = 0 implies x↼e = (ε− e)⇀(x↼e) ∈ (ε− e)⇀C, and so

x = x↼e+ x↼(ε− e) ∈ (ε− e)⇀C + C↼(ε− e).

This proves the stated form of the kernel.
(3) By 4.6, for a central idempotent e and c ∈ C, e⇀c↼e = e⇀c. Putting

f = g = e in (the proof of) (1) we obtain ∆e(e⇀C) ⊂ e⇀C ⊗ e⇀C. �
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4.11. Idempotents and comodules. Let e ∈ C∗ be an idempotent and
consider the coalgebra e⇀C↼e (as in 4.10).

(1) For any M ∈MC, e⇀M is a right e⇀C↼e-comodule with the coaction

e⇀M → e⇀M ⊗R e⇀C↼e, e⇀m �→
∑

e⇀m0 ⊗ e⇀m1↼e.

(2) For any f : M → N ∈ MC, f(e⇀M) = e⇀f(M), and so there is a
covariant functor

e⇀− :MC →Me⇀C↼e, M �→ e⇀M.

(3) For any M ∈MC, M∗ is a right C∗-module canonically and

HomR(e⇀M,R) = (e⇀M)∗ �M∗ · e.

(4) The map −↼e : e⇀C → e⇀C↼e is a surjective right e⇀C↼e-comodule
morphism, and so e⇀C is a subgenerator in Me⇀C↼e.

(5) (e⇀C↼e)∗ � e∗C∗ ∗e, and hence there is a faithful functorMe⇀C↼e →
e∗C∗∗eM.

(6) If RC is locally projective, then e⇀C↼e is a locally projective R-module
and

Me⇀C↼e = σ[e∗C∗∗e e⇀C] = σ[e∗C∗∗e e⇀C↼e].

Proof. (1), (3) and (4) are easily verified.

(2) By 4.1, right comodule morphisms are left C∗-morphisms.
(5) The isomorphism in (3) holds similarly for the right action of e on C

and from this the isomorphism in (5) follows.

(6) Clearly direct summands of locally projectives are locally projective,
and hence the assertion follows from (3) and 4.3. �

Even if C is not finitely generated as an R-module, it is (C∗, R)-finite as
defined in 41.22 provided it satisfies the α-condition.

4.12. Finiteness Theorem (2). Assume RC to be locally projective.

(1) Let M ∈ MC. Every finite subset of M is contained in a subcomodule
of M that is finitely generated as an R-module.

(2) Any finite subset of C is contained in a (C∗, C∗)-sub-bimodule which is
finitely generated as an R-module.

(3) Minimal C∗-submodules and minimal (C∗, C∗)-sub-bimodules of C are
finitely generated as R-modules.
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Proof. (1) Since any sum of subcomodules is again a subcomodule,
it is enough to show that each m ∈ M lies in a subcomodule that is finitely
generated as an R-module. Moreover, by the correspondence of subcomodules
and C∗-submodules, this amounts to proving that the submodule C∗

⇀m is
finitely generated as an R-module. Writing �M(m) =

∑k
i=1mi ⊗ ci, where

mi ∈ C∗
⇀m, ci ∈ C, we compute for every f ∈ C∗

f⇀m = (IM ⊗ f) ◦ �M(m) =
∑k
i=1mi f(ci) .

Hence C∗
⇀m is finitely generated by m1, . . . ,mk as an R-module.

(2) It is enough to prove the assertion for single elements c ∈ C. By (1),
C∗

⇀c is generated as an R-module by some c1, . . . , ck ∈ C. By symmetry,
each ci↼C

∗ is a finitely generated R-module. Hence C∗
⇀c↼C∗ is a finitely

generated R-module.

(3) This is an obvious consequence of (1) and (2). �

Now we turn our attention to those objects that are fundamental in any
structure theory. A right C-comodule N is called semisimple (in MC) if
every C-monomorphism U → N is a coretraction, and N is called simple if
all these monomorphisms are isomorphisms (see 38.9). Semisimplicity of N is
equivalent to the fact that every right C-comodule is N -injective (by 38.13).
(Semi)simple left comodules and bicomodules are defined similarly.

The coalgebra C is said to be left (right) semisimple if it is semisimple
as a left (right) comodule. C is called a simple coalgebra if it is simple as a
(C,C)-bicomodule.

4.13. Semisimple comodules. Assume that RC is flat.

(1) Any N ∈MC is simple if and only if N has no nontrivial subcomodules.

(2) For N ∈MC the following are equivalent:

(a) N is semisimple (as defined above);

(b) every subcomodule of N is a direct summand;

(c) N is a sum of simple subcomodules;

(d) N is a direct sum of simple subcomodules.

Proof. (1) By 3.14, any monomorphism U → N is injective, and hence
it can be identified with a subcomodule. From this the assertion is clear.

(2) RC flat implies that the intersection of any two subcomodules is again
a subcomodule. Hence in this case the proof for modules (e.g., [46, 20.2]) can
be transferred to comodules. �
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4.14. Right semisimple coalgebras. For C the following are equivalent:

(a) C is a semisimple right C-comodule;

(b) RC is flat and every right subcomodule of C is a direct summand;

(c) RC is flat and C is a direct sum of simple right comodules;

(d) RC is flat and every comodule in MC is semisimple;

(e) RC is flat and every short exact sequence in MC splits;

(f) RC is projective and C is a semisimple left C∗-module;
(g) every comodule in MC is (C-)injective;

(h) every comodule in MC is projective;

(i) C is a direct sum of simple coalgebras that are right (left) semisimple;

(j) C is a semisimple left C-comodule.

Proof. (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) Assume every monomorphism
i : U → C to be a coretraction. Then i is in particular an injective map, and
hence, by 3.14, RC is flat. Now the assertions follow by 4.13.

The implications (e) ⇒ (g) and (e) ⇒ (h) are obvious.
(h)⇒ (f) By 3.22, any projective comodule is projective as an R-module.

In particular, C is a projective R-module, and hence MC = σ[C∗C] and all
modules in σ[C∗C] are projective. This characterises C as a semisimple C∗-
module (see 41.8).

The implication (f) ⇒ (a) is obvious since MC = σ[C∗C].
(g) ⇒ (a) This is shown in 38.13. Notice that, in view of (f), RC is

projective, and hence the C-injectivity of any comodule N implies that N is
injective in MC = σ[C∗C].

(f) ⇒ (i) Let C be a left semisimple C∗-module. Let {Ei}I be a minimal
representative set of simple C∗-submodules of C. Form the traces Di :=
TrC∗(Ei, C). By the structure theorem for semisimple modules (see 41.8),

C �
⊕

I
Di,

where the Di are minimal fully invariant C
∗-submodules. Considering C∗

as an endomorphism ring acting from the right, this means that the Di are
minimal (C∗, C∗)-submodules. By 4.6, each Di is a minimal subcoalgebra of
C and every subcoalgebra of Di is a subcoalgebra of C. So every Di is a right
semisimple simple coalgebra.

(i) ⇒ (f) It follows from the proof (a) ⇒ (f) that all simple comodules
of C are projective as R-modules and hence RC is also projective. Now the
assertion follows.

(f) ⇔ (j) By 41.8, the semisimple module C∗C is semisimple over its
endomorphism ring, that is, CC∗ is also semisimple. Since CM = σ[CC∗ ], the
assertion follows from the preceding proof by symmetry. �
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4.15. Simple coalgebras. For C the following are equivalent:

(a) C is a simple coalgebra that is right (left) semisimple;

(b) RC is projective and C is a simple (C∗, C∗)-bimodule containing a min-
imal left (right) C∗-submodule;

(c) C is a simple coalgebra and a finite-dimensional vector space over R/m,
for some maximal ideal m ⊂ R.

Proof. (a) ⇒ (b) We know from 4.14 that RC is projective. Clearly
a simple right subcomodule is a simple left C∗-submodule. Let D ⊂ C be
a (C∗, C∗)-sub-bimodule. Then it is a direct summand as a left C∗-module,
and hence it is a subcoalgebra of C (by 4.6) and so D = C.

(b) ⇒ (c) Let D ⊂ C be a minimal left C∗-submodule. For any maximal
ideal m ⊂ R, mD ⊂ D is a C∗-submodule and hence mD = 0 or mD = D.
Since D is finitely generated as an R-module (by 4.12), mD = 0 for some
maximal m ⊂ R. Moreover, mC = mD↼C∗ = 0, and so C is a finite-
dimensional R/m-algebra.

(c) ⇒ (a) is obvious. Notice that in this case MC = C∗M (see 4.7). �
The Finiteness Theorem 4.12 and the Hom-tensor relations 3.9 indicate

that properties of R have a strong influence on properties of C-comodules.

4.16. Coalgebras over special rings. Let RC be locally projective.

(1) If R is Noetherian, then C is locally Noetherian as a right and left
comodule, and in MC and CM direct sums of injectives are injective.

(2) If R is perfect, then inMC and CM any comodule satisfies the descend-
ing chain condition on finitely generated subcomodules.

(3) If R is Artinian, then inMC and CM every finitely generated comodule
has finite length.

Proof. All these assertions are special cases of 41.22. �
Notice that, over Artinian (perfect) rings R, RC is locally projective if

and only if RC is projective (any flat R-module is projective).
In 42.3 theM -adic topology on the base ring and its relevance for the cat-

egory σ[M ] are considered. Naturally for C-comodules, the C-adic topology
on C∗ is of importance.

4.17. The C-adic topology in C∗. Let RC be locally projective. Then the
finite topology in EndR(C) induces the C-adic topology on C

∗ and the open
left ideals determine right C-comodules.

Open left ideals. A filter basis for the open left ideals of C∗ is given by

BC = {AnC∗(E) |E a finite subset of C},
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where AnC∗(E) = {f ∈ C∗ | f⇀E = 0}. The filter of all open left ideals is

FC = {I ⊂ C∗ | I is a left ideal and C∗/I ∈MC}.

This is a bounded filter, that is, there is a basis of two-sided ideals

B′
C = {J ⊂ C∗ | J is an ideal and C∗/J ∈MC}.

Thus generators in MC are given by, for example,

G =
⊕

{C∗/I | I ∈ BC} and G′ =
⊕

{C∗/J | J ∈ B′
C}.

Closed left ideals. For a left ideal I ⊂ C∗ the following are equivalent:

(a) I is closed in the C-adic topology;

(b) I = AnC∗(W ) for some W ∈MC ;

(c) C∗/I is cogenerated by some (minimal) cogenerator of MC ;

(d) I =
⋂

Λ Iλ, where all C
∗/Iλ ∈ MC and are finitely cogenerated (co-

cyclic).

Over QF rings. Let R be a QF ring.

(i) Any finitely generated left (right) ideal I ⊂ C∗ is closed in the C-adic
topology.

(ii) A left ideal I ⊂ C∗ is open if and only if it is closed and C∗/I is finitely
R-generated (= finitely R-cogenerated).

The first two parts are special cases of 42.3 and 41.22(5). Notice that,
over a QF ring R, C is injective in MC and CM (by 3.21), and hence every
finitely generated left (or right) ideal in (the endomorphism ring) C∗ is closed
in the C-adic topology (see 42.3).

We conclude this section by discussing a more general framework for the
α-condition.

4.18. Pairings of algebras and coalgebras. A pairing (C,A) consists of
an R-algebra A, an R-coalgebra C, and a bilinear form β : C × A→ R such
that the map γ : A → C∗, a �→ β(−, a), is a ring morphism. The pairing
(C,A) is called a rational pairing if, for any N ∈MR, the map

α̃N : N ⊗R C → HomR(A,N), n⊗ c �→ [a �→ β(c, a)n]

is injective.

The interest in rational pairings (C,A) arises from the fact that they
allow one to identify C-comodules with A-modules. Observe that, for any R-
coalgebra C, (C,C∗) is a pairing with the bilinear form induced by evaluation.
This pairing is rational if and only if RC is locally projective. The relationship
to more general pairings is given by the next theorem.
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4.19. Rational pairings. For a pairing (C,A) the following are equivalent:

(a) (C,A) is a rational pairing;

(b) RC is locally projective and γ(A) is a dense subalgebra of C∗;
(c) MC = σ[C∗C] and σ[C∗C] = σ[AC];

(d) MC = σ[AC].

Proof. Since γ : A → C∗ is a ring morphism, any C-comodule has a
left A-module structure (via C∗), and so there are faithful functors MC →
C∗M→ AM.

(a) ⇒ (d) For any M,N ∈ MC and h ∈ HomA(M,N), consider the
diagram

M

h

��

�M ��M ⊗R C
h⊗IC
��

α̃M �� HomR(A,M)

Hom(A,h)

��
N

�N �� N ⊗R C
α̃N �� HomR(A,N) ,

in which the right-hand square is always commutative. Form ∈M and a ∈ A,
the outer paths yield h(a⇀m) and a⇀h(m), respectively, and so the outer
rectangle is commutative since h is A-linear. By assumption, α̃N is injective,
and this implies that the left square is also commutative, thus proving that
h is a C-comodule morphism. So AHom(M,N) = HomC(M,N) and MC =
σ[AC].

(b)⇔ (c)⇔ (d) There are embeddingsMC ⊂ σ[C∗C] ⊂ σ[AC]. Moreover,
we know that RC locally projective is equivalent to MC = σ[C∗C] (cf. 4.3),
while γ(A) dense in C∗ is equivalent to σ[C∗C] = σ[AC] (Density Theorem).

(b) ⇒ (a) For N ∈MR, consider the commutative diagram

N ⊗R C
αN ��

=

��

HomR(C
∗, N)

Hom(γ,N)
��

N ⊗R C
α̃N �� HomR(A,N).

Since RC is locally projective, αN is injective. Assume
∑k
i=1 ni⊗ ci ∈ Ke α̃N .

By our density condition, for any f ∈ C∗ there exist a ∈ A such that f(ci) =
β(ci, a), for all i = 1, . . . , k. This implies

∑
f(ci)ni =

∑
β(ci, a)ni = 0 and

hence
∑k
i=1 ni⊗ ci ∈ KeαN = 0. So α̃N is injective for any N ∈MR, proving

that (C,A) is a rational pair. �
For further literature on pairings of coalgebras and algebras over rings the

reader is referred to [48], [49] and [121].

References. Abuhlail [48]; Abuhlail, Gómez-Torrecillas and Lobillo [49];
El Kaoutit, Gómez-Torrecillas and Lobillo [112]; Gómez-Torrecillas [121];
Radford [178]; Sweedler [45]; Wisbauer [210].



5. The finite dual of an algebra 55

5 The finite dual of an algebra

As observed in 1.3, for any R-coalgebra C the dual module C∗ = HomR(C,R)
has an algebra structure. This rises the question of whether the dual module
A∗ of any R-algebra A has a coalgebra structure. As explained in 1.12, this
is the case provided AR is finitely generated and projective. In case AR is
not finitely generated and projective, we may try another way to associate
a coalgebra to A∗ by looking for a submodule B ⊂ A∗ such that µ∗

A(B) ⊂
B⊗RB. We prepare this approach by some more general constructions related
to monoids. To overcome technical problems with the tensor product, we will
assume R to be Noetherian at crucial steps.

For any set S, maps S → R can be identified with a product of copies of
R, Map(S,R) = RS, which may be considered as an R-algebra. Notice that,
for a Noetherian (coherent) ring R, RS is a flat R-module.

5.1. Lemma. For a Noetherian ring R, the following map is injective:

π : RS ⊗R RT → RS×T , f ⊗ g �→ [(s, t) �→ f(s)g(t)].

Proof. Any finitely generated submodule M ⊂ RS is finitely presented,
and hence the restriction of π, M ⊗RRT �MT ⊂ (RS)T � RS×T , is injective
(see 40.17). Therefore π is injective. �

5.2. Maps on monoids. Let G be a monoid with product µ : G× G → G
and neutral element e. Denote by R[G] the monoid algebra over G. The
algebra RG is an R[G]-bimodule: The action of x, y ∈ G on f ∈ RG is defined
by xfy(z) = f(yzx) for all z ∈ G. These actions are extended uniquely to
make RG an R[G]-bimodule. There is an R-linear map

µ× : RG → RG×G, f �→ [(x, y) �→ f(xy)].

For the maps IG × µ, µ × IG : G × G × G → G × G, the associativity of µ
implies

(IG × µ)× ◦ µ× = (µ× IG)
× ◦ µ×.

Furthermore, define α, β : RG×G → RG by α(h)(x) = h(x, e), and β(h)(x) =
h(e, x), for all h ∈ RG×G and x ∈ G. Then

α ◦ µ× = IRG = β ◦ µ×.

5.3. Subsets with finiteness conditions. Let G be a monoid and R a
Noetherian ring. For any R[G]-sub-bimodule B ⊂ RG define subsets

fB = {b ∈ B | R[G]b is finitely generated as an R-module},
Bf = {b ∈ B | bR[G] is finitely generated as an R-module},

where obviously fB is a left and Bf a right R[G]-submodule of B.
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For an element f ∈ RG, the following assertions are equivalent:

(a) f ∈ fB;

(b) µ×(f) ∈ π(B ⊗R RG);
(c) µ×(f) ∈ π(fB ⊗R RG);
(d) µ×(f) ∈ π(fB ⊗R RG) ∩ π(RG ⊗R Bf);

(e) f ∈ B and R[G]fR[G] is finitely generated as an R-module;

(f) f ∈ Bf .

As a consequence, Bf = fB and is an R[G]-sub-bimodule of B.

Proof. (a)⇒ (c) For f ∈ fB, R[G]f is a finitely generated R-submodule
of fB. Hence, there are b1, . . . , bn ∈ fB such that R[G]f =

∑n
i=1Rbi. For

each y ∈ G, choose f1(y), . . . , fn(y) ∈ R such that yf =
∑n
i=1 fi(y)bi. Now,

for x, y ∈ G,

µ×(f)(x, y) = f(xy) = (yf)(x) =
n∑
i=1

fi(y)bi(x) = π(
n∑
i=1

bi ⊗ fi)(x, y).

Thus, µ×(f) ∈ π(fB ⊗R RG).
(c) ⇒ (b) This is evident since fB ⊆ B.
(b) ⇒ (f) Assume (b). First we prove f ∈ B. In fact, for x ∈ G,

f(x) = f(xe) = µ×(f)(x, e) =
n∑
i=1

bi(x)fi(e),

where µ×(f) = π(
∑n
i=1 bi⊗fi), bi ∈ B and fi ∈ RG. So f =

∑n
i=1 fi(e)bi ∈ B.

Now, for any y, x ∈ G,

(fy)(x) = f(yx) = µ×(f)(y, x) =
n∑
i=1

bi(y)fi(x) =

(
n∑
i=1

bi(y)fi

)
(x).

Therefore, fy ∈
∑n
i=1Rfi, and, since R is Noetherian, fR[G] is finitely R-

generated.
(f) ⇒ (a) follows by symmetry.
(c) ⇔ (d) Symmetric to (a)⇒ (c), (c) implies µ×(f) ∈ π(RG ⊗R Bf) and

from this (d) follows.
(e) ⇒ (a) is clear.
(a) ⇒ (e) For f ∈ fB, let b1, . . . , bn ∈ B be such that R[G]f =

∑n
i=1Rbi.

Now, R[G]bi ⊂ R[G]f , whence R[G]bi is finitely generated, and thus bi ∈ fB.
We have already proved that (a) ⇒ (f), so bi ∈ Bf . This means that biR[G]
is finitely generated as an R-module, and, therefore, R[G]fR[G] is a finitely
generated R-module. �
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5.4. Coalgebra structure on Bf. Let G be a monoid, R a Noetherian ring,
and B ⊂ RG an R[G]-sub-bimodule. If Bf is pure as an R-submodule of RG,
then Bf is an R-coalgebra with the coproduct

∆ : Bf
µ× �� π(Bf ⊗R Bf)

π−1
�� Bf ⊗R Bf

and counit ε : Bf → R, h �→ h(e).

Proof. By 5.3, for any b ∈ Bf and π : RG ⊗R RG → RG×G,

µ×(b)∈π(RG⊗RBf)∩π(Bf⊗RRG)=π((RG⊗RBf)∩(Bf⊗RRG))=π(Bf⊗RBf),

where the last equality is justified by the intersection property of pure sub-
modules (see 40.16). To show the coassociativity of the coproduct, consider
the diagram

RG

µ×

��

µ× �� RG×G

(IG×µ)×

��

Bf

��������������

∆
��

∆ �� Bf ⊗R Bf

���������������

IG⊗R∆
��

Bf ⊗R Bf

�����
���

���
�

∆⊗RIG �� Bf ⊗R Bf ⊗R Bf

����
���

���
���

��

RG×G
(µ×IG)× �� RG×G×G.

The outer rectangle is commutative by the associativity of µ (cf. 5.2). All the
trapezia, built from obvious maps, are commutative. Since Bf is pure in RG,
the canonical map Bf ⊗R Bf ⊗R Bf → RG×G×G is injective. Therefore, the
inner square is commutative, proving the coassociativity of ∆. �

As a special case in the above construction we may take B = RG.

5.5. Representative functions. Let G be a monoid and R a Noetherian
ring. The set

RR(G) = (R
G)

f
= {f ∈ RG | fR[G] is finitely generated as an R-module},

is called the set of R-valued representative functions on the monoid G. It
follows from 5.4 that RR(G) is a coalgebra provided that RR(G) is a pure
R-submodule in RG. Notice that RR(G) is also an R-subalgebra of R

G, which
is compatible with this coalgebra structure (bialgebra; see 13.1).

Any algebra is a multiplicative monoid yielding the
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5.6. Monoid ring of an algebra. Let A be an R-algebra. Then

A∗ = HomR(A,R) ⊂ Map(A,R) = RA.

RA is a bimodule over the monoid ring R[A], where (ra)A ∈ R[A] acts on
f ∈ RA by

((ra)A · f) (b) =
∑
A raf(ba), (f · (ra)A) (b) =

∑
A raf(ab), for b ∈ A.

A∗ is an R[A]-sub-bimodule of RA, and its R[A]-module structure coincides
with the (A,A)-bimodule structure that reads for a, b ∈ A and f ∈ A∗ as
(af)(b) = f(ba) and (fa)(b) = f(ab), that is, R[A]-submodules of A∗ are
precisely A-submodules.

5.7. Finite dual of an algebra. Let A be any algebra over a Noetherian
ring R and put

A◦ = {f ∈ A∗ | Af is finitely generated as an R-module}.

(1) For f ∈ RA, the following statements are equivalent:

(a) f ∈ A◦;

(b) µ×(f) ∈ π(A∗ ⊗R RA);
(c) µ×(f) ∈ π(A◦ ⊗R RA);
(d) µ×(f) ∈ π(A◦ ⊗R RA) ∩ π(RA ⊗R A◦);

(e) f ∈ A∗ and AfA is finitely generated as an R-module.

(2) If A◦ is a pure R-submodule of RA, then A◦ is an R-coalgebra with the
coproduct

∆ : A◦ µ× �� π(A◦ ⊗R A◦) π−1
�� A◦ ⊗R A◦,

and counit ε : A◦ → R, h �→ h(1A). Furthermore, the canonical map

φ : A→ A◦∗, a �→ [f �→ f(a)],

is an algebra morphism.

Proof. (1) It follows from 5.3 and 5.6 that A◦ = (A∗)f ; hence A◦ is an
A-sub-bimodule of A∗ and the given properties are equivalent.

(2) If A◦ is a pure R-submodule in RA, the coalgebra structure follows
from 5.4. To recall the construction observe that, for every f ∈ A◦, there is a
unique

∑n
i=1 fi⊗R f̃i ∈ A◦⊗RA◦ such that f(ab) =

∑n
i=1 fi(a)f̃i(b), for every

a, b ∈ A, and the coproduct is

m×
A : A

◦ → A◦ ⊗R A◦, f �→
n∑
i=1

fi ⊗ f̃i =
∑
f 1 ⊗ f 2 .
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Clearly φ is R-linear, and for a, b ∈ A and f ∈ A◦

φ(ab)(f) = f(ab) =
∑
f 1(a)f 2(b) = [φ(a) ∗ φ(b)](f),

showing that φ is an algebra morphism. �
There are further characterisations for the finite dual of an algebra. A

submodule X of an R-module M is called R-cofinite if M/X is a finitely
generated R-module.

5.8. Cofinite ideals. Let R be Noetherian and A an R-algebra. The following
statements are equivalent for f ∈ A∗:

(a) f ∈ A◦;
(b) Ke f contains an R-cofinite ideal of A;

(c) Ke f contains an R-cofinite left ideal of A;

(d) Ke f contains an R-cofinite right ideal of A.

Proof. (a)⇒ (b) If f ∈ A◦, then, by 5.7, AfA is finitely generated as an
R-module. Let f1, . . . , fn be a set of generators and consider I =

⋂n
i=1Ke fi.

Clearly I is an R-cofinite submodule of A and I ⊂ Ke f . For a, b ∈ A and
c ∈ I, we observe fi(acb) = (bfia)(c) = 0 since bfia ∈ AfA =

∑n
i=1Rfi. So

acb ∈ I, showing that I is an ideal.
(b) ⇒ (c) This is obvious.
(c)⇒ (a) Let I be an R-cofinite left ideal of A contained in Ke f . Then f ∈

HomR(A/I,R), which implies Af ⊂ HomR(A/I,R). Since R is Noetherian,
HomR(A/I,R) is a Noetherian R-module, and so Af is a finitely generated
R-module, that is, f ∈ A◦.

(a) ⇔ (d) follows by symmetry. �

5.9. Pure submodules of products. Let A be any algebra over a Noethe-
rian ring R. Then, for an R-submodule K ⊂ HomR(A,R) = A∗, the following
are equivalent:

(a) K ⊂ RA is a pure submodule;

(b) for any N ∈MR, the following map is injective:

α̃N,K : N ⊗R K → HomR(A,N), n⊗ k �→ [a �→ nk(a)].

Proof. First notice that K ⊂ A∗ implies that the image of α̃ lies in
HomR(A,N). Moreover, for any finitely generated R-module N , there is a
commutative diagram

N ⊗R K
α̃N,K ��

IN⊗i
��

HomR(A,N)

��
N ⊗R RA

� �� NA,
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where the right downward arrow is the inclusion map. From this we deduce
that, for any N ∈MR, the map IN⊗i is injective if and only α̃N,K is injective.

�
For an algebra A over a Noetherian ring R, the condition that A◦ is pure

in RA implies that A◦ has a coalgebra structure (5.7), and also that the A◦-
comodules may be described as A◦∗-modules (4.3). From 5.9 we can even
derive that they are characterised by their A-module structure.

5.10. A◦-comodules and A-modules. Let A be an R-algebra with R
Noetherian and A◦ pure in RA. Then the categoryMA◦

of right A◦-comodules
is isomorphic to the category of left A◦∗-modules subgenerated by A◦, and also
to the category of left A-modules subgenerated by A◦, that is, there are category
equivalences

MA◦ � σ[A◦∗A◦] � σ[AA
◦].

Proof. As mentioned above, the first isomorphism follows by 4.3. In view
of 5.7(2) and 5.9, the canonical bilinear form (A◦, A) → R, (f, a) �→ f(a),
makes (A◦, A) a rational pairing, and hence the second isomorphism follows
by 4.19. �

An A-module M is called (A,R)-finite if every finitely generated A-sub-
module is finitely generated as an R-module (see 41.22). Over QF rings R,
the module A◦ determines all (A,R)-finite modules.

5.11. A◦ and (A,R)-finite modules. Let A be any algebra over a QF ring
R. Then A◦ is a subgenerator for all (A,R)-finite modules, that is, σ[AA◦]
coincides with the class of all (A,R)-finite modules in AM.

Proof. By 5.7, A◦ is (A,R)-finite as a left (and right) A-module. Now
consider any cyclic A-module N that is finitely generated as an R-module.
Then N∗ = HomR(N,R) is a right A-module that is finitely generated as an
R-module and hence is finitely generated as a right A-module, that is, there
is an epimorphism φ : An → N∗ in MA. Applying HomR(−, R), one obtains
a monomorphism φ∗ : N∗∗ → (An)∗ in AM. Since N

∗∗ is a finitely generated
R-module, the image of φ∗ is contained in (A◦)n. As a QF ring, R cogenerates
N , and hence the canonical map N → N∗∗ is a monomorphism in AM. As a
consequence, all (A,R)-finite modules are subgenerated by A◦. �

5.12. Finite duals over QF rings. Let A be an algebra over a QF ring R
such that A◦ is projective as an R-module. Then all (A,R)-finite A-modules
are A◦-comodules.

Proof. Since R is QF, the projective R-module A◦ is R-injective and
hence is pure in RA. By 5.7, A◦ has a coalgebra structure andMA◦

= σ[AA
◦]

(by 5.10). Now the assertion follows from 5.11. �
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5.13. Exercises

(1) Let A be an R-algebra and assume RA to be finitely generated and projective.
Prove that the dual of the coalgebra A∗ is isomorphic (as an algebra) to A.

(2) A ring R is hereditary if every ideal is projective. A Noetherian ring R is
hereditary if and only if every submodule of an R-cogenerated module is flat
(e.g., [46, 39.13]).
Let A be an algebra over a Noetherian ring R. Prove:

(i) If R is hereditary, then A◦ is pure in RA.
(ii) If A is projective as an R-module, then A◦ is a pure R-submodule of

A∗ if and only if A◦ is pure in RA.

(3) Let G be any monoid, R a Noetherian ring, and R[G] the monoid algebra.
Prove that, if R[G]◦ is R-pure in R[G]∗, then R[G]◦ andRR(G) are isomorphic
coalgebras (in fact bialgebras).

(4) An ideal I in the polynomial ring R[X] is called monic if it contains a poly-
nomial with leading coefficient 1. Prove:

(i) An ideal I ⊂ R[X] is monic if and only if R[X]/I is a finitely generated
(free) R-module.

(ii) If R is Noetherian, then R[X]◦ is a pure R-submodule of R[X]∗ and
R[X]◦ is a coalgebra with the coproduct

∆ : R[X]◦ → R[X]◦ ⊗R R[X]◦, ξ �→ [xi ⊗ xj �→ ξ(xi+j), i, j ≥ 0],

and counit ε : R[X]◦ → R, ξ �→ ξ(1).

Notice that R[X]◦ can be identified with the set of linearly recursive sequences
over R (cf. [50]).

References. Abuhlail, Gómez-Torrecillas and Lobillo [49]; Abuhlail,
Gómez-Torrecillas and Wisbauer [50]; Cao-Yu and Nichols [89].
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6 Annihilators and bilinear forms

In this section we collect some useful technical notions that will help us study
how certain substructures of an R-coalgebra C correspond to certain sub-
structures of the associated dual algebra C∗ = HomR(C,R). To facilitate
such studies, consider the following definitions.

6.1. Annihilators. Let D be an R-submodule of C. The R-module

D⊥ := {f ∈ C∗ | f(D) = 0} = HomR(C/D,R) ⊂ C∗

is called the annihilator of D in C. For any subset J ⊂ C∗, denote

J⊥ :=
⋂

{Ke f | f ∈ J} ⊂ C .

Notice that D ⊂ D⊥⊥ always and that D = D⊥⊥ whenever C/D is cogener-
ated by R.

6.2. Properties of annihilators. Let D ⊂ C be an R-submodule.

(1) If D is a left C∗-submodule of C, then D⊥ is a right C∗-submodule.

(2) If D is a (C∗, C∗)-sub-bimodule of C, then D⊥ is an ideal in C∗.

(3) If D is a coideal in C, then D⊥ is a subalgebra of C∗.

Proof. (1),(2) If D is a left C∗-module, then for all f ∈ D⊥ and g ∈ C∗,

f ∗ g(D) = f(g⇀D) ⊂ f(D) = 0 ,

where the first equality follows from 4.6. Therefore f ∗ g ∈ D⊥, as required.
The left-side version and (2) are shown similarly.

(3) By definition C → C/D is a (surjective) coalgebra morphism, and as
a consequence HomR(C/D,R) → HomR(C,R) is an injective algebra mor-
phism. �

6.3. Kernels. Let J ⊂ C∗ be an R-submodule.

(1) If J is a right (left) ideal in C∗, then J⊥ is a left (right) C∗-submodule
of C.

(2) If J is an ideal in C∗, then J⊥ is a (C∗, C∗)-sub-bimodule of C.

Assume R to be a semisimple ring. Then:

(3) If J ⊂ C∗ is a subalgebra, then J⊥ is a coideal.

(4) D ⊂ C is a coideal if and only if D⊥ is a subalgebra.
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Proof. (1) and (2) easily follow from 4.6.
(3) Let J ⊂ C∗ be a subalgebra and put U = J⊥. Then ε ∈ J , and so

ε(U) = 0. Furthermore, for any f, g ∈ J , (f ⊗ g)∆(U) = f ∗ g(U) = 0 and
hence (J ⊗R J)∆(U) = 0. Considering J ⊗R J as a submodule of (C ⊗R C)∗
canonically, we know from linear algebra that (J⊗RJ)⊥ = J⊥⊗RC+C⊗RJ⊥

(R is semisimple) and this implies

∆(U) ⊂ U ⊗R C + C ⊗R U,

showing that U is a coideal.
(4) This follows from (3), 6.2(3), and D = D⊥⊥. �
A useful technique for the investigation of coalgebras is provided by certain

bilinear forms.

6.4. Balanced bilinear forms. Let β : C × C → R be a bilinear form.
Associated to β there are R-linear maps

β̄ : C ⊗R C → R, c⊗ d �→ β(c, d),
βl : C → C∗, d �→ β(−, d),
βr : C → C∗, c �→ β(c,−) .

β is said to be C-balanced if

β(c↼f, d) = β(c, f⇀d), for all c, d ∈ C, f ∈ C∗.

If RC is locally projective (cf. 4.2), the following are equivalent:

(a) β is C-balanced;

(b) (IC ⊗ β̄) ◦ (∆⊗ IC) = (β̄ ⊗ IC) ◦ (IC ⊗∆);
(c) βl : C → C∗ is left C∗-linear, that is, for all f ∈ C∗ and d ∈ C,

f ∗ βl(d) = βl(f⇀d);

(d) βr : C → C∗ is right C∗-linear, that is, for all f ∈ C∗ and c ∈ C,
βr ∗ f(c) = βr(c↼f);

(e) β factors through β∗ : C ⊗C∗ C → R.

Notice that description (b) occurs in the characterisation of coseparable
coalgebras (see 3.29).
Proof. (a) ⇔ (b) The condition in (b) explicitly reads, for all c, d ∈ C,∑

c1β(c2, d) =
∑

β(c, d1)d2 . (∗)

Since RC is locally projective, property 4.2(b) implies that (∗) is equivalent
to the statement that, for all c, d ∈ C and for all f ∈ C∗,

f(
∑

c1β(c2, d)) = f(
∑

β(c, d1)d2) .
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Now, since both f and β are R-linear, this is equivalent to

β(c↼f, d) = β(
∑

f(c1)c2, d) = β(c,
∑

d1f(d2)) = β(c, f⇀d) ,

that is, β is C-balanced.
(a) ⇔ (c) ⇔ (d) are verified by similar arguments.
(a) ⇔ (e) follows from the definition of the tensor product C ⊗C∗ C. �

6.5. Corollary. Let RC be locally projective, let β : C × C → R be a C-
balanced bilinear form, and let X ⊂ C be an R-submodule.

(1) If X is a left C-subcomodule, then

X⊥β = {d ∈ C | β(x, d) = 0 for all x ∈ X}

is a right C-comodule.

(2) If X is a right C-subcomodule, then

⊥βX = {c ∈ C | β(c, x) = 0 for all x ∈ X}

is a left C-subcomodule.

(3) In particular, C⊥β is the kernel of βl and ⊥βC is the kernel of βr.

(4) Let R be Noetherian and X a finitely generated R-module. Then C/X⊥β

and C/⊥βX are finitely generated as R-modules.

Proof. (1) For d ∈ X⊥β and any f ∈ C∗, β(x, f⇀d) = β(x↼f, d) = 0.
This shows that X⊥β is a left C∗-submodule and hence a right C-comodule
by the α-condition.

(2) This is shown by a similar argument.
(3) The assertions follow immediately from the definitions.
(4) ObviouslyX⊥β is the kernel of the map C → X∗, d �→ β(−, d)|X . Since

R is Noetherian, X∗ is a Noetherian R-module, and hence the submodules
(isomorphic to) C/X⊥β and C/⊥βX are finitely generated. �

6.6. Nodegenerate bilinear forms. A bilinear form β : C × C → R is
called left (right) nondegenerate if βl (resp. βr) is injective.

A family of bilinear forms {βλ : C × C → R}Λ is said to be left (right)
nondegenerate if

⋂
ΛKe β

l
λ = 0 (resp.

⋂
ΛKe β

r
λ = 0).

Properties. Let RC be locally projective.

(1) The following are equivalent:

(a) there exists a left C∗-monomorphism γ : C → C∗;

(b) there is a left nondegenerate C-balanced bilinear form β on C.
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(2) The following are equivalent:

(a) there exists a left C∗-monomorphism γ : C → (C∗)Λ;

(b) there exists a family of left nondegenerate C-balanced bilinear
forms {βλ}Λ on C.

(3) Assume that R is Noetherian and that the conditions in (2) hold. Then
essential extensions of simple C∗-submodules of C are finitely generated
as R-modules.

Proof. (1) Let γ : C → C∗ be any left C∗-linear map. Then

β : C × C → R, (c, d) �→ γ(d)(c),

is a C-balanced bilinear form with βl(d) = γ(d). Clearly γ is injective if and
only if β is left nondegenerate, and this proves the assertion.

(2) Let γ : C → (C∗)Λ be a left C∗-monomorphism. Then

γλ : C
γ−→ (C∗)Λ

πλ−→ C∗

is a C∗-linear map and (as in (1)) there are C-balanced bilinear forms βλ :
C × C → R with βlλ = γλ, for which⋂

Λ
Ke βlλ =

⋂
Λ
Ke γλ = Ke γ .

From this the assertion follows immediately.
(3) Let S be a simple C∗-submodule of C with an essential extension

S̃ ⊂ C. There exists a bilinear form β : C×C → R such that β(x, S) �= 0, for
some x ∈ C. PuttingX = x↼C∗, we observe forX⊥β = {d ∈ C | β(X, d) = 0}
that C/X⊥β is a finitely generated R-module (by 6.5).

Since S∩X⊥β = 0, we also have S̃∩X⊥β = 0 and there is a monomorphism
S̃ → C/X⊥β . This implies that S̃ is a finitely generated R-module. �

6.7. Exercises
Let C be a matrix coalgebra with basis {eij}1≤i,j≤n (see 1.10). Prove that

β : C × C → R, (eij , ers) �→ δisδjr,

determines a C-balanced, nondegenerate and symmetric bilinear form ([167]).

References. Doi [104]; Gómez-Torrecillas and Nǎstǎsescu [123]; Heyne-
man and Radford [129]; Lin [152]; Miyamoto [160]; Nichols [167]; Sweedler
[45]; Wischnewsky [213].
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7 The rational functor

We know from Section 4 that there is a faithful functor from the category of
right C-comodules to the category of left C∗-modules; we also know thatMC

is a full subcategory of C∗M if and only if the α-condition holds. Now we
want to study an opposite problem. SupposeM is a left C∗-module; is it also
a right C-comodule? If the answer is negative, does there exist a (maximal)
part of M on which a right C-coaction can be defined? In other words, is it
possible to define a functor C∗M →MC , that selects the maximal part of a
module that can be made into a comodule (hence acts as identity on all left
C∗-modules that already are right C-comodules)? Such a functor exists and
is known as the rational functor, provided that C satisfies the α-condition.
Then MC coincides with σ[C∗C], the full subcategory of C∗M subgenerated
by C (cf. 4.3), and the inclusion functor has a right adjoint T C (see 41.1),
which is precisely the rational functor. This functor is the topic of the present
section.

Throughout (except for 7.9 and 7.10) we assume that RC is locally projec-
tive. We also use freely torsion-theoretic aspects of the category of modules
and its subcategory σ[M ]. The reader not familiar with those aspects is
referred to Section 42.

7.1. Rational functor. For any left C∗-module M , define the rational
submodule

RatC(M) = T C(M) =
∑

{Im f | f ∈ C∗Hom(U,M), U ∈MC},

where T C is the trace functor C∗M → σ[C] (cf. 41.1). Clearly RatC(M) is
the largest submodule ofM that is subgenerated by C, and hence it is a right
C-comodule. The induced functor (subfunctor of the identity)

RatC : C∗M→MC , M �→ RatC(M),

is called the rational functor. Since RatC is a trace functor, we know from
41.1 that it is right adjoint to the inclusion MC → C∗M and its properties
depend on (torsion-theoretic) properties of the class MC in C∗M. Of course
RatC(M) =M for M ∈ C∗M if and only if M ∈MC , andMC = C∗M if and
only if RC is finitely generated (see 4.7).

7.2. Rational elements. Let M be a left C∗-module. An element k ∈M is
said to be rational if there exists an element

∑
imi⊗ ci ∈M ⊗RC, such that

fk =
∑

i
mif(ci), for all f ∈ C∗.
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This means that, from the diagram

M

ψM
��

m	

��
M ⊗R C

αM �� HomR(C
∗,M) m⊗ c � �� [f �→mf(c)], [f �→fm] ,

we obtain ψM(k) = αM(
∑
imi ⊗ ci) (see 4.2). Since it is assumed that αM is

injective, the element
∑
imi ⊗ ci is uniquely determined.

7.3. Rational submodule. Let M be a left C∗-module.

(1) An element k ∈M is rational if and only if C∗k is a right C-comodule
with fk = f⇀k, for all f ∈ C∗.

(2) RatC(M) = {k ∈M | k is rational}.
Proof. (1) Let k ∈ M be rational and

∑
imi ⊗ ci ∈ M ⊗R C such that

fk =
∑
imif(ci) for all f ∈ C∗. Put K := C∗k and define a map

� : K →M ⊗R C, fk �→
∑

i
mi ⊗ f⇀ci.

For f, h ∈ C∗,

αM(
∑

i
mi ⊗ f⇀ci)(h) =

∑
i
mih(f⇀ci) = h ∗ f k = h · fk .

So the map � is well defined since fk = 0 implies αM(
∑
imi ⊗ f⇀ci) = 0,

and hence
∑
imi ⊗ f⇀ci = 0 by injectivity of αM . Moreover, it implies that

αM ◦ �(K) ⊂ HomR(C
∗, K), and we obtain the commutative diagram with

exact rows

K

�

��
0 �� K ⊗R C ��

αK
��

M ⊗R C ��

αM
��

M/K ⊗R C ��

αM/K

��

0

0 �� HomR(C
∗, K) �� HomR(C

∗,M) �� HomR(C
∗,M/K) �� 0,

where all the α are injective. By the kernel property we conclude that �
factors through some �K : K → K ⊗R C, and it follows by 4.4 that �K is
coassociative and counital, thus making K a comodule. �

As a first application we consider the rational submodule of C∗∗. The
canonical map ΦC : C → C∗∗ is a C∗-morphism, since, for all c ∈ C, f, h ∈ C∗,

ΦC(f⇀c)(h) = h(f⇀c) =
∑

h(c1)f(c2) = ΦC(c)(h ∗ f) = fΦC(c)(h).

Hence the image of ΦC is a rational module. The next lemma shows that this
is equal to the rational submodule of C∗∗.
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7.4. Rational submodule of C∗∗. ΦC : C → RatC(C∗∗) is an isomorphism.

Proof. Local projectivity of RC implies that ΦC is injective. Let � :
RatC(C∗∗) → RatC(C∗∗) ⊗R C denote the comodule structure map. For
γ ∈ RatC(C∗∗) write �(γ) =

∑
iγi ⊗ ci. Then, for any f ∈ C∗,

γ(f) = f · γ(ε) =
∑

i
f(ci)γi(ε) = f(

∑
i
γi(ε)ci),

where
∑
i γi(ε)ci ∈ C. So γ ∈ Im ΦC , proving that ΦC is surjective. �

The rational submodule of C∗C∗ is a two-sided ideal in C∗ and is called
the left trace ideal. From the above observations and the Finiteness Theorem
it is clear that RatC(C∗) = C∗ if and only if RC is finitely generated.

Right rational C∗-modules are defined in a symmetric way, yielding the
right trace ideal CRat(C∗), which in general is different from RatC(C∗).

7.5. Characterisation of the trace ideal. Let T = RatC(C∗) be the left
trace ideal.

(1) Let f ∈ C∗ and assume that f⇀C is a finitely presented R-module.
Then f ∈ T .

(2) If R is Noetherian, then T can be described as

T1 = {f ∈ C∗ | C∗ ∗ f is a finitely generated R-module};
T2 = {f ∈ C∗ | Ke f contains a right C∗-submodule K, such that

C/K is a finitely generated R-module};
T3 = {f ∈ C∗ | f⇀C is a finitely generated R-module }.

Proof. Assertion (1) and the inclusion T ⊂ T1 in (2) follow from the
Finiteness Theorem 4.12.

[T1 ⊂ T2 ]: For f ∈ T1, let C
∗∗f be finitelyR-generated by g1, . . . , gk ∈ C∗.

Consider the kernel of C∗ ∗ f ,

K :=
⋂

{Ke h |h ∈ C∗ ∗ f} =
k⋂
i=1

Ke gi .

ClearlyK is a right C∗-submodule of C. Moreover, all the C/Ke gi are finitely
generated R-modules, and hence

C/K ⊂
k⊕
i=1

C/Ke gi

is a finitely generated R-module. This proves the inclusion T1 ⊂ T2.
[T2 ⊂ T3 ]: Let f ∈ T2. Since ∆(K) ⊂ C ⊗R K, f⇀K = 0 and f⇀C =

f⇀C/K is a finitely generated R-module, that is, f ∈ T3.
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[T3 ⊂ T ]: For f ∈ T3, the rational right C
∗-module f⇀C is a finitely

presented R-module. Then, by 3.11, (f⇀C)∗ is a rational left C∗-module.
Since ε(f⇀c) = f(c) for all c ∈ C, we conclude f ∈ (f⇀C)∗ and hence f ∈ T .

�

7.6. MC closed under extensions. The following are equivalent:

(a) MC is closed under extensions in C∗M;

(b) for every X ∈ C∗M, RatC(X/RatC(X)) = 0;

(c) there exists a C∗-injective Q ∈ C∗M such that

MC = {N ∈ C∗M | C∗Hom(N,Q) = 0}.

If R is QF, then (a)-(c) are equivalent to:

(d) the filter of open left ideals FC (cf. 4.17) is closed under products.

Proof. The assertions follow from 42.14 and 42.15. �
Over a QF ring there is another finiteness condition that implies left ex-

actness of RatC .

7.7. Corollary. Let R be QF and FC of finite type. ThenMC is closed under
extensions in C∗M.

Proof. The filter FC is always bounded and by assumption of finite type.
Hence it suffices to show that the product of an ideal J ∈ FC and a finitely
generated left ideal I ∈ FC belongs to FC . Clearly, JI is finitely generated
and hence closed. An epimorphism (C∗)n → I yields the commutative exact
diagram

(C∗)n ��

��

I

��

�� 0

(C∗/J)n �� I/JI �� 0,

showing that I/JI is finitely R-generated. Now, in the exact sequence

0 −→ I/JI −→ C∗/JI −→ C∗/I −→ 0 ,

I/JI and C∗/I are finitely R-generated and so is C∗/JI. By 4.17, this implies
that JI ∈ FC and now the assertion follows from 7.6. �

7.8. MC closed under essential extensions. The following are equivalent:

(a) MC is closed under essential extensions in C∗M;

(b) MC is closed under injective hulls in C∗M;

(c) every C-injective module in MC is C∗-injective;
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(d) for every injective C∗-module Q, RatC(Q) is a direct summand in Q;
(e) for every injective C∗-module Q, RatC(Q) is C∗-injective.

If (any of) these conditions hold, then MC is closed under extensions.

Proof. This is a special case of 42.20. �
Before concentrating on properties of the trace ideal we consider density

for any subalgebras of C∗. From the Density Theorem 42.2 we know that
for any C-dense subalgebra T ⊂ C∗ the categories MC and σ[TC] can be
identified. For the next two propositions we need not assume a priori that C
satisfies the α-condition.

7.9. Density in C∗. For an R-submodule U ⊂ C∗ the following assertions
are equivalent:

(a) U is dense in C∗ in the finite topology (of RC);
(b) U is a C-dense subset of C∗ (in the finite topology of EndR(C)).

If C is cogenerated by R, then (a), (b) imply:

(c) KeU = {x ∈ C |u(x) = 0 for all u ∈ U} = 0.
If R is a cogenerator in MR, then (c)⇒ (b).

Proof. (a) ⇔ (b) As shown in 3.12 the finite topologies in C∗ and
EndC(C) can be identified.

(a) ⇒ (c) Let C be cogenerated by R. Then, for any 0 �= x ∈ C, there
exists f ∈ C∗ such that f(x) �= 0. Then, for some u ∈ U , u(x) = f(x) �= 0,
that is, x �∈ KeU , and hence KeU = 0.

(c)⇒ (b) Let R be a cogenerator inMR. Let f ∈ C∗ and x1, . . . , xn ∈ C.
Suppose that

f⇀(x1, . . . , xn) �∈ U⇀(x1, . . . , xn) ⊂ Cn.

Then there exists an R-linear map g : Cn → R such that

g(f⇀(x1, . . . , xn)) �= 0 and g(U⇀(x1, . . . , xn)) = 0.

For each u ∈ U (by 4.6),

0 =
∑

i
gi(u⇀xi) =

∑
i
u(xi↼gi) = u(

∑
i
xi↼gi),

where gi : C → Cn
g−→ R, and this implies

∑
i xi↼gi = 0 and

0 �= g(f⇀(x1, . . . , xn)) =
∑

i
gi(f⇀xi) =

∑
i
f(xi↼gi) = f(

∑
i
xi↼gi) = 0,

contradicting the choice of g. �
Remark. Notice that, for a vector space V over a field R, a subspace U ⊂ V ∗

is dense if and only if KeU = 0. This is the density criterion that is well known
in the comodule theory for coalgebras over fields (e.g., [129], [152]).
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7.10. Dense subalgebras of C∗. For a subalgebra T ⊂ C∗ the following are
equivalent:

(a) RC is locally projective and T is dense in C∗;

(b) MC = σ[TC].

If T is an ideal in C∗, then (a),(b) are equivalent to:

(c) C is an s-unital T -module and C satisfies the α-condition.

Proof. (a) ⇔ (b) This was also observed in 4.19: there are embeddings
MC ⊂ σ[C∗C] ⊂ σ[TC]. Now M

C = σ[C∗C] is equivalent to the α-condition
while σ[TC] = σ[C∗C] corresponds to the density property.

(a) ⇔ (c) By 42.6, for an ideal T the density property is equivalent to
s-unitality of the T -module C. �

Combining the properties of the trace functor observed in 42.16 with the
characterisation of dense ideals in 42.6, we obtain:

7.11. The rational functor exact. Let T = RatC(C∗). The following
statements are equivalent:

(a) the functor RatC : C∗M→MC is exact;

(b) MC is closed under extensions in C∗M and the class

{X ∈ C∗M | RatC(X) = 0}

is closed under factor modules;

(c) for every N ∈MC (with N ⊂ C), TN = N ;

(d) for every N ∈MC, the canonical map T⊗C∗N → N is an isomorphism;

(e) C is an s-unital T -module;

(f) T 2 = T and T is a generator in MC;

(g) TC = C and C∗/T is flat as a right C∗-module;

(h) T is a left C-dense subring of C∗.

7.12. Corollary. Assume that RatC is exact and let T = RatC(C∗) ⊂ C∗.

(1) MC is closed under small epimorphisms in C∗M.

(2) If P is finitely presented in MC, then P is finitely presented in C∗M.

(3) If P is projective in MC, then P is projective in C∗M.

(4) For any M ∈MC, the canonical map C∗Hom(C∗,M)→ C∗Hom(T,M)
is injective.

Proof. (1)–(3) follow from Corollary 42.17.
(4) By density, for every f ∈ C∗Hom(C∗,M), f(ε) = tf(ε) = f(t) for

some t ∈ T , and hence f(T ) = 0 implies f(C∗) = 0. �
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The density of an ideal S ⊂ C∗ in the finite topology implies that C
is s-unital both as left and right S-module and hence MC = σ[SC] and
CM = σ[CS] (see 7.10). Therefore the exactness of Rat

C , that is, the density
of RatC(C∗) in C∗, also has some influence on left C-comodules.

7.13. Corollary. Assume that RatC is exact and let T = RatC(C∗) ⊂ C∗.

(1) For any N ∈ CM, the canonical map HomC∗(C∗, N) → HomC∗(T,N)
is injective.

(2) CRat(C∗) ⊂ T and equality holds if and only if T ∈ CM.

Proof. (1) By the preceding remark, C is also s-unital as a right T -
module and hence the proof of Corollary 7.12(4) applies.

(2) By the density of T ⊂ C∗, X↼T = X, for each X ∈ CM (see 42.6).
This implies

HomC∗(X,C∗) = HomC∗(X↼T,C∗) = HomC∗(X,C∗ ∗ T ) = HomC∗(X,T );

hence CRat(C∗) ⊂ T and CRat(C∗) = T provided T ∈ CM. �
The assertion in 42.18 yields here:

7.14. Corollary. Suppose that MC has a generator that is locally projective
in C∗M. Then RatC : C∗M→MC is an exact functor.

Except when RC is finitely generated (i.e., RatC(C∗) = C∗) the trace
ideal does not contain a unit element. However, if C is a direct sum of finitely
generated left (and right) C∗-submodules, the trace ideal has particularly nice
properties.

7.15. Trace ideal and decompositions. Let T := RatC(C∗) and T ′ :=
CRat(C∗).

(1) If C is a direct sum of finitely generated right C∗-modules, then T is
C-dense in C∗ and there is an embedding

γ : T ′ →
⊕

Λ
T ′ ∗ eλ ⊂ T,

for a family of orthogonal idempotents {eλ}Λ in T .
(2) If C is a direct sum of finitely generated right C∗-modules and of finitely

generated left C∗-modules, then T = T ′ and T is a projective generator
both in MC and CM.

Proof. (1) Under the given conditions there exist orthogonal idempotents
{eλ}Λ in C∗ with C =

⊕
Λ eλ⇀C, where all eλ⇀C are finitely generated right

C∗-modules. By the Finiteness Theorem 4.12, the eλ⇀C are finitely generated
as R-modules, and they are R-projective as direct summands of C. Now it
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follows from 7.5(1) that eλ ∈ T . Clearly C is an s-unital left T -module and
hence the density property follows (see 42.6).

Consider the assignment γ : T ′ →
⊕

Λ T
′ ∗ eλ, t �→

∑
Λ t ∗ eλ. For any

t ∈ T ′, t ∗ C∗ is finitely R-generated and so t ∗ eλ = 0 for almost all λ ∈ Λ.
Hence γ is a well-defined map. Assume γ(t) = 0. Then, for any c ∈ C,
0 = t ∗ eλ(c) = t(eλ⇀c), for all λ ∈ Λ, implying t = 0.

(2) By symmetry, (1) implies T = T ′ and so T =
⊕

Λ T ∗ eλ and T =⊕
Ω fω ∗T , where the {fω}Ω are orthogonal idempotents in C∗, and the C↼fω

are finitely R-generated (hence fω ∈ T ′). Clearly each T ∗eλ is a projective left
T -module and fω ∗ T a projective right T -module. Now the density property
implies that T is a projective generator both inMC and in CM (see 7.11). �

Notice that, in 7.15, eλ ∈ T ′ need not imply that C↼eλ is finitely R-
generated, unless we know that R is Noetherian (see 7.5).

7.16. Decompositions over Noetherian rings. Let R be Noetherian,
T = RatC(C∗) and T ′ = CRat(C∗). Then the following are equivalent:

(a) CC∗ and C∗C are direct sums of finitely generated C∗-modules;
(b) CC∗ is a direct sum of finitely generated C∗-modules and T = T ′;
(c) C∗C is a direct sum of finitely generated C∗-modules and T = T ′;
(d) C = T⇀C and T = T ′ and is a ring with enough idempotents.

If these conditions hold, T is a projective generator both in MC and in CM.

Proof. (a) ⇒ (b) follows by 7.15.
(b) ⇒ (d) Let C =

⊕
Λ eλ⇀C, with orthogonal idempotents {eλ}Λ in

C∗, where all eλ⇀C are finitely R-generated. Then eλ ∈ T = T ′ and T =⊕
Λ T ∗ eλ. For any t ∈ T , the module t⇀C is finitely R-generated (by 7.5)

and so

t⇀C ⊂ e1⇀C ⊕ · · · ⊕ ek⇀C, for some idempotents ei ∈ {eλ}Λ.
This implies t = (e1+· · ·+ek)∗t ∈

⊕
Λ eλ∗T . So

⊕
Λ T ∗eλ = T =

⊕
Λ eλ∗T ,

showing that T is a ring with enough idempotents.
(d) ⇒ (a) If T =

⊕
Λ eλ ∗ T , then

C = T⇀C =
⊕

Λ
eλ⇀C,

and eλ ∈ T implies that eλ⇀C is finitely R-generated. So, by 7.15, T is dense
in C∗, implying C↼T = C. Now symmetric arguments yield the decomposi-
tion of C as a direct sum of finitely R-generated left C∗-modules.

(c) ⇔ (a) The statement is symmetric to (d) ⇔ (a).
If the conditions hold, the assertion follows by 7.15. �
Fully invariant submodules of C that are direct summands are precisely

subcoalgebras that are direct summands, and they are of the form e⇀C, where
e is a central idempotent in C∗. Hence 7.16 yields:
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7.17. Corollary. If R is Noetherian, the following are equivalent:

(a) C is a direct sum of finitely generated subcoalgebras;

(b) C is a direct sum of finitely generated (C∗, C∗)-sub-bimodules;

(c) T⇀C = C and T is a ring with enough central idempotents.

7.18. Corollary. Let R be Noetherian and C cocommutative. The following
are equivalent:

(a) C is a direct sum of finitely generated subcoalgebras;

(b) C is a direct sum of finitely generated C∗-submodules;

(c) T⇀C = C and T is a ring with enough idempotents.

Notice that, in the preceding results, the projectivity properties (of T ) are
derived from decompositions of C into finitely generated summands. In the
next sections we will return to the problem of projectivity for comodules. One
of the highlights will be the observation that, for coalgebras over QF rings,
the exactness of RatC (see 7.11) is equivalent to the existence of enough
projectives in MC (see 9.6).

References. Heyneman and Radford [129]; Lin [152]; Wisbauer [210].
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8 Structure of comodules

In this section we study further properties of a coalgebra C provided RC is
locally projective. Since this means that the category of right C-comodules
MC is isomorphic to the category σ[C∗C] of C-subgenerated left C∗-modules
(cf. 4.3), we can use the knowledge of module categories to derive properties
of comodules. For example, we analyse projective objects in MC and study
properties of C motivated by module and ring theory.

Throughout this section we assume that C is an R-coalgebra with RC
locally projective (see 4.2).

Let N be a right C-comodule. Then a C-comodule Q is said to be N-
injective provided HomC(−, Q) turns any monomorphism K → N inMC into
a surjective map. We recall characterisations from 41.4.

8.1. Injectives in MC. (1) For Q ∈MC the following are equivalent:

(a) Q is injective in MC;

(b) the functor HomC(−, Q) :MC →MR is exact;

(c) Q is C-injective (as left C∗-module);

(d) Q is N-injective for any (finitely generated) subcomodule N ⊂ C;

(e) every exact sequence 0→ Q→ N → L→ 0 in MC splits.

(2) Every injective object in MC is C-generated.

(3) Every object in MC has an injective hull.

A C-comodule P is N-projective if HomC(P,−) turns any epimorphism
N → L into a surjective map. From 41.6 we obtain:

8.2. Projectives in MC. (1) For P ∈MC the following are equivalent:

(a) P is projective in MC;

(b) the functor HomC(P,−) :MC →MR is exact;

(c) P is C(Λ)-projective, for any set Λ;

(d) every exact sequence 0→ K → N → P → 0 in MC splits.

(2) If P is finitely generated and C-projective, then P is projective in MC.

Notice that projectives need not exist in MC . As observed in 3.22, pro-
jective objects in MC (if they exist) are also projective in MR.

8.3. Cogenerator properties of C. If C cogenerates all finitely C-generated
left comodules, then the following are equivalent:

(a) C∗C is linearly compact (see 41.13);

(b) CC∗ is C∗-injective.

If R is perfect, then (a),(b) are equivalent to:



76 Chapter 1. Coalgebras and comodules

(c) C∗C is Artinian.

Proof. The equivalence of (a) and (b) follows from 43.2. If R is perfect,
C is semi-Artinian by 4.16, and hence, by 41.13, (a) implies that C∗C is
Artinian. The implication (c) ⇒ (a) is trivial. �

Over a Noetherian ring R, C is left and right locally Noetherian as a C∗-
module (by 4.16), and therefore we can apply 43.4 to obtain:

8.4. C as injective cogenerator in MC. If R is Noetherian, then the
following are equivalent:

(a) C is an injective cogenerator in MC;

(b) C is an injective cogenerator in CM;

(c) C is a cogenerator both in MC and CM.

8.5. C as injective cogenerator in MC∗. If R is Artinian, then the fol-
lowing are equivalent:

(a) C is an injective cogenerator in MC∗;

(b) C∗C is Artinian and an injective cogenerator in MC;

(c) C is an injective cogenerator in MC and C∗ is right Noetherian.

If these conditions hold, then C∗ is a semiperfect ring and every right
C∗-module that is finitely generated as an R-module belongs to CM.

Proof. Since R is Artinian, C has locally finite length as a C∗-module.
(a)⇒ (b) Assume C to be an injective cogenerator inMC∗ . Then, by 8.4,

C is an injective cogenerator in MC . Now 43.8 implies that C∗C is Artinian.
(b) ⇒ (a) and (b) ⇔ (c) follow again from 43.8.
Assume the conditions hold. C∗ is f-semiperfect, being the endomorphism

ring of a self-injective module (see 41.19). So C∗/Jac(C∗) is von Neumann
regular and right Noetherian, and hence right (and left) semisimple. This
implies that C∗ is semiperfect.

Let L ∈ MC∗ be finitely generated as an R-module. Then L is finitely
cogenerated as a C∗-module, and hence it is finitely cogenerated by C. This
implies L ∈ CM. �

The decomposition of left semisimple coalgebras as a direct sum of (inde-
composable) subcoalgebras (see 4.14) can be extended to more general situ-
ations. Recall that a relation on any family of (co)modules {Mλ}Λ is defined
by setting (cf. 44.11)

Mλ ∼Mµ if there exist nonzero morphisms Mλ →Mµ or Mµ →Mλ,

and the smallest equivalence relation determined by ∼ is given by

Mλ ≈Mµ if there exist λ1, . . . , λk ∈ Λ,
such that Mλ =Mλ1 ∼ · · · ∼Mλk =Mµ .
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8.6. σ-decomposition of coalgebras. Let R be a Noetherian ring.

(1) There exist a σ-decomposition C =
⊕

ΛCλ and a family of orthogonal
central idempotents {eλ}Λ in C∗ with Cλ = C↼eλ, for each λ ∈ Λ.

(2) Each Cλ is a subcoalgebra of C, C
∗
λ � C∗ ∗ eλ, σ[C∗Cλ] = σ[C∗

λ
Cλ], and

MC =
⊕

Λ
σ[C∗Cλ] =

⊕
Λ
MCλ .

(3) MC is indecomposable if and only if, for any two injective uniform
L,N ∈MC, L ≈ N holds.

(4) Assume that R is Artinian. Then MC is indecomposable if and only if,

for any two simple E1, E2 ∈ σC∗ [C], Ê1 ≈ Ê2 holds.

Proof. (1),(2) By the Finiteness Theorem 4.12, C is a locally Noethe-
rian C∗-module. Now the decomposition ofMC (=σ[C∗C]) follows from 44.14.
Clearly the resulting σ-decomposition of C is a fully invariant decomposition,
and hence it can be described by central idempotents in the endomorphism
ring (= C∗; see 44.1). Fully invariant submodules Cλ ⊂ C are in partic-
ular R-direct summands in C and hence are subcoalgebras (by 4.6). It is
straightforward to verify that HomR(Cλ, R) = C∗

λ � C∗ ∗ eλ is an algebra
isomorphism. This implies σ[C∗Cλ] = σ[C∗

λ
Cλ] =M

Cλ .

(3) is a special case of 44.14(2).

(4) follows from 44.14(3). Notice that Ê1 ≈ Ê2 can be described by
extensions of simple modules (see 44.11). (The assertion means that the Ext
quiver of simple modules in MC is connected.) �

Transferring Corollary 44.7 we obtain:

8.7. Corollary. Let C be a coalgebra with σ-decomposition C =
⊕

ΛCλ.
Then the left rational functor RatC is exact if and only if the left rational
functors RatCλ are exact, for each Cλ.

Even for coalgebras C over fields there need not be any projective co-
modules in MC (see example in 8.12). We discuss the existence of (enough)
projectives in MC and the projectivity of C in MC or in C∗M.

Definition. A coalgebra C is called right semiperfect if every simple right
comodule has a projective cover in MC . If RC is locally projective, this is
obviously equivalent to the condition that every simple module in σ[C∗C] has
a projective cover in σ[C∗C] (by 4.3), that is, MC = σ[C∗C] is a semiperfect
category (see 41.16).

Notice that a right semiperfect coalgebra C need not be a semiperfect left
C∗-module as defined in 41.14. The following characterisations can be shown.



78 Chapter 1. Coalgebras and comodules

8.8. Right semiperfect coalgebras. The following are equivalent:

(a) C is a right semiperfect coalgebra;

(b) MC has a generating set of local projective modules;

(c) every finitely generated module in MC has a projective cover.

If R is a perfect ring, then (a)-(c) are equivalent to:

(d) MC has a generating set of finitely generated C-projective comodules.

Proof. The equivalence of (a), (b) and (c) follows from 41.16. If R is
perfect, any finitely generated comodule is supplemented (see 41.22), and (a)
⇔ (d) holds by 41.14. �

Semiperfect coalgebras over QF rings are described in 9.6. As an obvious
application of 8.6 we obtain:

8.9. σ-decomposition of semiperfect coalgebras. Let R be Noetherian
and C with σ-decomposition C =

⊕
ΛCλ. Then C is a right semiperfect

coalgebra if and only if the Cλ are right semiperfect coalgebras, for all λ ∈ Λ.

We finally turn to the question of when C itself is projective in MC or

C∗M. Since C is a balanced (C∗, C∗)-bimodule, we can use standard module
theory to obtain some properties of C as a locally projective C∗-module.

8.10. C locally projective as C∗-module.

(1) If C is locally projective as a left C∗-module, then C is a generator in
CM.

(2) If C is locally projective as a left and right C∗-module, then both RatC

and CRat are exact.

Proof. (1) If C∗C is locally projective, then, by 42.10(g), CC∗ is a
generator in σ[CC∗ ] = CM.

(2) Assume that both C∗C and CC∗ are locally projective. Then, by (1),

C∗C is a locally projective generator in σ[C∗C], and, by 7.14, RatC is an exact
functor. Similar arguments show that CRat is exact. �

8.11. C projective in MC. Assume that C is projective in MC.

(1) If C∗ is an f-semiperfect ring, or C is C-injective, then C is a direct
sum of finitely generated left C∗-modules.

(2) If C∗ is a right self-injective ring, then C is a generator in CM.

(3) If C∗ is a semiperfect ring, then RC is finitely generated.

Proof. (1) This is a decomposition property of projective modules with
f-semiperfect endomorphism rings (see 41.19). If C is self-injective, then C∗

is f-semiperfect.
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(2) As a self-injective ring, C∗ is f-semiperfect. By 7.15, (1) implies that
C is s-unital over the right trace ideal T ′, and so T ′ is a generator (by
7.11). Moreover, right injectivity of C∗ implies that T ′ = Tr(CM, C∗) =
Tr(CC∗ , C∗), and so C generates T ′ (see 42.7 for the definition of a trace).

(3) This follows from (1) and 41.19. �

8.12. Exercises

(1) Let C be a free R-module with basis {cn |n = 0, 1, . . .} and define

∆ : C → C ⊗ C, ck �→
k∑
i=0

ci ⊗ ck−i, ε : C → R, ck �→ δ0,k.

Prove ([45], [152]):

(i) (C,∆, ε) is a coassociative coalgebra.
(ii) The nontrivial subalgebras of C are

∑n
i=0Rci, n ∈ N.

(iii) C∗ is a power series ring R[[X]] in one variable X (where X(ck) = δ1,k).
(iv) There are no finitely generated projectives in MC .
(v) If R is a field, then MC is the class of all torsion modules in C∗M.

(2) Let C be a free R-module with basis {gk, dk | k = 1, 2, . . .} and define

∆ : C → C ⊗ C, gk �→ gk ⊗ gk, dk �→ gk ⊗ dk + dk ⊗ gk+1,
ε : C → R, gk �→ 1, dk �→ 0 .

(i) Prove that C is left and right semiperfect.
(ii) Show that C is projective as a left C∗-module but not as a right C∗-

module.

Hint: Consider the elements in C∗:

g∗k(gi) := δki, g∗k(di) := 0 and d∗k(di) := δki, d∗k(gi) := 0.

(iii) Replace ∆ by ∆′ : C → C ⊗ C, gk �→ gk ⊗ gk, dk �→ g1 ⊗ dk + dk ⊗
gk+1. Prove that (C,∆′) is a right semiperfect coalgebra that is not left
semiperfect.

(From [152, Example 1], [123, Example 1.6], [152, Example 3].)

References. Allen and Trushin [53]; Al-Takhman [51]; Beattie, Dǎscǎ-
lescu, Grünenfelder and Nǎstǎsescu [60]; Garćıa, Jara and Merino [116, 117];
Green [124]; Gómez-Torrecillas and Nǎstǎsescu [123]; Kaplansky [24]; Lin
[152]; Montgomery [161]; Shudo [189]; Shudo and Miyamoto [190]; Sweedler
[45]; Vanaja [202]; Wisbauer [210].
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9 Coalgebras over QF rings

Recall that a QF ring R is an Artinian injective cogenerator in MR. Over
such rings coalgebras have particularly nice properties. In fact, we obtain
essentially all structural properties known for coalgebras over fields. We con-
sider R-coalgebras C with RC locally projective (see 4.2). If R is a QF ring,
then this is equivalent to C being projective as an R-module (cf. 42.11).

9.1. Coalgebras over QF rings. If R is a QF ring, then:

(1) C is a (big) injective cogenerator in MC.

(2) Every comodule in MC is a subcomodule of some direct sum C(Λ).

(3) C∗ is an f-semiperfect ring.
(4) K := SocC∗C ✂ C and Jac(C∗) = HomR(C/K,R).
(5) C∗ is right self-injective if and only if C is flat as left C∗-module.

Proof. (1),(2) By 3.21, C is injective in MC . Over a QF ring R, every
R-module M is contained in a free R-module R(Λ). This yields, for any right
C-comodule, an injection �M :M →M ⊗R C ⊂ R(Λ) ⊗R C � C(Λ).

(3) The endomorphism ring of any self-injective module is f-semiperfect
(see 41.19).

(4) By 4.16, C∗C is locally of finite length and hence has an essential socle.
By the Hom-tensor relations (see 3.9),

Jac(C∗) = HomC(C/K,C) � HomR(C/K,R).

(5) For any N ∈ MC∗ , there is an isomorphism HomR(N ⊗C∗ C,R) �
HomC∗(N,HomR(C,R)) = HomC∗(N,C∗) (cf. 40.18). So, if C∗ is right self-
injective, the functor HomR(− ⊗C∗ C,R) : MC∗ → MR is exact. Since R is
a cogenerator inMR, this implies that −⊗C∗ C is exact, that is, C∗C is flat.
Similar arguments yield the converse conclusion. �

By 44.8, for any injective cogenerator, fully invariant decompositions
(coalgebra decompositions) are σ-decompositions (see discussion of decom-
positions in Section 44). Consequently, 8.6 yields:

9.2. σ-decomposition of C. If R is a QF ring, then:

(1) C has fully invariant decompositions with σ-indecomposable summands.

(2) Each fully invariant decomposition (= decomposition into coalgebras) is
a σ-decomposition.

(3) C is σ-indecomposable if and only if C has no nontrivial fully invariant
decomposition, that is, C∗ has no nontrivial central idempotents.

(4) If C is cocommutative, then C =
⊕

ΛÊλ is a fully invariant decompo-
sition, where {Eλ}Λ is a minimal representing set of simple comodules
in MC, and Êλ denotes the injective hull of Eλ.
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Proof. By 9.1, C is an injective cogenerator in σ[C∗C], and so (1), (2)
and (3) follow from 44.8 and 8.6. In (4), C∗ is a commutative algebra by
assumption, and so the assertion follows from 43.7. �

Over QF rings there is a bijective correspondence between closed subcat-
egories of MC and (C∗, C∗)-sub-bimodules in C. However, the latter need
not be pure R-submodules of C, and hence they may not be subcoalgebras.
Recall that injectivity of C in MC implies Tr(σ[N ], C) = Tr(N,C), for any
N ∈MC .

9.3. Correspondence relations. Let R be a QF ring and N ∈MC. Then:

(1) σ[N ] = σ[Tr(N,C)].

(2) The map σ[N ] �→ Tr(N,C) yields a bijective correspondence between
closed subcategories of MC and (C∗, C∗)-sub-bimodules of C.

(3) σ[N ] is closed under essential extensions (injective hulls) in MC if and
only if Tr(N,C) is a C∗-direct summand of C∗C. In this case Tr(N,C)
is a subcoalgebra of C.

(4) N is a semisimple comodule if and only if Tr(N,C) ⊂ Soc(C∗C).

(5) If R is a semisimple ring, then Tr(N,C) is a subcoalgebra of C.

Proof. Since R is a QF ring, C∗C has locally finite length and is an
injective cogenerator inMC . Hence (1)–(4) follow from 44.3. Furthermore, if
R is semisimple, the (C∗, C∗)-sub-bimodule Tr(N,C) is an R-direct summand
in C and so is a subcoalgebra by 4.6. This proves assertion (5). �

Since over a QF ring R any R-coalgebra C is an injective cogenerator in
MC and CM (by 9.1), the results from 8.5 simplify to the following.

9.4. C injective in MC∗. If R is QF, the following are equivalent:

(a) C is injective in MC∗;

(b) C is an injective cogenerator in MC∗;

(c) C∗C is Artinian;

(d) C∗ is a right Noetherian ring.

Proof. In view of the preceding remark the equivalence of (b), (c) and
(d) follows from 8.5. The implication (b) ⇒ (a) is trivial, and (a) ⇒ (c) is a
consequence of 8.3. �

For finitely generated comodules, injectivity and projectivity in MC may
extend to injectivity, resp. projectivity, in C∗M.
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9.5. Finitely presented modules over QF rings. Let R be a QF ring
and M ∈MC.

(1) If M is projective in MC, then M∗ is C-injective as a right C∗-module
and RatC(M∗) is injective in CM.

(2) If M is finitely generated as an R-module, then:

(i) if M is injective in MC, then M∗ is projective in MC∗.

(ii) M is injective in MC if and only if M is injective in C∗M.

(iii) M is projective in MC if and only if M is projective in C∗M.

Proof. (1) Consider any diagram with exact row in CM,

0 �� K ��

f
��

N

M∗ ,

where N is finitely generated as an R-module. Applying (−)∗ = HomR(−, R)
we obtain – with the canonical map ΦM :M →M∗∗ – the diagram

M �� M∗∗

f∗

��
N∗ �� K∗ �� 0 ,

where the lower row is in MC and hence can be extended commutatively by
some right comodule morphism g : M → N∗. Again applying (−)∗ - and
recalling that the composition M∗ ΦM∗−→M∗∗∗ (ΦM )∗−→ M∗ yields the identity (by
40.23) - we see that g∗ extends f to N . This proves that M∗ is N -injective
for all modules N ∈ CM that are finitely presented as R-modules.

In particular, by the Finiteness Theorem 4.12, every finitely generated
C∗-submodule of C is finitely generated - hence finitely presented – as an
R-module. So M∗ is N -injective for all these modules, and hence it is C-
injective as a right C∗-module (see 8.1). Notice that M∗ need not be in CM
(not rational). It is straightforward to show that RatC(M∗) is an injective
object in CM.

(2)(i) We know thatM ⊂ Rk, for some k ∈ N, and so there is a monomor-

phism inMC , M
�M ��M ⊗R C �� Rk ⊗R C � Ck , that splits inMC and

hence in C∗M (by 4.1). So the dual sequence (C∗)k →M∗ → 0 splits inMC∗ ,
and hence M∗ is projective in MC∗ .

(ii) Let M be injective in MC . Then M∗ is projective in MC∗ (by (i)).
Consider any monomorphism in M → X in C∗M. Then X∗ → M∗ → 0 is
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exact and splits in MC∗ , and hence, in the diagram

0 ��M ��

�
��

X

��
0 ��M∗∗ �� X∗∗ ,

the bottom row splits in C∗M and as a consequence so does the upper row,
proving that M is injective in C∗M.

(iii) Let M be projective in MC . Since M∗ is in CM (by 3.11), we know
from (1) that it is injective in CM. Now we conclude, by the right-hand
version of (i), that M �M∗∗ is projective in C∗M. �

As shown in 9.5, for coalgebras over QF rings, finitely generated projective
modules inMC are in fact projective in C∗M. This is the key to the fact that
in this case right semiperfect coalgebras are characterised by the exactness
of the left trace functor (so also by all the equivalent properties of the trace
functor given in 7.11).

9.6. Right semiperfect coalgebras over QF rings. Let R be QF and
T = RatC(C∗). Then the following are equivalent:

(a) C is a right semiperfect coalgebra;

(b) MC has a generating set of finitely generated modules that are projective
in C∗M;

(c) injective hulls of simple left C-comodules are finitely generated as R-
modules;

(d) the functor RatC : C∗M→MC is exact;

(e) T is left C-dense in C∗;
(f) KeT = {x ∈ C |T (x) = 0} = 0.

Proof. (a) ⇔ (b) If C is right semiperfect, there exists a generating set
of finitely generated projective modules inMC (see 8.8). By 9.5, all these are
projective in C∗M. The converse conclusion is immediate.

(a) ⇒ (c) Let U be a simple left C-comodule with injective hull U → Û
in CM. Applying HomR(−, R) we obtain a small epimorphism in C∗M,

Û∗ → U∗ → 0,

where U∗ is a simple left C∗-module. Moreover, since R is QF, we know that
Û is a direct summand of CC∗ , and so Û∗ is a direct summand of C∗, and
hence is projective in C∗M. By assumption there exists a projective cover
P → U∗ in MC . Since P is finitely generated as anR-module and projective
in MC , it is also projective in C∗M (by 9.5), and hence Û∗ � P . So Û∗ is
finitely generated as an R-module and so is Û .
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(c) ⇒ (a) Let V ⊂ C be a simple left C∗-submodule. Then V ∗ is a
simple right C∗-module in CM. Let V ∗ → K be its injective hull in CM. By
assumption, K is a finitely generated R-module, and so K∗ is a projective
C∗-module (by 9.5) and K∗ → V ∗∗ � V is a projective cover in MC .

(b) ⇒ (d) The assumption implies that MC has a generator that is pro-
jective in C∗M, and the assertion follows from 7.14.

(d) ⇔ (e) ⇔ (f) These equivalences follow from 7.11 and 7.9.
(d) ⇒ (c) Let V ⊂ C be a simple left C∗-submodule. Then U = V ∗ is

a simple left C-comodule and there is a projective cover Û∗ → V in C∗M
(see proof (a) ⇒ (c)). By 7.12, (d) implies that MC is closed under small

epimorphisms and hence Û∗ ∈MC . �
The conditions on left C∗-modules (right C-comodules) posed in the pre-

ceding theorem imply remarkable properties of the left C-comodules.

9.7. Left side of right semiperfect coalgebras. Let C be right semiperfect,
R a QF ring and T = RatC(C∗). Then:

(1) the injective hull of any X ∈ CM is finitely R-generated, provided X is
finitely R-generated.

(2) For every X ∈ CM that is finitely R-generated, HomC∗(T,X) � X.

(3) For every M ∈ CM, the trace of MC in M∗ is nonzero.
(4) Any module in CM has a maximal submodule and has a small radical.

Proof. (1) Let X ∈ CM be finitely generated as an R-module. Then
X has finite uniform dimension, and so its injective hull in CM is a finite
direct sum of injective hulls of simple modules, which are finitely generated
by 9.6(c).

(2) By (1), the C-injective hull X̂ of X is finitely R-generated and hence
is C∗-injective (see 9.5). So any f ∈ HomC∗(T,X) can be uniquely extended

to some h : C∗ → X̂ and h(ε) ∈ X̂, which is s-unital over T (see 7.13). Hence

h(ε) ∈ h(ε) · C∗ = h(ε) · T = h(T ) = f(T ) ⊂ X,

showing that h ∈ HomC∗(C∗, X) � X.

(3) For every simple submodule S ⊂M with injective hull Ŝ in CM, there
are commutative diagrams

0 �� S ��

i
��

M

j����
��
��
��

M∗ �� S∗

Ŝ
,

Ŝ∗

j∗
��

i∗

����������
,

where i is injective and j is nonzero. By 3.11, Ŝ∗ belongs toMC and so does
its nonzero image under j∗.
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(4) Let M ∈ CM. By (3), there exists a simple submodule Q ⊂ M∗ with
Q ∈MC . Then KeQ = {m ∈M |Q(m) = 0} is a maximal C∗-submodule of
M . This shows that all modules in CM have maximal submodules, and hence
every proper submodule ofM is contained in a maximal C∗-submodule. This
implies that Rad(M) is small in M . �

9.8. Finiteness properties. Let R be a QF ring.

(1) If C is right semiperfect and there are only finitely many nonisomorphic
simple right C-comodules, then RC is finitely generated.

(2) If C is right semiperfect and any two nonzero subalgebras have non-zero
intersection (i.e., C is irreducible), then RC is finitely generated.

(3) RC is finitely generated if and only if MC has a finitely generated pro-
jective generator.

(4) C∗ is an algebra of finite representation type if and only if there are only
finitely many nonisomorphic finitely generated indecomposable modules
in MC.

Proof. (1) Since CC∗ is self-injective, the socle of CC∗ is a finitely
generated R-module by 41.23. Hence Soc(CC∗) has finite uniform dimension,
and since Soc(CC∗) ✂ C, C is a finite direct sum of injective hulls of simple
modules in CM that are finitely generated R-modules by 9.7.

(2) Under the given condition there exists only one simple right C-como-
dule (up to isomorphisms), and the assertion follows from (1).

(3) If RC is finitely generated, then MC = C∗M. Conversely, assume
there exists a finitely generated projective generator P in MC . Then P is
semiperfect and there are only finitely many simples inMC . Now (1) applies.

(4) One implication is obvious. Assume there are only finitely many non-
isomorphic finitely generated indecomposables in MC . Since C is subgener-
ated by its finitely generated submodules, this implies thatMC has a finitely
generated subgenerator. Now [46, 54.2] implies that there is a progenerator
in MC , and hence RC is finitely generated by (3). �

Unlike in the case of associative algebras, right semiperfectness is a strictly
one-sided property for coalgebras – it need not imply left semiperfectness (see
example in 8.12). The next proposition describes coalgebras that are both
right and left semiperfect.

9.9. Left and right semiperfect coalgebras. Let R be a QF ring, T =
RatC(C∗) and T ′ = CRat(C∗). The following are equivalent:

(a) C is a left and right semiperfect coalgebra;

(b) all left C-comodules and all right C-comodules have projective covers;

(c) T = T ′ and is dense in C∗;
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(d) C∗C and CC∗ are direct sums of finitely generated C∗-modules.

Under these conditions, T is a ring with enough idempotents, and it is a
generator in MC.

Proof. (b)⇒ (a) is obvious.
(a) ⇒ (b) By 41.16, all finitely generated projective modules in MC are

semiperfect inMC . According to 41.14 and 41.15, a direct sum of projective
semiperfect modules in MC is semiperfect provided it has a small radical.
Since this is the case by 9.7, we conclude that every module in MC has a
projective cover. Similar arguments apply to the category CM.

(a) ⇔ (c) This is obvious by the characterisation of exactness of the ra-
tional functor in 7.11 and 9.6.

(c) ⇔ (d) follows from 7.15.
The final assertions follow from 7.15 and 7.11. �
For cocommutative coalgebras we can combine 9.9 with 9.2(4).

9.10. Cocommutative semiperfect coalgebras. Let R be QF and C
cocommutative. The following are equivalent:

(a) C is semiperfect;

(b) C is a direct sum of finitely generated C∗-modules;

(c) C is a direct sum of finitely R-generated subcoalgebras;

(d) every uniform subcomodule (C∗-submodule) of C is finitely R-generated.

The trace functors combined with the dual functor (−)∗ define covariant
functors CRat ◦ (−)∗ : MC → CM and RatC ◦ (−)∗ : CM → MC . Over QF
rings, these functors clearly are exact if and only if CRat, respectively RatC ,
is exact, that is, C is left or right semiperfect. In this case they yield dualities
between subcategories of MC and CM.

9.11. Composition of RatC and (−)∗. Let R be a QF ring. For any M ∈
CM let ΦM : M → M∗∗ denote the canonical map and i : RatC(M∗) → M∗

the inclusion. Consider the composition map

βM := i∗ ◦ ΦM :M →M∗∗ →
(
RatC(M∗)

)∗
.

If C is right semiperfect, then βM is a monomorphism and

βC : C → CRat
(
RatC(C∗)

)∗
is an isomorphism.

Proof. Let U ⊂ M be any finitely generated subcomodule. Then βU :
U → U∗∗ is an isomorphism, and, by the exactness of RatC , RatC(M∗) →
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RatC(U∗) is surjective and hence U∗∗ �
(
RatC(U∗)

)∗ ⊂ (
RatC(M∗)

)∗
. This

implies that βM is injective. On the other hand, C � CRat(C∗∗) by 7.4,
and the map CRat(C∗∗) → CRat

(
RatC(C∗)

)∗
is surjective, so that βC is an

isomorphism. �

9.12. Duality between left and right C∗-modules. Let R be QF and
T = RatC(C∗). Denote by σf [C∗C] (resp. σf [TT ]) the full subcategory of M

C

(resp. CM) of C∗-modules that are submodules of finitely C-generated (resp.
finitely T -generated) modules. Then the following assertions are equivalent:

(a) C is left and right semiperfect;

(b) the functors CRat ◦ (−)∗ : MC → CM and RatC ◦ (−)∗ : CM → MC

are exact;

(c) the left and right trace ideals coincide and form a ring with enough
idempotents, and CRat ◦ (−)∗ : σf [C∗C]→ σf [TT ] defines a duality.

Proof. (a) ⇔ (b) This follows from 9.9.
(b) ⇒ (c) The first assertion was noticed in 9.9, and by this the trace

functor RatC is described by multiplication with T . It is obvious that the
functor (−)∗T transfers σf [C∗C] to σf [TT ].

We know from 9.11 that βC : C → T ((C∗)T )∗ is an isomorphism. It
remains to show that βM : M → T ((M∗)T )∗ is an isomorphism, for every
M ∈ σf [C∗C], that is, M is reflexive with respect to CRat ◦ (−)∗. For this it
is obviously enough to prove that submodules and factor modules of reflexive
modules are again reflexive. To this end, consider an exact sequence in MC ,
0 → K → L → N → 0, in which L is reflexive. Then there is the following
commutative diagram with exact rows:

0 �� K ��

βK
��

L ��

βL
��

N ��

βN
��

0

0 �� T ((K∗)T )∗ �� T ((L∗)T )∗ �� T ((N∗)T )∗ �� 0 .

By assumption, βL is an isomorphism, and βK , βN are monomorphisms by
9.11. From the diagram properties we conclude that they are in fact isomor-
phisms, so both K and N are reflexive, as required.

(c) ⇒ (a) Clearly the functors transfer finitely generated R-modules to
finitely generated R-modules. By our assumptions, the simples in σf [TT ]
have projective covers that are finitely generated as R-modules. This implies
that C is a direct sum of finitely generated left C∗-modules and hence is left
semiperfect. Finally, since C is reflexive by 9.11, C = T⇀C =

⊕
Λ eλ⇀C for

idempotents eλ ∈ T , where the eλ⇀C are finitely generated by 7.5. �
Over a QF ring, projective comodules in MC that are finitely generated

as left C∗-modules are also projective in C∗M (see 9.5). Moreover, any direct
sum of copies of C is C-injective as a left and right C∗-module.
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9.13. Projective coalgebras over QF rings. If R is QF, the following are
equivalent:

(a) C is a submodule of a free left C∗-module;

(b) C (or every right C-comodule) is cogenerated by C∗ as a left C∗-module;

(c) there exists a family of left nondegenerate C-balanced bilinear forms
C × C → R;

(d) in MC every (indecomposable) injective object is projective;

(e) C is projective in MC;

(f) C is projective in C∗M.

If these conditions are satisfied, then C is a left semiperfect coalgebra and C
is a generator in CM.

Proof. (a) ⇔ (b) By 4.16, C is a direct sum of injective hulls of simple
modules in MC . If C is cogenerated by C∗, then each of these modules is
contained in a copy of C∗, and hence C is contained in a free C∗-module.
Recall from 9.1 that C is a cogenerator inMC and hence C∗ cogenerates any
N ∈MC provided it cogenerates C.

(b) ⇔ (c) This is shown in 6.6(2).
(c) ⇒ (f) Let U be a simple left C∗-submodule of C with injective hull

Û ⊂ C in MC . Then Û is a finitely generated R-module by 6.6(3). Now we

conclude from 9.5 that Û is injective in C∗M. Being cogenerated by C∗, we
observe in fact that Û is a direct summand of C∗, and hence it is projective
in C∗M. This implies that C is projective in C∗M.

(f) ⇒ (a) and (f) ⇒ (e) are obvious, and so is (d) ⇔ (e) (by 9.1).

(e)⇒ (f) C is a direct sum of injective hulls Û ⊂ C of simple submodules

U ⊂ C. By (e), Û is projective in MC . Since it has a local endomorphism
ring, we know from 41.11 that it is finitely generated as a C∗-module and
hence finitely generated as an R-module (by 4.12). Now we conclude from

9.5 that Û is projective in C∗M and so is C.
Finally, assume these conditions hold. By the proof of 9.13, the injective

hulls of simple modules inMC are finitely generated R-modules. By 8.8, this
characterises left semiperfect coalgebras, implying that the right trace ideal
T ′ := CRat(C∗) is a generator in CM. Now, by 9.5(1), T ′ is injective in CM,
and hence it is generated by C and therefore C is a generator in CM. �

9.14. Corollary. Let R be QF and C projective in MC. Then the following
are equivalent:

(a) C∗C contains only finitely many nonisomorphic simple submodules;

(b) Soc(C∗C) is finitely generated as an R-module;

(c) C∗ is a semiperfect ring;
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(d) RC is finitely generated.

Proof. (a) ⇒ (b) Since C∗C is self-injective, 41.23 applies.
(b) ⇒ (c) We know that C∗ is f-semiperfect. Clearly Soc(C∗C)✂ C, and

hence C has a finite uniform dimension as a left C∗-module. This implies
that C∗ is semiperfect.

(c)⇒ (a) For any semiperfect ring there are only finitely many simple left
(or right) modules (up to isomorphisms).

(c) ⇒ (d) is shown in 8.11(3).
(d) ⇒ (b) follows from the fact that R is Noetherian. �
From 9.1 we know that, over a QF ring R, C is always an injective cogen-

erator in MC . Which additional properties make C a projective generator?

9.15. C as a projective generator in MC. Let R be QF and T = RatC(C∗).
The following are equivalent:

(a) C is projective as left and right C-comodule;

(b) C is a projective generator in MC;

(c) C is a projective generator in CM;

(d) C = TC and T has enough idempotents and is an injective cogenerator
in MC.

Proof. (a) ⇒ (b) This is obtained from 9.13 and 8.10.
(b) ⇒ (a) By 9.13, C is projective as a left C∗-module and hence C∗ is

C-injective as a right C∗-module (by 9.5). To show that C is projective as a
right C∗-module we show that C∗ cogenerates C as a right C∗-module. For
this it is enough to prove that each simple submodule U ⊂ CC∗ is embedded
in C∗. By 4.12, U is a finitely generated R-module. Clearly U∗ is a simple
module inMC , and hence there is a C∗-epimorphism C → U∗. From this we
obtain an embedding U � U∗∗ ⊂ C∗, which proves our assertion.

(a) ⇔ (c) is clear by symmetry.
(a) ⇒ (d) From the above discussion we know that C is a left and right

semiperfect coalgebra. Hence T is a ring with enough idempotents andMC =
σ[C∗T ] by 9.9. Since C is projective, C ⊂ T (Λ), and hence T is a cogenerator
in MC . T is injective in MC by 9.5.

(d) ⇒ (b) Since T is projective in MC , injective hulls of simple modules
inMC are projective, and so C is projective inMC . T is injective, and hence
it is generated by C. By our assumptions T is a generator in MC and so is
C. �

In the situation of 9.15, T is an injective cogenerator inMC and CM, and
hence the functors HomT (−, T ) and THom(−, T ) have properties similar to
(−)∗. Following the arguments of the proof of 9.12, we obtain:
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9.16. Dualities in case C is a projective generator. Let R be QF
and assume that C is a projective generator in MC. Let T = RatC(C∗) =
CRat(C∗), and let σf [TT ] and σf [TT ] be the categories of submodules of finitely
T -generated modules. Then the following pair of functors defines a duality:

(1) RatC ◦ HomT (−, C) : σf [TT ]→ σf [TT ],

(2) CRat ◦ THom(−, T ) : σf [TT ]→ σf [TT ].

In case C is finitely R-generated, MC = C∗M and we obtain:

9.17. C as a projective generator in C∗M. If R is QF, the following are
equivalent:

(a) C is a projective generator in C∗M;

(b) C is a generator in C∗M;

(c) C is a generator in MC and RC is finitely generated;

(d) C∗ is a QF algebra and RC is finitely generated.

Proof. (a) ⇒ (b) is obvious.
(b)⇒ (c) As a generator in C∗M, C is finitely generated as a module over

its endomorphism ring C∗, and hence RC is finitely generated.
(c) ⇒ (d) Clearly C∗ is left (and right) Artinian. By assumption, C is an

injective generator in C∗M. This implies that C∗ is self-injective and hence
QF.

(d) ⇒ (a) As a QF ring, C∗ is an injective cogenerator in MC = C∗M.
From this it is easy to see that C is a projective generator in C∗M. �

An R-coalgebra C is called coreflexive if every locally finite left C∗-module
is rational.

9.18. Coreflexive coalgebras over QF rings. Let C be an R-coalgebra
with RC projective and R a QF ring. Then the following are equivalent:

(a) C is coreflexive;

(b) every R-cofinite (left) ideal of C∗ is closed in the C-adic topology;
(c) C∗◦ is a right (left) C-comodule;
(d) the evaluation map C → C∗◦ is an isomorphism.

Proof. (a) ⇒ (b) For a coreflexive coalgebra C, R-cofinite ideals of
C∗ are open in the C-adic topology, and open ideals are always closed in
topological rings.

(b) ⇒ (a) This follows by the fact that, for an R-cofinite closed ideal
I ⊂ C∗, C∗/I is finitely cogenerated as a C∗-module and hence I is open.

(a)⇔ (c) By 5.11, all (C∗, R)-finite C∗-modules are subgenerated by C∗◦.
Hence they all are C-comodules provided C∗◦ is a C-comodule.

(c)⇔ (d) This is a consequence of the isomorphism C � RatC(C∗∗) shown
in 7.4. �
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9.19. Remarks. As mentioned in the introduction to this section, coalgebras
over QF rings share most of the properties of coalgebras over fields. Let us
relate some of our observations to this special case.

Theorem 8.6 (and 9.2) extends decomposition results for coalgebras over
fields to coalgebras over Noetherian (QF) rings. It was shown in [24] that
any coalgebra C over a field is a direct sum of indecomposable coalgebras,
and that, for C cocommutative, these components are even irreducible. In
[161, Theorem 2.1] it is proved that C is a direct sum of link-indecomposable
components. It is easy to see that the link-indecomposable components are
simply the σ-indecomposable components of C. As outlined in [161, Theo-
rem 1.7], this relationship can also be described by using the “wedge”. In
this context, another proof of the decomposition theorem is given in [190,
Theorem]. We refer also to [116] and [117] for a detailed description of these
constructions. In [190] an example is given of a σ-indecomposable coalgebra
(over a field) with infinitely many simple comodules.

In [124], for every C-comoduleM , the coefficient space C(M) is defined as
the smallest subcoalgebra C(M) ⊂ C such thatM is a C(M)-comodule. The
definition heavily relies on the existence of an R-basis for comodules. In the
more general correspondence theorem 9.3, C(M) is replaced by Tr(σ[M ], C).
For coalgebras over fields, C(M) and Tr(σ[M ], C) coincide and 9.3 yields [124,
1.3d], [117, Proposition 7], and [161, Lemma 1.8]. Notice that in [124] closed
subcategories in MC are called pseudovarieties. The assertion in 9.3(3) was
obtained in [165, Proposition 4.6].

For coalgebras over fields, 9.5(1) is shown in [152, Lemma 11] and (2) is
proved in [104, Proposition 4]. The characterisations of semiperfect coalgebras
in 9.6 are partly shown in [152, Theorem 10] and [123, Theorem 3.3]. The
equivalence of (a) and (b) from 9.9 can be found in [152, Corollary 18].

In [53] semiperfect coalgebras are called coproper coalgebras. Their de-
composition theorem [53, Theorem 1.11] follows from 8.9.

The exactness of the rational functor is also investigated in [189]. It is
proven there, for example, that any irreducible coalgebra C with the ex-
act rational functor is finite-dimensional (see 9.8) and that cocommutative
coalgebras are semiperfect if and only if every irreducible subcoalgebra is
finite-dimensional (see 9.10).

Projective coalgebras as considered in 9.13 are called quasi-co-Frobenius
in [123], and some of the characterisations are given in [123, Theorem 1.3].
Moreover, characterisations of C as a projective generator in 9.15 are con-
tained in [123, Theorem 2.6]. In this paper dualities similar to 9.12 and 9.16
also are considered (see [123, Theorems 3.5, 3.12]).

9.20. Exercises

(1) Let F be a free module over a QF ring R. Prove that an R-submodule U ⊂ F ∗

is dense in the finite topology if and only if KeU = 0. (Hint: 7.9)



92 Chapter 1. Coalgebras and comodules

(2) Let R be QF and RC projective. Denote by fMC (resp. CMf ) the full
subcategory of MC (resp. CM) consisting of finitely generated C∗-modules.
Prove that HomR(−, R) : fMC → CMf induces a duality of categories.

(3) A comodule L ∈ CM is called s-rational if the injective envelope of L in CM
embeds in M∗ as a right C∗-module, for some M ∈ CM. Let R be a QF ring
and RC projective. Prove ([157]):

(i) For a simple object S ∈ MC , the following are equivalent:

(a) S is a quotient of a projective object of MC ;
(b) S is a quotient of an object of MC that is a cyclic projective left

C∗-module (and is finitely R-generated);
(c) S∗ is s-rational;
(d) the injective envelope of S∗ in CM is finitely generated as an

R-module.

(ii) C is a right semiperfect coalgebra if and only if every simple object of
CM is s-rational.

(4) Let R be QF and assume C to be a projective generator in MC . Put
T = RatC(C∗) and denote by T -mod and mod-T the categories of finitely
generated left and right T -modules M,N with TM = M or N = NT , re-
spectively. Prove that THom(−, T ) : T -mod→mod-T induces a duality.

(5) An R-algebra A is called left almost Noetherian if any R-cofinite left ideal is
finitely generated as an A-module.
Let C be an R-coalgebra with RC projective and R a QF ring. Assume C∗

to be left almost Noetherian. Prove that C is coreflexive and MC is closed
under extensions in C∗M.

(6) A comodule M ∈ MC is called cohereditary if every factor comodule of M
is injective. Let R be QF and assume RC to be projective. Prove that the
following are equivalent:

(a) C is cohereditary;
(b) every injective comodule in MC is cohereditary;
(c) every indecomposable injective comodule in MC is cohereditary;
(d) every C-generated comodule in MC is injective;
(e) for every (simple) comodule in MC the injective dimension is ≤ 1.

References. Allen and Trushin [53]; Al-Takhman [51]; Garćıa, Jara
and Merino [116, 117]; Green [124]; Gómez-Torrecillas and Nǎstǎsescu [123];
Heyneman and Radford [129]; Kaplansky [24]; Lin [152]; Menini, Torrecil-
las and Wisbauer [157]; Montgomery [161]; Nǎstǎsescu and Torrecillas [165];
Nǎstǎsescu, Torrecillas and Zhang [166]; Radford [176]; Shudo [189]; Shudo
and Miyamoto [190]; Taft [194]; Wisbauer [210].
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10 Cotensor product of comodules

In this section we dualise the definition and characterisations of tensor prod-
ucts of modules over algebras (see 40.10) to obtain the corresponding notion
for comodules over coalgebras. In classical ring theory, a tensor product of
modules is defined as a coequaliser and can be seen as a (bi)functor from
the category(-ies) of modules to Abelian groups. Properties of modules such
as purity, flatness or faithful flatness can be defined via the properties of
the corresponding tensor functor. Dually, a cotensor product of comodules
is defined as an equaliser and can be viewed as a (bi)functor from comod-
ules to R-modules. The properties of this functor then determine whether a
comodule is coflat, faithfully coflat or whether certain purity conditions are
satisfied. In this section we study all such properties, as well as relations of
the cotensor functor to the tensor functor. In these studies the fact that we
consider coalgebras over a ring rather than coalgebras over a field plays a
significant role.

As before, C denotes an R-coalgebra.

10.1. Cotensor product of comodules. For M ∈MC and N ∈ CM, the
cotensor product M✷CN is defined as the following equaliser in MR:

M✷CN ��M ⊗R N
�M⊗IN ��

IM⊗N�
��M ⊗R C ⊗R N ,

or – equivalently – by the exact sequence in MR,

0 ��M✷CN ��M ⊗R N
ωM,N��M ⊗R C ⊗R N,

where ωM,N := �M⊗IN−IM⊗N�. It can also be characterised by the pullback
diagram

M✷CN ��

��

M ⊗R N
�M⊗IN
��

M ⊗R N
IM⊗N��� M ⊗R C ⊗R N .

In particular, for the comodule C, by properties of the structure maps there
are R-module isomorphisms

M✷CC = �M(M) �M, C✷CN = N�(N) � N.

Proof. First observe that ωM,C ◦ �M = 0 and hence �M(M) ⊂ M✷CC.
Conversely, take any

∑
im

i ⊗ ci ∈M✷CC and put m =
∑
im

i ε(ci). Then

�M(m) =
∑

i
mi

0 ⊗mi
1ε(c

i) =
∑

i
mi ⊗ ci1ε(c

i
2) =

∑
i
mi ⊗ ci,

showing that M✷CC = �M(M). �
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10.2. Cotensor product of comodule morphisms. Let f :M →M ′ and
g : N → N ′ be morphisms of right, resp. left, C-comodules. Then there exists
a unique R-linear map,

f✷g : M✷CN −→M ′✷CN ′,

yielding a commutative diagram

0 ��M✷CN ��

f✷g
��

M ⊗R N
ωM,N ��

f⊗g
��

M ⊗R C ⊗R N
f⊗IC⊗g
��

0 ��M ′✷CN ′ ��M ′ ⊗R N ′ ωM′,N′
��M ′ ⊗R C ⊗R N ′ .

Proof. Since f and g are comodule morphisms,

(f ⊗ IC ⊗ g) ◦ ωM,N = (f ⊗ IC) ◦ �M ⊗ g − f ⊗ (IC ⊗ g) ◦ �N

= (�M
′ ◦ f)⊗ g − f ⊗ (�N ′ ◦ g)

= ωM ′,N ′ ◦ (f ⊗ g).

This means that the right square is commutative and the kernel property
yields the map stated. �

10.3. The cotensor functor. For any M ∈MC there is a covariant functor

M✷C− : CM→MR, N �→ M✷CN,
f : N → N ′ �→ IM✷f :M✷CN →M✷CN

′.

Similarly, every left C-comodule N yields a functor −✷CN :MC →MR.

To understand the exactness properties of the cotensor product as well as
its relationship with the tensor product, a good understanding of the purity
of morphisms is required. The reader is referred to 40.13 for these notions.

10.4. Exactness of the cotensor functor. Let M ∈MC and RC be flat.

(1) Consider an exact sequence 0 −→ N ′ f−→ N
g−→ N ′′ in CM. Assume

(i) M is flat as an R-module, or

(ii) the sequence is M-pure, or

(iii) the sequence is (C,R)-exact.

Then, cotensoring with M yields an exact sequence of R-modules,

0→M✷CN
′ IM✷f−→ M✷CN

IM✷g−→ M✷CN
′′.

(2) The cotensor functor M✷C− : CM → MR is left (C,R)-exact, and it
is left exact provided that M is flat as an R-module.
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Proof. There is a commutative diagram with exact vertical columns:

0

��

0

��

0

��
0 ��M✷CN

′ IM✷f ��

��

M✷CN
IM✷g ��

��

M✷CN
′′

��
0 ��M ⊗R N ′ IM⊗f ��

ωM,N′
��

M ⊗R N
IM⊗g ��

ωM,N

��

M ⊗R N ′′

ωM,N′′
��

0 ��M ⊗R C ⊗R N ′ I⊗I⊗f ��M ⊗R C ⊗R N
I⊗I⊗g��M ⊗R C ⊗R N ′′.

Under any of the given conditions, the second and third rows are exact, and
hence the first row is exact by the Kernel-Cokernel Lemma. �

10.5. Direct limits and cotensor products. Let {Nλ}Λ be a directed
family in CM. Then, for any M ∈MC,

lim−→(M✷CNλ) �M✷C lim−→Nλ.

Proof. SinceM⊗R− commutes with direct limits, there is a commutative
diagram with exact rows:

0 �� lim−→(M✷CNλ) ��

���
�
�

lim−→(M ⊗R Nλ) ��

�
��

lim−→(M ⊗R C ⊗R Nλ)

�
��

0 ��M✷C lim−→Nλ ��M ⊗R lim−→Nλ ��M ⊗R C ⊗R lim−→Nλ .

This yields the isomorphism stated. �
Associativity properties between tensor and cotensor products are of fun-

damental importance, and for this we show:

10.6. Tensor-cotensor relations. Let M ∈ MC and N ∈ CM. For any
W ∈MR and the canonical C-comodule structures on W ⊗RM and N ⊗RW
(cf. 3.8), there exist canonical R-linear maps

τW : W ⊗R (M✷CN)→ (W ⊗RM)✷CN,
τ ′W : (M✷CN)⊗RW →M✷C(N ⊗RW ),

and the following are equivalent:

(a) the map ωM,N :M ⊗R N →M ⊗R C ⊗R N is W -pure;

(b) τW is an isomorphism;

(c) τ ′W is an isomorphism.
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Proof. With obvious maps there is a commutative diagram:

0 ��W⊗R(M✷CN) ��

τW
��

W⊗R(M⊗RN)
I⊗ωM,N��

�
��

W⊗R(M⊗RC⊗RN)
�
��

0 �� (W⊗RM)✷CN �� (W⊗RM)⊗RN
ωW⊗M,N�� (W⊗RM)⊗RC⊗RN ,

where the bottom row is exact (by definition). If ωM,N is aW -pure morphism,
then the top row is exact and τW is an isomorphism by the diagram properties.
On the other hand, if τW is an isomorphism, we conclude that the top row is
exact and ωM,N is a W -pure morphism. Similar arguments apply to τ

′
W . �

We consider two cases where the conditions in 10.6(1) are satisfied.

10.7. Purity conditions. Let M ∈MC and N ∈ CM.

(1) If the functor M✷C− or −C✷N is right exact, then ωM,N is a pure
morphism.

(2) If M ∈MC is (C,R)-injective and N ∈ CM, then the exact sequence

0 ��M✷CN ��M ⊗R N
ωM,N ��M ⊗R C ⊗R N

splits in MR (and hence is pure).

Proof. (1) Let M✷C− : CM→MR be right exact and W ∈MR. From
an exact sequence F2 → F1 → W → 0 with free R-modules F1, F2, we obtain
a commutative diagram:

(M✷CN)⊗R F2
��

�
��

(M✷CN)⊗R F1
��

�
��

(M✷CN)⊗RW
τ ′W
��

�� 0

M✷C(N ⊗R F2) ��M✷C(N ⊗R F1) ��M✷C(N ⊗RW ) �� 0 ,

where both sequences are exact. The first two vertical maps are isomorphisms
since tensor and cotensor functors commute with direct sums. This implies
that τ ′W is an isomorphism and the assertion follows by 10.6.

A similar proof applies when −C✷N is exact.
(2) If N is (C,R)-injective, the structure map N� : N → C ⊗R N is split

by some comodule morphism λ : C ⊗R N → N . The image of the map

β = (IM ⊗ λ) ◦ (�M ⊗ IN) :M ⊗R N ��M ⊗R N

lies in M✷CN , since, for any m⊗ n ∈M ⊗R N ,
(�M ⊗ IN) ◦ β(m⊗ n) =

∑
m0 ⊗m1 ⊗ λ(m2 ⊗ n)

=
∑
m0 ⊗ (IM ⊗ λ)(∆⊗ IN)(m1 ⊗ n)

=
∑
m0 ⊗ �N(λ(m1 ⊗ n))

= (IM ⊗ �N) ◦ β(m⊗ n).
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Furthermore, for any x ∈M✷CN ,

β(x) = (IM ⊗ λ) ◦ (�M ⊗ IN)(x) = (IM ⊗ λ) ◦ (IM ⊗ N�)(x) = x,

thus proving that M✷CN is an R-direct summand of M ⊗R N .
To show splitting in M ⊗R N consider the map

−(IM ⊗ λ) :M ⊗R C ⊗R N ��M ⊗R N .

For any element m⊗ n ∈M ⊗R N we compute

−(IM ⊗ λ) ◦ ωM,N(m⊗ n) = −(IM ⊗ λ) ◦ (�M ⊗ IN − IM ⊗ N�)(m⊗ n)

= −(IM ⊗ λ) ◦ (�M ⊗ IN)(m⊗ n) +m⊗ n

= m⊗ n− β(m⊗ n)

∈ m⊗ n+M✷CN ,

which shows that M ⊗R N/M✷CN is isomorphic to a direct summand of
M ⊗R C ⊗R N . A similar proof works if M is (C,R)-injective. �

10.8. Coflat comodules. Let RC be flat. A comodule M ∈MC is said to
be coflat if the functor M✷C− : CM→MR is exact.

Notice that, for any coflat M ∈ MC , M is flat as an R-module. Indeed,
since C is (C,R)-injective, 10.7 implies M✷C(C ⊗R−) � (M✷CC) ⊗R − �
M ⊗R−, from which the assertion is clear (RC is assumed to be flat).

As a consequence of 10.5 we observe that direct sums and direct limits of
coflat C-comodules are coflat.

A right C-comodule M is said to be faithfully coflat provided the functor
M✷C− : CM → MR is exact and faithful. Recall that faithfulness means
that the canonical map CHom(L,N) → HomR(M✷CL,M✷CN) is injective,
for any L,N ∈ CM. Similar to the characterisation of faithfully flat modules
(e.g., [46, 12.17]) we obtain:

10.9. Faithfully coflat comodules. Let RC be flat. For M ∈ MC the
following are equivalent:

(a) M is faithfully coflat;

(b) M✷C− : CM → MR is exact and reflects exact sequences (zero mor-
phisms);

(c) M is coflat and M✷CN �= 0, for any nonzero N ∈ CM.

Proof. (a)⇒ (c) Assume M✷CK = 0 for any K ∈ CM. Then IM✷IK :
M✷CK → M✷CK is the zero map, and hence IK is the zero map, that is,
K = 0.
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(c)⇒ (a) Assume for some L→ N ∈ CM that the mapM✷CL→M✷CN
is zero. Then M✷CL → M✷CIm f is surjective and zero, and so Im f = 0
and f is zero.

(a) ⇔ (b) This follows by standard arguments in category theory (e.g.,
[46, 12.17]). �

For coalgebras C with RC locally projective, the comodule categories can
be considered as categories of C∗-modules (cf. Section 4). In this case the
cotensor product can be described by C∗-modules.

10.10. Cotensor and Hom. Let RC be locally projective and, for M ∈MC

and N ∈ CM, consider M ⊗R N as a (C∗, C∗)-bimodule. Then

M✷CN � C∗HomC∗(C∗,M ⊗R N).

Proof. Consider the following commutative diagram:

M✷CN ��

��

M ⊗R N
�M⊗IN
��

� ��
C∗Hom(C∗,M ⊗R N)

iL

��

M ⊗R N
IM⊗N� ��

�
��

M ⊗R C ⊗R N
αM⊗RN

�����
����

����
����

�

HomC∗(C∗,M ⊗R N)
iR �� HomR(C

∗,M ⊗R N) ,

in which the internal rectangle (pullback) defines M✷CN , iL and iR denote
the inclusion maps, and αM⊗RN is defined as in 4.2. The pullback of iL and
iR is simply the intersection

C∗Hom(C∗,M ⊗R N) ∩ HomC∗(C∗,M ⊗R N) = C∗HomC∗(C∗,M ⊗R N),

and we obtain a morphismM✷CN → C∗HomC∗(C∗,M⊗RN). From the fact
that αM⊗RN is injective and the pullback property of the inner rectangle, we
obtain a morphism in the other direction and their composition yields the
identity. �

Recall from 3.11 that, for RC flat and a right C-comodule N that is finitely
presented as an R-module, N∗ := HomR(N,R) is a left C-comodule. This
yields the following

10.11. Hom-cotensor relation. Let RC be flat and M,L ∈MC such that

RM is flat and RL is finitely presented. Then there exists an isomorphism
(natural in L)

M✷CL
∗ �−→ HomC(L,M).
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Proof. Consider the following commutative diagram with exact rows:

0 ��M✷CL
∗ ��

���
�
� M ⊗R L∗ ωM,L∗

��

�
��

M ⊗R C ⊗R L∗

�
��

0 �� HomC(L,M) �� HomR(L,M)
γ �� HomR(L,M ⊗R C),

where ωM,L∗ = �M ⊗ IL∗ − IM ⊗ �L∗ and γ(f) := �M ◦ f − (f ⊗ IC) ◦ �L (see
3.3). For m⊗ f ∈M ⊗R L∗ and l ∈ L,

m⊗ f � ��
	

��

�M(m)⊗ f −m⊗ (f ⊗ IC) ◦ �L	

��
[l �→ f(l)m] � �� [l �→ f(l)�M(m)−

∑
f(l0)m⊗ l1],

showing that the square is commutative. Now the diagram properties yield
the isomorphism desired. �

10.12. Coflatness and injectivity. Let M ∈MC, and assume RM and RC
to be flat.

(1) Let 0→ L1 → L2 → L3 → 0 be an exact sequence inMC, where each Li
is finitely R-presented. If R is injective or the sequence is (C,R)-exact,
then there is a commutative diagram:

0 ��M✷CL
∗
3

��

�
��

M✷CL
∗
2

��

�
��

M✷CL
∗
1

��

�
��

0

0 �� HomC(L3,M) �� HomC(L2,M) �� HomC(L1,M) �� 0.

So the upper sequence is exact if and only if the lower sequence is exact.

(2) Let R be QF. Then

(i) M is coflat if and only if M is C-injective;

(ii) M is faithfully coflat if and only if M is an injective cogenerator
in MC.

Proof. (1) Since the Li are finitely R-presented, the isomorphisms are
provided by 10.11.

(2) Let R be QF. Then RC is projective.
(i) Assume M✷C− to be exact. Then, by (1), HomC(−,M) is exact

with respect to all exact sequences 0 → I → J → J/I → 0 in MC , where
J ⊂ C is a finitely generated left C∗-submodule of C. This implies that M
is C-injective as a C∗-module, and hence it is injective in MC (see 8.1).
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Now assumeM to be C-injective. With R being a QF-ring, for any finitely
generated left C-comodule K, K � K∗∗ and M✷CK � HomC(K∗,M) hold.
Any exact sequence 0→ K ′ → K → K ′′ → 0 in CM is a direct limit of exact
sequences 0 → K ′

λ → Kλ → K ′′
λ → 0 in CM, where all K ′

λ, Kλ and K
′′
λ are

finitely presented as R-modules. By C-injectivity of M and (1),

0→M✷CK
′
λ →M✷CKλ →M✷CK

′′
λ → 0

is exact, for each λ. Now the direct limit yields an exact sequence in MR,

0→M✷CK
′ →M✷CK →M✷CK

′′ → 0,

showing that M is coflat.
(ii) Let E be any simple right C-comodule. Clearly E is a finitely pre-

sented R-module and henceM✷CE
∗ � HomC(E,M). The left side is nonzero

provided M is faithfully coflat, and the right side is nonzero provided M is a
cogenerator in MC . From this the assertion follows. �

Notice that, over arbitrary rings R, coflatness is not equivalent to injectiv-
ity: If RC is flat, then C is a coflat but need not be an injective C-comodule
(unless R is injective).

References. Al-Takhman [51]; Doi [104]; Lin [152]; Milnor and Moore
[159]; Sweedler [45].
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11 Bicomodules

Let A and B be associative R-algebras. An R-module M that is a left A-
and right B-module is called an (A,B)-bimodule provided the compatibility
condition (am)b = a(mb) holds, for all a ∈ A, m ∈ M and b ∈ B. Similar
(dual) notions can be considered for coalgebras. In this case we are inter-
ested in R-modules that are at the same time left comodules of one coalgebra
and right comodules of a second coalgebra. In classical ring theory, given an
(A,B)-bimodule M , one uses the tensor product to define an induction func-
tor from the category of right A-modules to the category of right B-modules,
−⊗AM :MA →MB. To perform a similar construction for coalgebras, one
uses the cotensor product. However, the corresponding functor from comod-
ules of one coalgebra to comodules of the other is not always well defined.
This is again a feature that is typical for coalgebras over rings, and in this
section we study when such a coinduction functor is defined and when the
cotensor product is associative.

11.1. Bicomodules (cf. 3.24). Let C,D be R-coalgebras, and M a right C-
comodule and leftD-comodule by �M : M →M⊗RC and M� : M → D⊗RM ,
respectively. M is called a (D,C)-bicomodule if the diagram

M
�M ��

M�
��

M ⊗R C
M�⊗IC
��

D ⊗RM
ID⊗�M�� D ⊗RM ⊗R C

is commutative, that is, if �M is a leftD-comodule morphism or – equivalently
– M� is a right C-comodule morphism.

Right C-comodules are left C∗-modules, and left D-comodules are right
D∗-modules canonically. Hence, any (D,C)-bicomodule is a left C∗-module
and a right D∗-module. The compatibility condition for bicomodules implies
that every (D,C)-bicomodule is in fact a (C∗, D∗)-bimodule. This is proven
by the following explicit computation for f ∈ C∗, g ∈ D∗, m ∈M :

(f⇀m)↼g = (g ⊗ IM ⊗ f) ◦ ((M�⊗ IC) ◦ �M))(m)
= (g ⊗ IM ⊗ f) ◦ ((ID ⊗ �M) ◦ M�))(m)
= f⇀(m↼g).

In particular, any coalgebra C is a (C,C)-bicomodule by the regular coac-
tions (cf. 3.4) and hence a (C∗, C∗)-bimodule (see 4.6).

As outlined in 4.11, idempotents e in C∗ induce for any right C-comodule
M a right e⇀C↼e comodule e⇀M . Now we look at the effect of this con-
struction on bicomodules.
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11.2. Idempotents and bicomodules. For R-coalgebras C,D, let M be a
(D,C)-bicomodule and g2 = g ∈ D∗, e2 = e ∈ C∗.

(1) e⇀M is a (D, e⇀C↼e)-bicomodule by the coactions

e⇀M −→ e⇀M ⊗R e⇀C↼e, e⇀m �→
∑
e⇀m0 ⊗ e⇀m1↼e

e⇀M −→ D ⊗R e⇀M, e⇀m �→
∑
m−1 ⊗ e⇀m0.

(2) M↼g is a (g⇀D↼g, C)-bicomodule by the coactions

M↼g −→ M↼g ⊗R C, m↼g �→
∑
m0↼g ⊗m1

M↼g −→ g⇀D↼g ⊗RM↼g, m↼g �→
∑
g⇀m−1↼g ⊗m0↼g.

(3) (e⇀M)∗ �M∗ · e as (D∗, e ∗C∗ ∗ e)-bimodules and (M↼g)∗ � g ·M∗ as
(g ∗D∗ ∗ g, C∗)-bimodules.

Proof. The assertions in (1) and (2) are easy to verify.
(3) The first isomorphism is already given in 4.11(3). The check that it is

a morphism in the given sense is left as an exercise. The second isomorphism
is obtained by symmetric arguments. �

In general, for M ∈ MC and N ∈ CM, the cotensor product M✷CN
is just an R-module. For bicomodules M,N , M✷CN has a (bi)comodule
structure under additional assumptions.

For a (D,C)-bicomodule M and any left C-comodule N with coaction
N� : N → C ⊗R N , we consider M ⊗R N as a left D-comodule canonically, as
in 3.8. Then the map

ωM,N : �
M ⊗ IN − IM ⊗ N� :M ⊗R N →M ⊗R C ⊗R N

is a left D-comodule morphism. Hence its kernelM✷CN is a D-subcomodule
of M ⊗R N , provided ωM,N is a D-pure morphism (see 40.13 and 40.14).

11.3. Cotensor product of bicomodules. Let B,C,D be R-coalgebras, M
a (D,C)-bicomodule, L ∈MD, and N ∈ CM.

(1) M✷CN is a left D-comodule, provided ωM,N is D-pure.

(2) L✷DM is a right C-comodule, provided ωL,M is C-pure.

(3) If N is a (C,B)-bicomodule, then M✷CN is a (D,B)-bicomodule, pro-
vided ωM,N is D-pure and B-pure.

Notice that the above conditions are in particular satisfied when B,C and
D are flat as R-modules. Furthermore, since C is always (C,R)-injective, the
purity conditions are satisfied for the bicomodule C (see 10.7), and hence
there is the following corollary of 11.3.
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11.4. Cotensor product with C. If M ∈ MC and N ∈ CM, then M �
M✷CC and N � C✷CN always as comodules.

Coseparability of a coalgebra (cf. 3.28) is a sufficient condition for the
cotensor product to be a functor between comodule categories. Indeed, as
observed in 3.29, over a coseparable coalgebra any comodule is relative injec-
tive and hence the purity conditions 10.7 are satisfied and 11.3 implies:

11.5. Cotensor product over coseparable coalgebras. Let B, C and D
be R-coalgebras. If C is a coseparable coalgebra, then:

(1) For any (B,C)-bicomodule M and N ∈ CM, M✷CN is a left B-
comodule.

(2) For any M ∈ MC and a (C,D)-bicomodule N , M✷CN is a right D-
comodule.

(3) For any (B,C)-bicomodule M and a (C,D)-bicomodule N , M✷CN is
a (B,D)-bicomodule.

The comodule structure on cotensor products rises the question of

11.6. Associativity of the cotensor product. Let C,D be R-coalgebras
with RC, RD flat, M a (D,C)-bicomodule, L ∈MD, and N ∈ CM. Then

(L✷DM)✷CN � L✷D(M✷CN),

provided that the canonical maps yield isomorphisms

(L✷DM)⊗R N � L✷D(M ⊗R N) and L⊗R (M✷CN) � (L⊗RM)✷CN .

These conditions are satisfied if, for example,

(i) L and N are flat as R-modules, or

(ii) L is coflat in MD, or

(iii) N is coflat in CM, or

(iv) M is coflat in DM and MC, or

(v) M is (D,R)-injective and (C,R)-injective, or

(vi) L is (D,R)-injective and N is (C,R)-injective.

Proof. Since RC and RD are flat, we know that L✷DM ∈ MC and
M✷CN ∈ DM (by 11.3). In the commutative diagram

0 �� (L✷DM)✷CN ��

ψ1

��

(L⊗RM)✷CN ��

ψ2

��

(L⊗R D ⊗RM)✷CN
ψ3

��
0 �� L✷D(M✷CN) �� L⊗R (M✷CN) �� L⊗R D ⊗R (M✷CN) ,
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the top row is exact since ωL,M is N -pure (see 10.4), and the bottom row is
exact by definition of the cotensor product. L-purity of ωM,N implies that ψ2

and ψ3 are isomorphisms (since RD is flat), and so ψ1 is an isomorphism.
It follows from 10.7 that each of the given conditions imply the necessary

isomorphisms. �
In 11.14, an example is considered showing that (unlike the tensor prod-

uct) the cotensor product need not be associative in general.

11.7. Cotensor product of coflat comodules. Let C,D be R-coalgebras
with RC, RD flat, L ∈MD and M a (D,C)-bicomodule. If L is D-coflat and
M is C-coflat, then L✷DM is a coflat right C-comodule.

Proof. By the flatness conditions, L✷DM is a right C-comodule and
M✷CK is a left D-comodule, for anyK ∈ CM (see 11.3). Any exact sequence
0→ K ′ → K → K ′′ → 0 in CM yields a commutative diagram:

0 �� (L✷DM)✷CK
′ ��

�
��

(L✷DM)✷CK

�
��

�� (L✷DM)✷CK
′′ ��

�
��

�� 0

0 �� L✷D(M✷CK
′) �� L✷D(M✷CK) �� L✷D(M✷CK

′′) �� 0,

with vertical isomorphisms (by 11.6). By assumption, the bottom row is exact
and hence the top row is exact, too. �

11.8. Coalgebra morphisms. Let γ : C → D be an R-coalgebra morphism
(cf. 2.1). A right C-comodule N can be considered as a right D-comodule by

�Nγ = (I ⊗ γ) ◦ �N : N → N ⊗R C → N ⊗R D,

and morphisms of right C-comodules f : N → M are clearly morphisms of
the corresponding D-comodules. Similarly, every left C-comodule has a left
D-comodule structure. In particular, C itself is a left and right D-comodule
and γ is a left and right D-comodule morphism.

Consider the following commutative diagram with exact rows:

N✷DC ��

IN✷γ

��

N ⊗R C
ωN,C ��

IN⊗γ
��

N ⊗R D ⊗R C
IN⊗ID⊗γ
��

N✷DD �� N ⊗R D
ωN,D�� N ⊗R D ⊗R D,

where ωN,C := (IN ⊗ γ) ◦ �N ⊗ IC − IN ⊗ (γ ⊗ IC) ◦∆C and ωN,D := (IN ⊗
γ) ◦ �N ⊗ ID − IN ⊗∆D. Clearly ωN,C ◦ �N = 0, and hence the image of �N
is contained in N✷DC, and thus there are maps

N
�N−→ N✷DC

IN✷γ−→ N✷DD � N
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whose composition yields the identity. Since both �N and IN✷γ are D-
comodule morphisms, N is a direct summand of N✷DC as a D-comodule.
In particular, ∆C may be considered as a (C,C)-bicolinear map ∆C : C →
C✷DC.

11.9. Coinduction and corestriction. Related to any R-coalgebra mor-
phism γ : C → D there is the corestriction functor

( )γ :M
C →MD, (M,�M) �→ (M, (IM ⊗ γ) ◦ �M)

(usually we simply write (M)γ = M). Furthermore, if RC is flat, then one
defines the coinduction functor

−✷DC :M
D →MC , N �→ N✷DC.

Here N✷DC is said to be induced by N .

Considering C as a (C,D)-bicomodule by C
∆−→ C ⊗R C

IC⊗γ−→ C ⊗R D,
the corestriction functor is isomorphic to −✷CC :MC →MD, and hence it
is left exact provided RC is flat, and is right exact provided C is coflat as a
left comodule.

We define the corestriction functor γ(−) similarly, and finally the core-
striction functor γ(−)γ as a composition of γ(−) with (−)γ.

11.10. Hom-cotensor relation. Let RC be flat, N ∈ MC and L ∈ MD.
Then the map

HomC(N,L✷DC)→ HomD(N,L), f �→ (IN✷γ) ◦ f,

is a functorial R-module isomorphism with the inverse map g �→ (g⊗IC)◦�N .
Therefore corestriction is left adjoint to coinduction.

Proof. With the defining maps for comodule morphisms (see 3.3) we
construct the following commutative diagram:

0 �� HomC(N,L✷DC) �� HomR(N,L✷DC)
β1 ��

(IN✷γ)◦−
��

HomR(N,L✷DC⊗RC)
(IN✷γ⊗γ)◦−
��

0 �� HomD(N,L) �� HomR(N,L)
β2 �� HomR(N,L⊗RD) ,

where β1(f) := (�
L ⊗ IC) ◦ f − (f ⊗ IC) ◦ �N and β2(g) := �L ◦ g− (g⊗ ID) ◦

(IN ⊗ γ) ◦ �N . From this we obtain the desired map.
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The inverse assignment is a C-comodule morphism N → L⊗R C, and we
have to show that its image lies in L✷DC. This follows from the commuta-
tivity of the diagram

N

�N

��

�N �� N ⊗R C
IN⊗(γ⊗IC)◦∆
��

g⊗IC �� L⊗R C

IL⊗(γ⊗IC)◦∆

��

N ⊗R C
g⊗IC

��

(IN⊗γ)◦�N⊗IC �� N ⊗R D ⊗R C
g⊗ID⊗IC



���
����

����
���

L⊗R C
�L⊗IC �� L⊗R D ⊗R C .

Direct calculation confirms that the compositions of these assignments yield
the identity maps. �
Definitions. Let RC be flat. Given a coalgebra morphism γ : C → D, a short
exact sequence inMC is called (C,D)-exact if it is splitting inMD. A right C-
comoduleN is called (C,D)-injective (resp. (C,D)-projective) if HomC(−, N)
(resp. HomC(N,−)) is exact with respect to (C,D)-exact sequences. The
coalgebra C is called right D-relative semisimple or right (C,D)-semisimple
if every right C-comodule is (C,D)-injective. Left-handed (in CM) and two-
sided (in CMC) versions of these notions are defined similarly.

11.11. (C,D)-injectivity. Let RC be flat, N ∈ MC and γ : C → D an
R-coalgebra morphism.

(1) If N is injective in MD, then N✷DC is injective in MC.

(2) The following are equivalent:

(a) N is (C,D)-injective;

(b) every (C,D)-exact sequence splits in MC;

(c) the map N
�N→ N✷DC splits in MC.

(3) If N is injective inMD and (C,D)-injective, then N is injective inMC.

Proof. With the formalism from 11.8 and in view of 11.10, the proof of
3.18 can be adapted. �

Since the counit ε : C → R is a coalgebra morphism, one obtains the
properties of (C,R)-exactness in 3.18 from 11.11 by setting D = R.

Definition. An R-coalgebra C is said to be D-coseparable if the map ∆C :
C → C✷DC splits as a (C,C)-bicomodule morphism, that is, there exists a
map π : C✷DC → C with the properties π ◦∆C = IC and

(IC✷Dπ) ◦ (∆C✷DIC) = ∆C ◦ π = (π✷DIC) ◦ (IC✷D∆C).
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The characterisation of coseparable coalgebras in 3.29 can be extended to
D-coseparable coalgebras.

11.12. D-coseparable coalgebras. For a coalgebra morphism γ : C → D,
the following are equivalent:

(a) C is D-coseparable;

(b) there exists a (D,D)-bicolinear map δ : C✷DC → D satisfying

δ ◦∆C = γ and (IC✷Dδ) ◦ (∆C✷DIC) = (δ✷DIC) ◦ (IC✷D∆C).

If RC is locally projective, (a) and (b) are also equivalent to:

(c) the corestriction functor (−)γ :MC →MD is separable;

(d) the corestriction functor γ(−) : CM→ DM is separable;

(e) the corestriction functor γ(−)γ : CMC → DMD is separable;

(f) C is D-relative semisimple as a (C,C)-bicomodule;

(g) C is D-relative injective as a (C,C)-bicomodule.

If these conditions are satisfied, then all left or right C-comodules are (C,D)-
injective.

Proof. (a)⇒ (b) Let π : C✷DC → C be left and right C-colinear with
π ◦∆C = IC and put δ = γ ◦ π : C✷DC → D. Then δ ◦∆C = γ ◦ π ◦∆C = γ
and

(IC✷Dδ) ◦ (∆C✷DIC) = (IC✷Dγ) ◦ (IC✷Dπ) ◦ (∆C✷DIC)
= (IC✷Dγ) ◦∆C ◦ π = π, and

(δ✷DIC) ◦ (IC✷D∆C) = (γ✷DIC) ◦ (π✷DIC) ◦ (IC✷D∆C)
= (γ✷DIC) ◦∆C ◦ π = π,

as required.
(b)⇒ (a) Given δ : C✷DC → D with the properties listed, define

π = (IC✷Dδ) ◦ (∆C✷DIC) : C✷DC → C.

It is easily checked that π is left and right C-colinear. Furthermore,

π ◦∆C = (IC✷Dδ) ◦ (∆C✷DIC) ◦∆C = (IC✷Dπ) ◦ (IC ⊗∆C) ◦∆C = IC .

(b)⇒ (c) Given δ and N ∈MC , define a map

νN : N✷DC
� �� N✷CC✷DC

IN✷Dδ�� N .

Note that νN is a C-comodule map since so are the defining maps. Now define
a functorial morphism Φ : HomD((−)γ, (−)γ)→ HomC(−,−) by assigning to
any D-colinear map f :M → N , where M,N ∈MC , the map

Φ(f) :M
�M ��M✷DC

f✷DIC�� N✷DC
νN �� N .
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Again Φ(f) is C-colinear as a composition of C-colinear maps. Assume that
f is already a morphism inMC . Then (f✷DIC) ◦ �M = �N ◦ f , and it follows
that Φ(f) = f . This shows that the forgetful functor is separable.

Notice that the implication (b) ⇒ (c) holds without any conditions on

RC. From now on we assume that RC is locally projective.
(c) ⇒ (b) If (−)γ is a separable functor, then there exists a functorial

morphism νC : C✷DC → C inMC . Since C✷DC is also in C∗M, we conclude
from 39.5 that νC is left C

∗-linear and hence is (C,C)-bicolinear.
(a)⇔ (d) Since the condition in (a) is symmetric, the proof of (a)⇔ (c)

applies.
(a)⇒ (e) The forgetful functor γ(−)γ : CMC → DMD is the composition

of the forgetful functors γ(−) and (−)γ, and hence it is separable (by 38.20).
(e)⇒ (c) Since the composition of the left and right forgetful functors is

separable, then so is (each) one of these (by 38.20).
(e)⇒ (f) For any (C,C)-bicomodule N , consider the map

N
N�−→ C✷DN

IC✷D�
N

−→ C✷D(N✷DC).

By D-coseparability both IC✷D�
N and N� are split by morphisms from CMC .

(f)⇒ (g) follows immediately from the definitions.
(g)⇒ (a) ∆ : C → C✷DC is (D,D)-split, and hence it splits in CMC .
If (−)γ is a separable functor, it reflects retractions and hence all comod-

ules in MC , CM and CMC are D-relative injective (see 38.19). �
Let A and S be R-algebras. For any (A, S)-bimodule M and a right S-

module N , the R-module HomS(M,N) has a structure of a left A-module.
Similarly, we may ask if, for any comodules M ∈ DMC and N ∈ MC , the
R-module HomC(N,M) has a D-comodule structure. In case M is finitely
R-presented, there is a Hom-cotensor relation M✷CN

∗ � HomC(N,M) (see
10.11) and the left side is a left D-comodule provided RD is flat. More
precisely, we can show:

11.13. Comodule structure on HomC(M,N). Let RC be flat, M ∈ DMC

and N ∈ MC such that RM is flat and RN is finitely presented. If M is
(C,R)-injective, or M is coflat in MC, or RD is flat, then

M✷CN
∗ � HomC(N,M) in DM.

Proof. Since HomR(N,M) � M ⊗R N∗ and HomR(N,M ⊗R C) �
M ⊗R C ⊗R N∗ (see 40.12), both modules are left D-comodules (induced by
M). From 10.11 we obtain the commutative exact diagram

0 ��M✷CN
∗ ��

β1
��

M ⊗R N∗ ωM,N∗
��

β2
��

M ⊗R C ⊗R N∗

β3
��

0 �� HomC(N,M) �� HomR(N,M)
γ �� HomR(N,M ⊗R C) ,
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where β1 is an R-isomorphism, while β2, β3 and γ are D-comodule morphisms
(by definition of the comodule structures). Under any of the given conditions
the sequences are D-pure in MR (see 10.7). Hence the kernels of ωM,N∗ and
γ are D-subcomdules and β1 is a D-comodule morphism. �

11.14. Exercises
For some 0 �= d ∈ Z, let C = Z ⊕ Zd be a Z-coalgebra with structure maps ∆,

ε given by ∆(1) = 1, ∆(d) = d ⊗ 1 + 1 ⊗ d, ε(1) = 1, ε(d) = 0. Prove (compare
[125]):
(i) A Z-module M is a (right) C-comodule if and only if there exists α ∈

EndZ(M) with α2 = 0.
(ii) Given M,N ∈ MZ and α ∈ EndZ(M), β ∈ EndZ(N), with α2 = 0 and

β2 = 0, a C-colinear map f : (M,α) → (N, β) is a Z-morphism such that
β ◦ f = f ◦ α.

(iii) For C-comodules (M,α), (N, β),

(M,α)✷C(N, β) = {
∑

mi⊗ni ∈M⊗ZN |
∑

α(mi)⊗ni =
∑

mi⊗β(ni) }.

(iv) For some n ∈ Z, consider the map γ : Z/n2Z → Z/n2Z, z �→ nz, and show
that

((Z, 0)✷C(Z/n2Z, γ))✷C(Z/nZ, 0) �� (Z, 0)✷C((Z/n2Z, γ)✷C(Z/nZ, 0)).

Hint: For the map g : (Z/nZ, 0)→ (Z/n2Z, 0), z + nZ �→ nz + n2Z, consider
(I✷CI)✷Cg and I✷C(I✷Cg) defined on the left and right side, respectively.

References. Al-Takhman [51]; Doi [104]; Grunenfelder and Paré [125].
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12 Functors between comodule categories

The classical Eilenberg-Watts Theorem 39.4 states that colimit-preserving
functors between module categories are essentially described by tensor func-
tors. In particular, this is the background for the classical Morita theory of
modules. The aim of this section is to study Eilenberg-Watts–type theorems
for coalgebras, that is, to study when covariant functors between comodule
categories can be considered as cotensor functors. These results are, in par-
ticular, applied to equivalences between comodule categories and thus lead to
the Morita theory for coalgebras, known as the Morita-Takeuchi theory.

12.1. Functors between comodule categories. Let C, D be R-coalgebras
with RC and RD flat. Let F :MC →MD be an additive functor between the
comodule categories that preserves kernels and colimits.

(1) F (C) is a (C,D)-bicomodule and there exists a functorial isomorphism
ν : −✷CF (C)→ F .

(2) For any W ∈MR and N ∈MC,

W ⊗R (N✷CF (C)) � (W ⊗R N)✷CF (C).

(3) F (C) is a coflat left C-comodule, and, for all W ∈MD, N ∈ DMC,

W✷D(N✷CF (C)) � (W✷DN)✷CF (C).

Proof. (1) Since all comodules are in particular R-modules, we learn
from 39.3 that there is a functorial isomorphism

Ψ : −⊗R F (−)→ F (−⊗R −) of bifunctors MR ×MC →MD.

Moreover, by 39.7, for the (C,C)-bicomodule C, F (C) is a left C-comodule
with the coaction

F (C)� : F (C)
F (∆C) �� F (C ⊗R C)

Ψ−1
C,C �� C ⊗R F (C) .

With the defining equalisers for the cotensor product we obtain for any M ∈
MC (recall M �M✷CC) the commutative diagram

M✷CF (C) ��M ⊗R F (C)
ΨM,C

��

�M⊗IF (C) ��

IM⊗F (C)�

��M ⊗R C ⊗R F (C)
ΨM⊗C,C
��

F (M) �� F (M ⊗R C)
F (�M⊗IC) ��
F (IM⊗∆)

�� F (M ⊗R C ⊗R C) ,
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where the top sequence is an equaliser by definition and the bottom sequence
is an equaliser since F preserves kernels. From this we derive the isomorphism
νM :M✷CF (C)→ F (M), which is functorial in M .

(2) This follows from the isomorphisms (tensor over R)

(W⊗M)✷CF (C)
νW⊗M �� F (W⊗M)

Ψ−1
W,M ��W⊗F (M)

I⊗ν−1
M��W⊗(M✷CF (C)).

(3) Both − ⊗R C and F are left exact functors and so their composition
F (−⊗R C) � −⊗R F (C) is also left exact, that is, F (C) is a flat R-module.
Since F preserves epimorphisms, so does −✷CF (C), and hence F (C) is coflat
as a left C-comodule, and the associativity of the cotensor products follows
from 11.6. �

12.2. Adjoint functors between comodule categories. For R-flat coal-
gebras C, D, let (F,G) be an adjoint pair of additive functors, F :MC →MD

and G :MD →MC, with unit η : IMC → GF and counit ψ : FG→ IMD . If
F preserves kernels and G preserves colimits, then:

(1) F (C) is a (C,D)-bicomodule and there exists a functorial isomorphism
ν : −✷CF (C)→ F .

(2) G(D) is a (D,C)-bicomodule and there exists a functorial isomorphism
µ : −✷DG(D)→ G.

(3) For any M ∈MC and M ′ ∈ CM,

(M✷CF (C))✷DG(D) �M✷C(F (C)✷DG(D)), and

F (C)✷D(G(D)✷CM
′) � (F (C)✷DG(D))✷CM

′.

(4) There exist (C,C)-, resp. (D,D)-, bicomodule morphisms

ηC : C → F (C)✷DG(D), ψD : G(D)✷CF (C)→ D,

such that the following compositions yield identities:

F (C) � C✷CF (C)
ηC✷IF (C)−→ F (C)✷DG(D)✷CF (C)

ψF (C)−→ F (C), and

G(D)
ηG(D)−→ G(D)✷CF (C)✷DG(D)

ψD✷I−→ D✷DG(D) � G(D) .

(5) There is an adjoint pair of functors (G′, F ′), where

G′ = G(D)✷C− : CM→ DM and F ′ = F (C)✷D− : DM→ CM .

Proof. (1),(2) Under the given conditions both F and G preserve kernels
and colimits, and hence the assertions follow from 12.1.
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(3) From 12.1 we also obtain the first isomorphism and the isomorphism

M ⊗R (F (C)✷DG(D)) � ((M ⊗R F (C))✷DG(D) ,

which, by 10.6, implies the isomorphism (here commutativity of R is crucial)

(F (C)✷DG(D))⊗RM ′ � F (C)✷D(G(D)⊗RM ′) .

Moreover, flatness of F (C) induces an isomorphism

(F (C)⊗R G(D))✷CM ′ � F (C)⊗R (G(D)✷CM ′) .

These isomorphisms imply associativity of the cotensor product (see 11.6).
(4) Notice that C is a (C,C)-bicomodule and GF preserves colimits, hence

ηC is a (C,C)-bicomodule morphism by 39.7. Similar arguments apply to ψD,
while the properties for the compositions are given in 38.21.

(5) To show that (G′, F ′) is an adjoint pair, consider the maps

η′M : M �M✷CC
IM✷ηC−→ M✷CF (C)✷DG(D),

ψ′
N : G(D)✷CF (C)✷DN

ψD✷IN−→ D✷DN � N ,

where M ∈MC and N ∈ DM. Applying the properties observed in (4) it is
straightforward to show that these maps satisfy the conditions for a unit and
a counit of an adjoint pair (see 38.21). �

12.3. Frobenius functors between comodule categories. Let C, D be
coalgebras that are flat as R-modules and (F,G) a Frobenius pair of additive
functors, F : MC → MD and G : MD → MC, that is, F is a left and right
adjoint of G.

(1) F (C) is a (C,D)-bicomodule, G(D) is a (D,C)-bicomodule, and there
are functorial isomorphisms

−✷CF (C) � F (−), −✷DG(D) � G(−).
(2) (G′, F ′) is a Frobenius pair of functors where

G′ = G(D)✷C− : CM→ DM and F ′ = F (C)✷D− : DM→ CM .

Proof. (1) Under the given conditions, F and G preserve limits and
colimits (see 38.23), and hence the assertions follow from 12.2.

(2) In this case both (F,G) and (G,F ) are adjoint pairs. By applying 12.2
to each one of them, we obtain adjoint pairs (G′, F ′) and (F ′, G′), respectively.
This means that (F ′, G′) is a Frobenius pair, as required. �

Recall that equivalences between module categories can be described by
the Hom and tensor functor (Morita Theorems). The next result shows that
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equivalences between comodule categories can be given by cotensor functors.
This was observed by Takeuchi in [197] (for coalgebras over fields) and hence
is called the Morita-Takeuchi Theorem. For coalgebras over rings one must
beware of the fact that the cotensor product need not be associative.

12.4. Equivalences between comodule categories. Let C, D be coalge-
bras that are flat as R-modules. The following are equivalent:

(a) there are functors F :MC →MD and G :MD →MC establishing an
equivalence;

(b) there are functors F ′ : DM→ CM and G′ : CM→ DM establishing an
equivalence;

(c) there exist a (C,D)-bicomodule X and a (D,C)-bicomodule Y with bi-
comodule isomorphisms δ : C → X✷DY , γ : D → Y✷CX, such that

(IY✷Cδ) ◦ �Y = (γ✷DIY ) ◦ Y�, (δ✷DIX) ◦ X� = (IX✷Dγ) ◦ �X ,

X and Y are flat as R-modules, and the following pairs of morphisms

Y ⊗RX
�Y ⊗IX ��

IY ⊗X�
�� Y ⊗RC⊗RX, X⊗RY

�X⊗IY ��

IX⊗Y�
�� X⊗RD⊗RY,

are pure in MR.

Proof. (a) ⇔ (b) If the adjoint pair (F,G) gives an equivalence, then
the unit and counit of the adjunction are isomorphisms. In particular,

ηC : C → F (C)✷DG(D) and ψD : G(D)✷CF (C)→ D

are bimodule isomorphisms, and hence the functors

F ′ = F (C)✷D− : DM→ CM and G′ = G(D)✷C− : CM→ DM

induce an equivalence (cf. 12.2). The converse follows by symmetry.
(a) ⇒ (c) Putting X = F (C) and Y = G(D), we obtain the properties

and constructions required from 12.2.
(c) ⇒ (b) First observe that the given conditions imply associativity of

the cotensor products, for any M ∈MC , N ∈MD,

(M✷CX)✷DY �M✷C(X✷DY ), (N✷DY )✷CX � N✷D(Y✷CX).

For the functors −✷CX : MC → MD and −✷DY : MD → MC , the
associativity properties above yield the functorial isomorphisms

M✷CX✷DY �M✷CC �M and N✷DY✷CX � N✷DD � N,



114 Chapter 1. Coalgebras and comodules

thus proving that they induce an equivalence. �

From 12.4 we know that functors describing equivalences between comod-
ule categories are essentially cotensor functors. However, so far we have not
investigated which properties of the comodules involved guarantee that the
cotensor product yields an equivalence. One of the striking facts in the above
observations is that −✷DY has a left adjoint, and we focus on this.

12.5. Quasi-finite comodules. Any Y ∈ MC is called quasi-finite if the
tensor functor − ⊗R Y : MR → MC has a left adjoint. This left adjoint is
called a Cohom functor and is denoted by hC(Y,−) : MC → MR. Thus,
for each M ∈ MC , W ∈ MR and a quasi-finite Y , there is a functorial
isomorphism

ΦM,W : HomR(hC(Y,M),W )→ HomC(M,W ⊗R Y ) .

If C is flat as an R-module, then any quasi-finite comodule Y is flat as an
R-module (since right adjoints respect monomorphisms).

As a left adjoint functor, hC(Y,−) respects colimits (see 38.21). By 39.3,
this implies a functorial isomorphism

ΨW,M : W ⊗R hC(Y,M) � hC(Y,W ⊗RM) .

Moreover, ifM is a (D,C)-bicomodule, then hC(Y,M) has a left D-comodule
structure,

hC(Y,
M�) : hC(Y,M)→ hC(Y,D ⊗RM) � D ⊗R hC(Y,M),

such that the unit of the adjunction, M → hC(Y,M) ⊗R Y , is a (D,C)-
bicomodule morphism (see 39.7).

We know from the Hom-tensor relations 3.9 that −⊗R C :MR →MC is
right adjoint to the forgetful functorMC →MR, and hence C is a quasi-finite
right (and left) C-comodule and the Cohom functor hC(C,−) is simply the
forgetful functor.

For any quasi-finite Y ∈ MC and n ∈ N, a functorial isomorphism
HomR(hC(Y,−),−)→ HomC(−,−⊗R Y ) implies an isomorphism

HomR(hC(Y
n,−),−)→ HomC(−,−⊗R Y n) ,

showing that Y n is again a quasi-finite C-comodule. Similarly it can be shown
that any direct summand of a quasi-finite comodule is quasi-finite. So direct
summands of Cn, n ∈ N, provide a rich supply of quasi-finite right (and left)
C-comodules.
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12.6. Quasi-finite bicomodules. Let Y be a (D,C)-bicomodule that is
quasi-finite as a C-comodule and denote by η : IMC → hC(Y,−) ⊗R Y the
unit of the adjunction. Then there exists a unique D-comodule structure map
�hC(Y,M) : hC(Y,M)→ hC(Y,M)⊗R D satisfying

(IhC(Y,M) ⊗ Y�) ◦ ηM = (�hC(Y,M) ⊗ IY ) ◦ ηM and Im (ηM) ⊂ hC(Y,M)✷DY .

This yields a functor hC(Y,−) :MC −→MD.

Proof. For the C-colinear map

(I ⊗ Y�) ◦ ηM :M −→ hC(Y,M)⊗R D ⊗R Y,

there exists a unique R-linear map

�hC(Y,M) : hC(Y,M) −→ hC(Y,M)⊗R D,

with (IhC(Y,M)⊗Y�)◦ηM = (�hC(Y,M)⊗IY )◦ηM (the preimage of the given map
under Φ). It is straightforward to prove that this coaction makes hC(Y,M)
a right D-comodule. The (defining) equality means that Im ηM lies in the
equaliser of

hC(Y,M)⊗R Y
�hC (Y,M)⊗IY ��
IhC (Y,M)⊗Y�

�� hC(Y,M)⊗R D ⊗R Y,

that is, Im (ηM) ⊂ hC(Y,M)✷DY .
It remains to show that, for any f : M → M ′ in MC , the induced map

hC(Y, f) : hC(Y,M) → hC(Y,M
′) is D-colinear. First notice that the C-

colinear map ηM ′ ◦ f :M → hC(Y,M
′)⊗R Y induces a unique R-linear map,

hC(Y, f) : hC(Y,M)→ hC(Y,M
′),

with ηM ′ ◦ f = (hC(Y, f)⊗ IY ) ◦ ηM . For the C-colinear map

(IhC(Y,M) ⊗ Y�) ◦ ηM ′ ◦ f :M −→ hC(Y,M
′)⊗R D ⊗R Y,

there is a unique R-linear map g : hC(Y,M) −→ hC(Y,M
′) ⊗R D, with

(g⊗ IY )◦ ηM = (IhC(Y,M)⊗ Y�)◦ ηM ′ ◦ f (the preimage under Φ). We compute

((�hC(Y,M
′) ◦ hC(Y, f))⊗ I) ◦ ηM = (�hC(Y,M

′) ⊗ I) ◦ (hC(Y, f)⊗ I) ◦ ηM
= (�hC(Y,M

′) ⊗ I) ◦ ηM ′ ◦ f
= (I ⊗ Y�) ◦ ηM ′ ◦ f, and

((hC(Y, f)⊗I)◦�hC(Y,M) ⊗I)◦ηM = (hC(Y, f)⊗I⊗I)◦(�hC(Y,M)⊗I)◦ηM
= (hC(Y, f)⊗ I ⊗ I) ◦ (I ⊗ Y�) ◦ ηM
= (hC(Y, f)⊗ Y�) ◦ ηM
= (I ⊗ Y�) ◦ (hC(Y, f)⊗ I) ◦ ηM
= (I ⊗ Y�) ◦ ηM ′ ◦ f ,
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where we have suppressed the subscripts of the identity maps IhC(Y,M), and
so on, to relieve the notation. By uniqueness of g we conclude

�hC(Y,M
′) ◦ hC(Y, f) = (hC(Y, f)⊗ IY ) ◦ �hC(Y,M),

which shows that hC(Y, f) is D-colinear. �

12.7. Cotensor functors with left adjoints. For a (D,C)-bicomodule Y
the following are equivalent:

(a) −⊗R Y :MR →MC has a left adjoint (that is, Y is quasi-finite);

(b) −✷DY :M
D →MC has a left adjoint.

Proof. (b) ⇒ (a) By the isomorphism − ⊗R Y � (− ⊗R D)✷DY , the
functor − ⊗R Y is a composite of the functors − ⊗R D : MR → MD and
−✷DY :M

D →MC . We know that −⊗RD always has a left adjoint (forget-
ful functor). Hence the assertion follows from the fact that the composition
of functors with left adjoints also has a left adjoint.

(a)⇒ (b) Let Y be quasi-finite as C-comodule with left adjoint hC(Y,−)
and denote by η : IMC → hC(Y,−) ⊗R Y the unit of the adjunction. By
12.6, there is a functor hC(Y,−) : MC → MD, and for any M ∈ MC ,
Im ηM ⊂ hC(Y,M)✷DY . We claim that this functor is left adjoint to −✷DY .
For M ∈MC and N ∈MD, define a map

Φ′
M,N : Hom

D(hC(Y,M), N) −→ HomC(M,N✷DY ), f �→ (f✷DIY ) ◦ ηM ,

which is just the restriction of the adjointness isomorphism Φ. There is a
commutative diagram

HomD(hC(Y,M), N)
Φ′
M,N ��

��

HomC(M,N✷DY )

��
HomR(hC(Y,M), N)

ΦM,N �� HomC(M,N ⊗R Y ) ,

and it is left as an exercise to show that Φ′
M,N is an isomorphism. �

12.8. Exactness of the Cohom functor. For coalgebras C, D that are flat
as R-modules, let Y be a (D,C)-comodule that is quasi-finite as a C-comodule.

(1) The following are equivalent:

(a) hC(Y,−) :MC →MR is exact;

(b) W ⊗R Y is injective in MC, for every injective R-module W ;

(c) hC(Y,−) :MC →MD is exact;

(d) N✷DY is injective inMC, for every injective comodule N ∈MD.
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If these conditions hold, then hC(Y,−) � −✷ChC(Y,C) as functors
MC → MR (or MC → MD), and therefore hC(Y,C) is a coflat left
C-comodule.

(2) If hC(Y,−) is exact, then the following are equivalent:
(a) hC(Y,−) is faithful;
(b) hC(Y,C) is a faithfully coflat left C-comodule.

Proof. (1) (a)⇒ (b) and (c)⇒ (d) follow from the adjointness isomor-
phisms

HomR(hC(Y,−),W ) � HomC(−,W ⊗R Y ),
HomD(hC(Y,−), N) � HomC(−, N✷DY ),

since exactness of hC(Y,−) and HomR(−,W ) (resp. HomD(−, N)) implies
exactness of their composition. This means that W ⊗R Y (resp. N✷DY ) is
injective in MC .

(a) ⇒ (c) This follows from the fact that any sequence of morphisms in
MD is exact if and only if it is exact in MR.

(b)⇒ (a) Since we know that hC(Y,−) is right exact, it remains to show
that, for any monomorphism f : K → L in MC , h = hC(Y, f) is also a
monomorphism. For any W ∈MR there is a commutative diagram

HomR(hC(Y, L),W )

HomR(h,W )

��

� �� HomC(L,W ⊗R Y )
HomC(f,W⊗RY )
��

HomR(hC(Y,K),W )
� �� HomC(K,W ⊗R Y ) .

LetW be an injective cogenerator inMR. Then by assumptionW ⊗RY is in-
jective inMC and hence HomC(f,W⊗RY ) is surjective and so is HomR(h,W ).
By the cogenerator property of W this means that h = hC(Y, f) is injective.

(d)⇒ (c) This follows by an argument similar to the proof (b)⇒ (a).
(2) This is obvious by the isomorphism hC(Y,M) � M✷ChC(Y,C), for

any M ∈MC . �
Property (1)(b) above motivates the following

Definition. A right C-comodule Y is called an injector if the tensor functor
− ⊗R Y :MR →MC respects injective objects. Left comodule injectors are
defined similarly.

The Hom-tensor relations 3.9 imply that a coalgebra C is an injector as
both a left and right comodule.

In the preceding propositions we considered quasi-finite C-comodules with
an additional D-comodule structure. This is not a restriction because, for any
quasi-finite C-comodule Y , there exists a coalgebra D (the dual of the algebra
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of C-colinear endomorphisms of Y ) that makes Y a (D,C)-comodule. Now
we outline the construction of such a coalgebra D.

Let eC(Y ) = hC(Y, Y ). The unit of the adjunction yields a right C-
comodule morphism,

(IeC(Y ) ⊗ ηY ) ◦ ηY : Y −→ eC(Y )⊗R eC(Y )⊗R Y .

By the adjunction isomorphism (tensor over R)

ΦY,eC(Y )⊗eC(Y ) : HomR(eC(Y ), eC(Y )⊗eC(Y )) � HomC(Y, eC(Y )⊗eC(Y )⊗Y ),

there exists a unique R-linear map

∆e : eC(Y )→ eC(Y )⊗R eC(Y ), with (IeC(Y ) ⊗ ηY ) ◦ ηY = (∆e ⊗ IY ) ◦ ηY .

Moreover, by the isomorphism ΦY,R : HomR(eC(Y ), R) � HomC(Y, Y ), there
exists an R-linear map

εe : eC(Y )→ R, with (εe ⊗ IY ) ◦ ηY = IY .

12.9. Coendomorphism coalgebra. Let Y ∈ MC be quasi-finite and put
eC(Y ) = hC(Y, Y ). Then eC(Y ) is an R-coalgebra by the structure maps

∆e : eC(Y )→ eC(Y )⊗R eC(Y ), εe : eC(Y )→ R,

defined above. Furthermore, Y is an (eC(Y ), C)-bicomodule by the mapping
ηY : Y → eC(Y )⊗R Y , and there is a ring anti-isomorphism

eC(Y )
∗ = HomR(eC(Y ), R)

ΦY,R−→ EndC(Y ).

The coalgebra eC(Y ) is known as the coendomorphism coalgebra of Y .

Proof. To show that εe is a counit for ∆e, consider

ΦeC(Y ),eC(Y )((IeC(Y ) ⊗ εe) ◦∆e) = ((IeC(Y ) ⊗ εe) ◦∆e ⊗ IY ) ◦ ηY
= (IeC(Y ) ⊗ εe ⊗ IY ) ◦ (∆e ⊗ IY ) ◦ ηY
= (IeC(Y ) ⊗ εe ⊗ IY ) ◦ (IeC(Y ) ⊗ ηY ) ◦ ηY
= ηY ,

ΦeC(Y ),eC(Y )((εe ⊗ IeC(Y )) ◦∆e) = ((εe ⊗ IeC(Y )) ◦∆e ⊗ IY ) ◦ ηY
= (εe ⊗ IeC(Y ) ⊗ IY ) ◦ (∆e ⊗ IY ) ◦ ηY
= (εe ⊗ IeC(Y ) ⊗ IY ) ◦ (IeC(Y ) ⊗ ηY ) ◦ ηY
= ηY , and

ΦeC(Y ),eC(Y )(IeC(Y )) = ηY .
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Now injectivity of Φ implies

(IeC(Y ) ⊗ εe) ◦∆e = IeC(Y ) = (εe ⊗ IeC(Y )) ◦∆e .

To prove coassociativity of ∆e, we show that HomR(eC(Y ), A) with the
convolution product is associative for any associative R-algebra A (cf. 1.3).
For this consider the following R-module isomorphism:

Φ′ : HomR(eC(Y ), A)
ΦY,A �� HomC(Y,A⊗RY ) � ��

AHom
C(A⊗RY,A⊗RY ),

where the second isomorphism is given by an extension of scalars (see 40.20).
This is in fact a ring anti-isomorphism since

Φ′(f ∗ g) = ΦY,A((f ⊗ g) ◦∆e) = ((f ⊗ g) ◦∆e ⊗ IY ) ◦ ηY
= (f ⊗ g ⊗ IY ) ◦ (∆e ⊗ IY ) ◦ ηY
= (f ⊗ g ⊗ IY ) ◦ (IeC(Y ) ⊗ ηY ) ◦ ηY
= (g ⊗ IY ) ◦ ηY ◦ (f ⊗ IY ) ◦ ηY
= Φ′(g) ◦ Φ′(f) .

Since EndCA(A⊗R Y ) is associative, we conclude that HomR(eC(Y ), A) is also
associative. Therefore ∆e is coassociative by 1.3.

By the definition of ∆e there is a commutative diagram

Y
ηY ��

ηY
��

eC(Y )⊗R Y
∆e⊗IY
��

eC(Y )⊗R Y
I⊗ηY �� eC(Y )⊗R eC(Y )⊗R Y ,

and the definition of εe shows that ηY is a counital coaction. Since ηY is
C-colinear, Y is an (eC(Y ), C)-bicomodule. �

12.10. Equivalence with comodules over eC(Y ). Let C be a coalgebra
that is flat as an R-module. Let Y be a right C-comodule that is quasi-finite,
faithfully coflat and an injector, and let eC(Y ) denote the coendomorphism
coalgebra of Y . Then the functors

−✷eC(Y )Y :M
eC(Y ) →MC , hC(Y,−) :MC →MeC(Y ),

where hC(Y,−) is the left adjoint to −⊗R Y , are inverse equivalences.

Proof. We prove that the conditions of 12.4(c) are satisfied. As shown in
12.9, Y is an (eC(Y ), C)-bicomodule and the image of hC(Y,−) :MC →MR

lies inMeC(Y ) (see 12.6). Since Y is an injector, the functor hC(Y,−) is exact
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(by 12.8), and hence hC(Y,−) � −✷ChC(Y,C) (by 12.2) and so hC(Y,C) is
coflat as a left C-comodule.

Given M ∈ MC , consider the right C-comodule morphism (notice that
YR is flat),

IM✷CηC :M �M✷CC →M✷C(hC(Y,C)⊗R Y ) � (M✷ChC(Y,C))⊗R Y.

There exists a unique right eC(Y )-colinear morphism

δM : hC(Y,M)→M✷ChC(Y,C), with (δM ⊗R IY ) ◦ ηM = IM✷CηC ,

which is an isomorphism by exactness of hC(Y,−) (see 12.2). Since Y is a
left eC(Y )-comodule, the isomorphism δY : eC(Y ) → Y✷ChC(Y,C) is in fact
(eC(Y ), eC(Y ))-bicolinear by 39.7. Furthermore, since Y is a faithfully flat C-
comodule, bijectivity of IM✷CηC implies that ηC : C → hC(Y,C)✷eC(Y )Y is
an isomorphism inMC . Since C is a bicomodule, this is a (C,C)-bicomodule
morphism by 39.7.

To verify the purity conditions stated in 12.4(c)(2) we have to show that
the canonical maps

W ⊗R (hC(Y,C)✷eC(Y )Y ) → (W ⊗R hC(Y,C))✷eC(Y )Y and

W ⊗R (Y✷ChC(Y,C)) → (W ⊗R Y )✷ChC(Y,C)

are isomorphisms for any W ∈MR (see 10.6). By 10.7, this follows from the
coflatness of Y as a left eC(Y )-comodule, and the coflatness of hC(Y,C) as a
left C-comodule, respectively. �

12.11. Equivalences and coendomorphism coalgebra. For R-coalgebras
C,D that are flat as R-modules, let F : MC → MD be an equivalence with
inverse G :MD →MC. Then:

(1) G(D) is quasi-finite, an injector, and faithfully coflat both as a left D-
comodule and as a right C-comodule;

(2) F (C) is quasi-finite, an injector, and faithfully coflat both as a left C-
comodule and as a right D-comodule;

(3) there are coalgebra isomorphisms

eC(G(D)) � D � eC(F (C)) and eD(G(D)) � C � eD(F (C)).

Proof. The proofs of (1) and (2) are symmetric; thus we only need to
prove (2). Since F � −✷CF (C) is an equivalence, it has a left adjoint and
is exact and faithful. Hence F (C) is quasi-finite as a right D-comodule and
faithfully flat as a left C-comodule. Moreover, F ′ = F (C)✷D− : DM→ CM
is an equivalence (see 12.4) that implies that F (C) is quasi-finite as a left
C-comodule and faithfully flat as a right D-comodule.
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For any injective W ∈ MR, by 3.9, W ⊗R C is injective in MC and, by
the properties of equivalences, W ⊗R F (C) � F (W ⊗RC) is injective inMD,
that is, F (C) is an injector as right D-comodule. Similarly we observe that
F ′(D ⊗R W ) � F (C)✷D(D ⊗R W ) � F (C) ⊗R W is injective in CM and
hence F (C) is an injector as left C-comodule.

(3) Since G � −✷DG(D) is left adjoint to F � −✷CF (C),

eD(F (C)) � F (C)✷DG(D) � GF (C) � C.

The other isomorphisms are obtained similarly. �
The highlight of the characterisations of equivalences is the following ver-

sion of the Morita-Takeuchi Theorem.

12.12. Equivalences between comodule categories (2). For coalgebras
C, D that are flat as R-modules, the following are equivalent:

(a) the categories MC and MD are equivalent;

(b) the categories CM and DM are equivalent;

(c) there exists a (D,C)-bicomodule Y that is quasi-finite, faithfully coflat
and an injector as a right C-comodule and eC(Y ) � D as coalgebras;

(d) there exists a (D,C)-bicomodule Y that is quasi-finite, faithfully coflat
and an injector as a left D-comodule and eD(Y ) � C as coalgebras;

(e) there exists a (C,D)-bicomodule X that is quasi-finite, faithfully coflat
and an injector as a right D-comodule and eD(X) � C as coalgebras;

(f) there exists a (C,D)-bicomodule X that is quasi-finite, faithfully coflat
and an injector as a left C-comodule and eC(X) � D as coalgebras.

Proof. (a)⇔ (b) is shown in 12.4, and (c)⇒ (a) follows by 12.10.
(a) ⇒ (c) Given an equivalence F : MC → MD with inverse G : MD →

MC , it was shown in 12.11 that Y = G(D) satisfies the conditions stated.
The remaining implications follow by symmetry. �
For coalgebras over QF rings (in particular fields) quasi-finite comodules

can be characterised by finiteness conditions; hence the terminology.

12.13. Quasi-finite comodules for coherent base ring. Let R be a
coherent ring, C an R-coalgebra that is flat as an R-module, and Y a quasi-
finite right C-comodule. Then, for any P ∈MC that is finitely presented as
an R-module, HomC(P, Y ) is a finitely presented R-module.

Proof. The coherence of R implies the flatness of RΛ, for any index set Λ.
Now 3.23 provides an isomorphism RΛ⊗RHomC(P, Y ) � HomC(P,RΛ⊗RY ),
and by quasi-finiteness of Y we obtain

HomC(P,RΛ ⊗R Y ) � HomR(hC(Y, P ), R
Λ) � HomC(P, Y )Λ .
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By 40.17, the resulting isomorphism RΛ ⊗R HomC(P, Y ) � HomC(P, Y )Λ

implies that HomC(P, Y ) is finitely presented as an R-module. �

12.14. Equivalences for QF base rings. Let R be a QF ring, C an
R-coalgebra that is projective as an R-module, and Y a quasi-finite right C-
comodule. Then the following are equivalent:

(a) Y is faithfully coflat and an injector in MC;

(b) Y is an injective cogenerator in MC.

If this is the case, there is an equivalence

−✷eC(Y )Y :M
eC(Y ) →MC , hC(Y,−) :MC →MeC(Y ),

and for any M ∈MC,

hC(Y,M) � lim−→Λ
HomC(Mλ, Y )

∗ ,

where {Mλ}Λ denotes the family of all finitely generated subcomodules of M
and (−)∗ = HomR(−, R).

Proof. Recall from 10.12 that Y is injective (and a cogenerator) in MC

if and only if Y is a (faithfully) coflat C-comodule. Hence (a) implies (b).
Conversely, suppose that (b) holds and consider any injective R-module W .
Since R is QF, W is projective and hence

(W ⊗R Y )✷C− �W ⊗R (Y✷C−) :MC →MR .

Since W ⊗R (Y✷C−) is an exact functor, so is (W ⊗R Y )✷C−. This means
that W ⊗R Y is coflat and hence injective by the above remark. So Y is an
injector and (a) holds.

It follows from 12.10 that −✷eC(Y )Y induces an equivalence with the in-
verse hC(Y,−). By the quasi-finiteness of Y ,

hC(Y,Mλ)
∗ � HomR(hC(Y,Mλ), R) � HomC(Mλ, Y ).

All Mλ are finitely presented R-modules, and hence the Hom
C(Mλ, Y ) are

finitely presented R-modules (by 12.13). This implies

hC(Y,Mλ) � hC(Y,Mλ)
∗∗ = HomR(hC(Y,Mλ), R)

∗ � HomC(Mλ, Y )
∗.

Since hC(Y,−) has a right adjoint, it commutes with direct limits, and there-
fore

hC(Y,M) � hC(Y, lim−→Λ
Mλ) � lim−→Λ

hC(Y,Mλ) � lim−→Λ
HomC(Mλ, Y )

∗,

as required. �
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12.15. Idempotents and cotensor product. Let e2 = e ∈ C∗, assume RC
to be flat, and let e⇀C↼e be the coalgebra in 4.10.

(1) For any M ∈MC there is an e⇀C↼e-comodule isomorphism

γM : e⇀M →M✷Ce⇀C, e⇀m �→
∑

m0 ⊗ e⇀m1.

(2) e⇀C is a (C, e⇀C↼e)-bicomodule and C↼e is a (e⇀C↼e, C)-bicomodule
and there are bicomodule morphisms

γ : e⇀C↼e −→ C↼e✷Ce⇀C, e⇀c↼e �→
∑
c1↼e⊗ e⇀c2,

δ : C −→ e⇀C✷e⇀C↼eC↼e, c �→
∑
e⇀c1 ⊗ c2↼e,

where γ is an isomorphism.

(3) For any K ∈Me⇀C↼e, there are e⇀C↼e-comodule isomorphisms

e⇀(K✷e⇀C↼eC↼e) � K✷e⇀C↼e(C↼e✷Ce⇀C) � K.

(4) The functor e⇀− (� −✷Ce⇀C) is left adjoint to the functor

−✷e⇀C↼eC↼e :M
e⇀C↼e →MC

by the isomorphism (for M ∈MC, K ∈Me⇀C↼e)

HomC(M,K✷e⇀C↼eC↼e)→ Home⇀C↼e(M✷Ce⇀C,K), f �→ f(e⇀−),

with inverse map h �→ (h✷IC↼e) ◦ (IM✷δ).

Proof. (1) To simplify notation, write eC for e⇀C, Ce for C↼e, and eM
for e⇀M . From the defining diagram of M✷CC we obtain by multiplication
with e from the left

eM
�M ��M ⊗R eC

�M⊗IeC ��
IM⊗∆

��M ⊗R C ⊗R eC,

where we have used that the maps involved are right C-comodule and hence
left C∗-module morphisms. To show that this is an equaliser diagram we first
observe that �M |eM is injective. Next, consider any

∑
imi ⊗ eci ∈ M ⊗R eC

that has the same image under �M ⊗ IeC and IM ⊗∆. Since (IC ⊗ ε)∆|eC =
(ε⊗ IC)∆|eC = IeC , we obtain∑

imi ⊗ eci = (IM ⊗ IC ⊗ ε) ◦ (IM ⊗∆)(
∑
imi ⊗ eci)

= (IM ⊗ IC ⊗ ε) ◦ (�M ⊗ IeC)(
∑
imi ⊗ eci)

= (IM ⊗ IC ⊗ ε)(
∑
imi0 ⊗mi1 ⊗ eci) =

∑
imi0 ⊗mi1e(ci)

=
∑
imi0 ⊗ emi1e(ci) =

∑
i �
M(emie(ci)),
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showing that this is an equaliser diagram, and hence – by definition of the
cotensor product – eM �M✷CeC.

(2) The bicomodule structures are special cases of 11.2, and it is easy to
see that γ is an (eCe, eCe)-bimodule and δ is a (C,C)-bicomodule morphism.
It follows from (1) that γ = γ|Ce is an isomorphism.

(3) The isomorphisms follow by (1), (2), and the fact that the cotensor
product is associative by 11.6 since eC is a coflat left C-comodule.

(4) For every f ∈ HomC(M,K✷eCeCe) and m ∈M we know that f(m) =
ef(m) = f(em) ∈ e(K✷eCeCe) � K. The eCe-comodule morphisms

eM �M✷CeC
f✷IeC �� K✷eCeCe✷CeC � K

show that the map f �→ f(e⇀−) is well defined. The inverse map is obtained
by assigning to any h ∈ HomeCe(M✷CeC,K) the composition of C-comodule
morphisms

M �M✷CC
IM✷δ ��M✷CeC✷eCeCe

h✷ICe �� K✷eCeCe .

�
The choice of the idempotent e decides about further properties of the

functors related to e⇀C and C↼e.

12.16. Idempotents and equivalences. Let RC be flat. For an idempotent
e ∈ C∗, the following are equivalent:

(a) the functor −✷Ce⇀C :M
C →Me⇀C↼e is an equivalence;

(b) the functor e⇀C✷e⇀C↼e− : e⇀C↼eM→ CM is an equivalence;

(c) δ : C → e⇀C✷e⇀C↼eC↼e (see 12.15) is an isomorphism;

(d) e⇀C is faithfully coflat as a left C-comodule.

If R is a QF ring, then (a)–(c) are equivalent to:

(e) δ (as in (c)) is injective;

(f) e⇀C is a cogenerator in CM.

In particular, if R is QF and C∗ ∗ e ∗ C∗ = C∗, then δ is injective.

Proof. Again we write eC for e⇀C, and so on.
(a)⇔ (b) This follows by 12.4 and 12.2.
(b)⇔ (d) eC is a direct summand of C as a left C-comodule, and hence

it is an injector. Clearly eC is quasi-finite and the assertion follows by 12.12.
(a)⇔ (c) By the results in 12.15, −✷CeC is an equivalence if and only if,

for any M ∈MC , M � (M✷CeC)✷eCeCe. In view of the associativity of the
cotensor product in the given situation (see 11.6) the assertion is obvious.

(c)⇒ (e)⇒ (f) are obvious. Now suppose that R is a QF ring.
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(f) ⇒ (d) Since eC is injective in CM, condition (e) implies that it is
an injective cogenerator and hence is faithfully coflat and an injector in CM.
Hence, by 12.12, eC induces an equivalence.

Finally, write (−)∗ for HomR(−, R), and consider the diagram with obvi-
ous maps

C∗ ⊗R C∗ ��

��

(eC ⊗R Ce)∗

δ∗
��

C∗ ∗ e⊗R e ∗ C∗ ∗ �� C∗,

which is commutative since a straightforward computation shows that on
both ways f ⊗ g ∈ C∗ ⊗R C∗ is mapped to f ∗ e ∗ g. Therefore the equality
C∗ ∗ e ∗ C∗ = C∗ implies that δ∗ is surjective and hence δ is injective. �

Semiperfect rings A are called basic if A/Jac(A) is square-free as a left
A-module (no distinct summands are isomorphic). Dually, one can consider

12.17. Basic coalgebras. Let C be a coalgebra over a QF ring R with RC
flat. Then the following are equivalent:

(a) the left socle of C is square-free;

(b) C is the direct sum of pairwise nonisomorphic injective hulls of simple
left comodules;

(c) C is the direct sum of pairwise nonisomorphic left comodules with local
endomorphism rings;

(d) every simple left subcomodule of C is fully invariant;

(e) for every minimal (C∗, C∗)-sub-bimodule U ⊂ C, HomR(U,R) is a di-
vision ring;

(f) the right socle of C is square-free.

If R is a semisimple ring, then (a)-(f) are equivalent to:

(g) for every minimal subcoalgebra U ⊂ C, HomR(U,R) is a division ring.

Proof. (a) ⇔ (b) C is just the injective hull of its socle in CM, and
simple comodules are isomorphic if and only if their injective hulls are.

(b)⇔ (c) An injective comodule has an essential simple socle if and only
if it has a local endomorphism ring.

(a) ⇒ (d) The image of any simple subcomodule S ⊂ C is either zero or
isomorphic to S and hence equal to S. Hence S is fully invariant in C.

(d) ⇒ (e) Any minimal (C∗, C∗)-sub-bimodule U ⊂ C is the trace of
a simple comodule S ⊂ C, and hence equal to S. By Schur’s Lemma,
EndC(U) is a division ring and is isomorphic to HomC(U,U) � HomC(U,C) �
HomR(U,R).
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(e)⇒ (a) Any minimal (C∗, C∗)-sub-bimodule of C is just a homogeneous
component of the socle of C. Since its endomorphism ring is a division ring,
it must be a simple subcomodule.

(e)⇔ (f) Condition (e) is left-right symmetric, and hence the assertion is
obvious.

(f) ⇔ (g) Over a semisimple ring all submodules are direct summands,
and hence, by 4.6(4), (C∗, C∗)-sub-bimodules correspond to subcoalgebras. �

The interest in basic coalgebras lies in the fact that over QF rings any
coalgebra is Morita-Takeuchi equivalent to a basic coalgebra.

12.18. Basic coalgebra of a coalgebra. Let C be a coalgebra over a QF
ring R with RC flat. Then there exists an idempotent e ∈ C∗ such that e⇀C↼e
is a basic coalgebra and

−✷Ce⇀C :M
C →Me⇀C↼e

is an equivalence. This e⇀C↼e is called the basic coalgebra of C.

Proof. As in the proof of 12.15 we write eC for e⇀C, Ce for C↼e. Choose
a family of pairwise orthogonal idempotents {eλ}Λ such that the eλC form
an irredundant representing set of all injective hulls of simple left comodules.
This is possible since C is an injective cogenerator in CM. The internal direct
sum

⊕
Λ eλC is injective and hence a direct summand in C, that is, it has the

form eC for a suitable idempotent e ∈ C∗. Clearly eC is a cogenerator and
hence induces an equivalence (see 12.16(f)). In particular, Ceλ✷CeC � eCeλ
and hence eCeλ � eCeλ′ if and only if λ = λ′.

Consider a right eCe-comodule decomposition eCe �
⊕

Λ eCeλ. All the
EndeCe(eCeλ) � eλC

∗eλ � EndC(eλC) are local rings, and hence eCe is a
basic coalgebra (see 12.17). �

12.19. Projective modules and adjoint functors. Let P be a finitely
generated projective R-module with dual basis p1, . . . , pn ∈ P , π1, . . . , πn ∈
P ∗. Then C ⊗R P is a direct summand of Cn and hence is quasi-finite.
Furthermore, it is a (C,D)-bicomodule where D = C ⊗R (P ∗ ⊗R P ) is the
tensor product of coalgebras. Considering C ⊗R P ∗ as a (D,C)-bicomodule,
we obtain an adjoint pair of functors

−✷C(C ⊗R P ) :MC →MD, −✷D(C ⊗R P ∗) :MD →MC .

Proof. The coalgebra structure on P ∗⊗RP is introduced in 1.9, and the
corresponding comodule structures of P and P ∗ are given in 4.9. The tensor
product of coalgebras is defined in 2.12. There are bicomodule morphisms

γ : C ⊗R (P ∗ ⊗R P ) → (C ⊗R P ∗)✷C(C ⊗R P ),
c⊗ f ⊗ p �→

∑
c c1 ⊗ f ⊗ c2 ⊗ p,

δ : C → (C ⊗R P )✷D(C ⊗R P ∗),
c �→

∑
i,c c1 ⊗ pi ⊗ c2 ⊗ πi,
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where γ is an isomorphism. For M ∈ MC and K ∈ MD, the adjointness
isomorphism is

HomC(M,K✷D(C⊗RP ∗))→ HomD(M✷C(C⊗RP ), K), f �→ (I✷γ)◦(f✷I),

with the inverse map h �→ (h✷I) ◦ (I✷δ). All these assertions are verified by
standard computations. �

Notice that the functors considered in 12.19 induce an equivalence if and
only if δ is an isomorphism. This is the case when P = Rn, for any n ∈ N.
Then P ∗⊗RP is simply the matrix coalgebraM c

n(R) (cf. 1.10) and one obtains
the coendomorphism coalgebra of Cn.

12.20. Matrix coalgebra and equivalence. For any n ∈ N, the coendo-
morphism coalgebra of Cn is the coalgebra M c

n(C) = C ⊗RM c
n(R) and there

is an equivalence of categories

−✷CC
n :MC →MMc

n(C).

References. Al-Takhman [51]; Cuadra and Gómez-Torrecillas [102]; Doi
[104]; Lin [150]; Takeuchi [197].
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Chapter 2

Bialgebras and Hopf algebras

In classical algebraic geometry one thinks about commutative algebras as al-
gebras of functions on spaces. If the underlying space is also a group, the
corresponding algebra of functions becomes a coalgebra. Both coalgebra and
algebra structures are compatible with each other in the sense that the co-
product and counit are algebra maps. This example motivates studies of
coalgebras with a compatible commutative algebra structure. Allowing fur-
ther generalisations, one considers coalgebras with noncommutative algebraic
structures, initially over fields, but eventually over commutative rings. Such
algebras with compatible coalgebra structures are known as bialgebras and
Hopf algebras and often are referred to as quantum groups.

There are numerous textbooks and monographs on bialgebras, Hopf al-
gebras and quantum groups (the latter mainly addressed to a physics audi-
ence), in particular, classic texts by Sweedler [45] or Abe [1], or more recent
works (Montgomery [37], Dǎscǎlescu, Nǎstǎsescu and Raianu [14]), including
the ones motivated by the quantum group theory (e.g., Lusztig [30], Majid
[33, 34], Chari and Pressley [11], Shnider and Sternberg [43], Kassel [25],
Klimyk and Schmüdgen [26], Brown and Goodearl [7]). In the majority of
these texts it is assumed at the beginning that all algebras and coalgebras
are defined over a field. By making this assumption, the authors are excused
from not considering some of the module-theoretic aspects of the discussed
objects. The aim of the present chapter is to glimpse at bialgebras and Hopf
algebras, and study those properties that are significant from the point of
view of ring and module theory, or which directly depend on the properties
of algebras, coalgebras, and so on, as R-modules.

13 Bialgebras

In this section we are concerned with the compatibility of algebra and coal-
gebra structures on a given R-module. In particular, we define bialgebras and
study their most elementary properties.

13.1. Bialgebras. An R-module B that is an algebra (B, µ, ι) and a coal-
gebra (B,∆, ε) is called a bialgebra if ∆ and ε are algebra morphisms or,
equivalently, µ and ι are coalgebra morphisms. For ∆ to be an algebra mor-
phism one needs commutativity of the diagrams

129
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B ⊗R B
µ ��

∆⊗∆
��

B

∆

��

(B ⊗R B)⊗R (B ⊗R B)
IB⊗tw⊗IB

��
(B ⊗R B)⊗R (B ⊗R B)

µ⊗µ�� B ⊗R B,

R
ι ��

�
��

B

∆
��

R⊗R R
ι⊗ι �� B ⊗R B,

where tw denotes the twist map. Similarly, ε is an algebra morphism if and
only if the following two diagrams

B ⊗R B
µ ��

ε⊗ε
��

B

ε

��
R⊗R R � �� R,

B
ε

���
��

��
��

R

ι
��
= �� R

are commutative. The same set of diagrams makes µ and ι coalgebra mor-
phisms. For the units 1B ∈ B, 1R ∈ R and for all a, b ∈ B, the above diagrams
explicitly mean that

∆(1B) = 1B ⊗ 1B, ε(1B) = 1R,

∆(ab) = ∆(a)∆(b), ε(ab) = ε(a)ε(b).

Note that this implies that, in any R-bialgebra B, R is a direct summand
of B as an R-module and hence B is a generator in MR. As first examples
notice that, for any semigroup G, the semigroup coalgebra R[G] is a bialgebra
(see 1.7), in particular, the polynomial coalgebras (see 1.8) are bialgebras.

13.2. Decomposition. Let B be a bialgebra over R.

(1) B = R1B ⊕Ke ε is a direct R-module decomposition.
(2) If the family {bλ}Λ, bλ ∈ B, generates B as an R-module, then the

family {bλ − ε(bλ)1B}Λ generates Ke ε as an R-module.

Proof. (1) follows from the axioms for ε.
(2) Clearly, for each λ ∈ Λ, bλ − ε(bλ)1B ∈ Ke ε. Let l =

∑
rλbλ ∈ Ke ε,

that is, ε(l) =
∑
rλε(bλ) = 0. This implies

l =
∑

rλbλ =
∑

rλ(bλ − ε(bλ)1B,

thus proving the assertion. �

13.3. Bialgebra morphisms. An R-linear map f : B → B′ of bialgebras is
called a bialgebra morphism if f is both an algebra and a coalgebra morphism.

An R-submodule I ⊂ B is a sub-bialgebra if it is a subalgebra as well as a
subcoalgebra. I is a bi-ideal if it is both an ideal and a coideal.

Let f : B → B′ be a bialgebra morphism. Then:
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(1) If f is surjective, then Ke f is a bi-ideal in B.

(2) Im f is a subcoalgebra of B′.

(3) For any bi-ideal I ⊂ B contained in Ke f , there is a commutative dia-
gram of bialgebra morphisms

B
f ��

p ���
��

��
��

� B′

B/I
f̄

����������
.

A remarkable feature of a bialgebra B is that the tensor product of B-
modules is again a B-module. In other words, MB (or BM) is a monoidal
category with the tensor product ⊗R (cf. 38.31). This requires an appropriate
definition of the action of B on the tensor product of modules, which we
describe now. First, recall that an R-module N is a B-module if there is an
algebra morphism B → EndR(N).

13.4. Tensor product of B-modules. Let K,L be right modules over an
R-bialgebra B.

(1) K ⊗R L has a right B-module structure by the map

B
∆−→ B ⊗R B → EndR(K)⊗R EndR(L)→ EndR(K ⊗R L) ;

we denote this module by K ⊗bR L. The right action of B is given by

! : K ⊗R L⊗R B −→ K ⊗R L, k ⊗ l ⊗ b �→ (k ⊗ l)∆b,

where the product on the right side is taken componentwise, that is,

(k ⊗ l)!b := (k ⊗ l)∆b =
∑
kb1 ⊗ lb2 .

(2) For any morphisms f : K → K ′, g : L→ L′ in MB, the tensor product
map f ⊗ g : K ⊗bR L→ K ′ ⊗bR L′ is a morphism in MB.

Proof. (1) follows easily from the definitions. Assertion (2) is equivalent
to the commutativity of the following diagram:

K ⊗bR L⊗R B
f⊗g⊗IB��

!
��

K ′ ⊗bR L′ ⊗R B

!
��

K ⊗bR L
f⊗g �� K ′ ⊗bR L′,

which follows immediately from B-linearity of f and g. �
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Of course similar constructions apply to left B-modules K,L, in which
case the left B-multiplication is given by

! : B ⊗R K ⊗R L −→ K ⊗R L, b⊗ k ⊗ l �→ ∆b(k ⊗ l) .

Explicitly, the product comes out as b!(k ⊗ l) =
∑
b1k ⊗ b2l. The actions !

are known as diagonal actions of B on the tensor product of its modules.
Dually, the tensor product of comodules has a special comodule structure.

13.5. Tensor product of B-comodules. Let K,L be right comodules over
an R-bialgebra B.

(1) K ⊗R L has a right B-comodule structure by the map (tensor over R)

�K⊗L : K ⊗ L
tw23◦(�K⊗�L)�� K ⊗ L⊗B ⊗B

IK⊗IL⊗µ �� K ⊗ L⊗B,

where tw23 = IK⊗ tw⊗IB. This comodule is denoted by K⊗cRL. Thus,
explicitly, for all k ⊗ l ∈ K ⊗cR L,

�K⊗RL(k ⊗ l) =
∑

k0 ⊗ l0 ⊗ k1l1.

(2) For any morphisms f : K → K ′, g : L→ L′ in MB, the tensor product
map f ⊗ g : K ⊗cR L→ K ′ ⊗cR L′ is a morphism in MB.

Proof. (1) This is proved by computing for all k ∈ K, l ∈ L,

(IK ⊗ IL ⊗∆) ◦ �K⊗RL(k ⊗ l) =
∑
k0 ⊗ l0 ⊗∆(k1l1)

=
∑
k0 ⊗ l0 ⊗ k11l11 ⊗ k12l12

=
∑
k00 ⊗ l00 ⊗ k01l01 ⊗ k11l11

= (�K⊗RL ⊗ IB) ◦ �K⊗RL(k ⊗ l).

To prove (2), take any k ∈ K, l ∈ L and compute

�K
′⊗RL′ ◦ (f ⊗ g)(k ⊗ l) =

∑
f(k)0 ⊗ g(l)0 ⊗ f(k)1g(l)1

=
∑
f(k0)⊗ g(l0)⊗ k1l1

= (f ⊗ g ⊗ IB) ◦ �K⊗RL(k ⊗ l).

This shows that f ⊗ g is a comodule morphism, as required. �
The coaction constructed in 13.5 is known as a diagonal coaction of a

bialgebra B on the tensor product of its comodules.
In contrast to coalgebras, for a bialgebra B, any R-module K can be

considered as B-comodule by K → K ⊗R B, k �→ k ⊗ 1B (trivial coaction).
In particular, the ring R is a right B-comodule, and this draws attention to
those maps B → R that are comodule morphisms.
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Definition. An element t ∈ B∗ is called a left integral on B if it is a left
comodule morphism.

Recall that the rational part of B∗ is denoted by RatB(B∗) = T and
�T : T → T ⊗R B denotes the corresponding coaction.

13.6. Left integrals on B. Let B be an R-bialgebra and t ∈ B∗.

(1) The following are equivalent:

(a) t is a left integral on B;

(b) (IB ⊗ t) ◦∆ = ι ◦ t.
If B is cogenerated by R as an R-module, then (a) is equivalent to:

(c) For every f ∈ B∗, f ∗ t = f(1B)t.

(2) Assume that RB is locally projective.

(i) If t ∈ T , then t is a left integral on B if and only if �T (t) = t⊗1B.
(ii) If R is Noetherian or if t(B) = R, then any left integral t on B

is rational, that is, t ∈ T .

Proof. (1) (a) ⇔ (b) The map t is left colinear if and only if there is a
commutative diagram

B
t ��

∆
��

R

ι

��
B ⊗R B

IB⊗t �� B

b
� ��

	

��

t(b)
	

��
∆(b) � �� (IB ⊗ t) ◦∆(b) = t(b)1B.

The commutativity of this diagram is expressed by condition (b).
(b) ⇔ (c) For any f ∈ B∗ and b ∈ B,

f ∗ t(b) = (f ⊗ t) ◦∆(b) = f((IB ⊗ t) ◦∆(b)),
f(1B)t(b) = f(t(b)1B) = f(ι ◦ t(b)).

From this (b) ⇒ (c) is obvious. If B is cogenerated by R, then (c) ⇒ (b).
(2)(i) If t ∈ T , that is, t is rational, then f ∗ t = (IT ⊗ f) ◦ �T (t), for any

f ∈ B∗, and (1)(c) implies

(IT ⊗ f)(�T (t)) = (IT ⊗ f)(t⊗ 1B).
By local projectivity (α-condition; see 4.2) this means �T (t) = t ⊗ 1B. The
converse conclusion is obvious.

(ii) By (1)(c), B∗ ∗ t ⊂ R 1B. If R is Noetherian, this implies that B
∗ ∗ t is

finitely presented as an R-module, and by 7.5(2) this implies that the element
t ∈ RatB(B∗) = T . If t(B) = R, then t⇀B = (IB ⊗ t)∆(B) = ι ◦ t(B) = R 1B
is finitely presented as an R-module and t ∈ T by 7.5(1). �

References. Abe [1]; Dǎscǎlescu, Nǎstǎsescu and Raianu [14]; Mont-
gomery [37]; Sweedler [45].
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14 Hopf modules

Since an R-bialgebra B has both a coalgebra and an algebra structure, one
can study R-modules that are both B-modules and B-comodules. Further-
more, since the coalgebra structure of B must be compatible with the algebra
structure of B, one can require compatibility conditions for corresponding
modules and comodules. This leads to the notion of Hopf modules, which,
together with various generalisations (cf. Section 32), play an important role
in representation theory of bialgebras, or indeed in classical module theory,
in particular in the case of modules graded by groups. In this section we in-
troduce Hopf modules, provide several constructions of such modules, study
their category-theoretic aspects, and properties of their invariants and coin-
variants. The latter can be viewed as a preparation for the Fundamental
Theorem of Hopf algebras 15.5 in Section 15. We concentrate on the case
when the module and comodule structures are given on the right side.

Throughout this section B denotes an R-bialgebra with product µ, co-
product ∆, unit map ι and counit ε.

14.1. B-Hopf modules. An R-module M is called a right B-Hopf module
if M is

(i) a right B-module with an action �M : M ⊗R B →M ,

(ii) a right B-comodule with a coaction �M : M →M ⊗R B,
(iii) for all m ∈M, b ∈ B, �M(mb) = �M(m)∆(b).

Condition (iii) means that �M :M →M⊗bRB is B-linear and is equivalent
to the requirement that the multiplication �M :M ⊗cR B →M is B-colinear,
or to the commutativity of either of the diagrams

M ⊗R B
�M⊗IB��

�M

��

M ⊗bR B ⊗R B
!
��

M
�M �� M ⊗R B ,

M ⊗cR B
�M⊗cB

��

�M

��

M ⊗cR B ⊗R B
�M⊗IB
��

M
�M �� M ⊗R B .

An R-linear map f : M → N between right B-Hopf modules is a Hopf
module morphism if it is both a right B-module and a right B-comodule
morphism. Denoting these maps by

HomBB(M,N) = HomB(M,N) ∩ HomB(M,N),

there are characterising exact sequences in MR,

0→ HomBB(M,N)→ HomB(M,N)
γ−→ HomB(M,N ⊗bR B),

where γ(f) = �N ◦ f − (f ⊗ IB) ◦ �M or, equivalently,

0→ HomBB(M,N)→ HomB(M,N)
δ−→ HomB(M ⊗cR B,N),
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where δ(g) = �N ◦ (g ⊗ IB)− g ◦ �M .
Left B-Hopf modules and the corresponding morphisms are defined simi-

larly, and it is obvious that B is both a right and a left B-Hopf module with
the action given by the product and the coaction given by the coproduct
(regular coaction).

We give the following three motivating examples of right B-Hopf modules.

14.2. Trivial B-Hopf modules. Let K be any R-module.

(1) K ⊗R B is a right B-Hopf module with the canonical structures

IK⊗∆ : K⊗RB → (K⊗RB)⊗RB, IK⊗µ : (K⊗RB)⊗RB → K⊗RB.

(2) For any R-linear map f : K → K ′, the map f⊗IB : K⊗RB → K ′⊗RB
is a B-Hopf module morphism.

Proof. We know that K ⊗R B is both a right B-module, and a co-
module and the compatibility conditions are obvious from the properties of
a bialgebra. It is clear that f ⊗ IB is B-linear as well as B-colinear. �

14.3. B-modules and B-Hopf modules. Let N be any right B-module.

(1) The right B-module N⊗bRB is a right B-Hopf module with the canonical
comodule structure

IN ⊗∆ : N ⊗bR B → (N ⊗bR B)⊗R B, n⊗ b �→ n⊗∆b.

(2) For any B-linear map f : N → N ′, the map f⊗IB : N⊗bRB → N ′⊗bRB
is a B-Hopf module morphism.

(3) The map

γN : N ⊗R B → N ⊗bR B, n⊗ b �→ (n⊗ 1B)∆(b) = (n⊗ 1B)!b

is a B-Hopf module morphism.

Proof. (1) To show that IN ⊗ ∆ is B-linear one needs to check the
commutativity of the following diagram:

N ⊗bR B ⊗R B
IN⊗∆⊗IB ��

!
��

(N ⊗bR B)⊗bR B ⊗R B

!
��

N ⊗bR B
IN⊗∆ �� (N ⊗bR B)⊗bR B .

Evaluating this diagram at any a, b ∈ B and n ∈ N yields

(IN ⊗∆) ((n⊗ b)∆(a)) =
∑
na1 ⊗ (ba2)1 ⊗ (ba2)2

=
∑
na1 ⊗ b1a2 ⊗ b2a3

= ((IN ⊗∆)(n⊗ b))∆(a),
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by the multplicativity of ∆ and the definition of the diagonal B-action on
(N ⊗bR B)⊗bR B (cf. 13.4).

(2) It was shown in 3.8 that f⊗IB is a comodule morphism, and we know
from 13.4 that it is a B-module morphism.

(3) Clearly γN is B-colinear, and for any c ∈ B,

γN(n⊗ bc) = (n⊗ 1B)∆(bc) = (n⊗ 1B)(∆b)(∆c) = γN(n⊗ b)∆(c),

showing that γN is right B-linear. �

14.4. B-comodules and B-Hopf modules. Let L be a right B-comodule.

(1) The right B-comodule L⊗cRB is a right B-Hopf module with the canon-
ical module structure

IL ⊗ µ : L⊗cR B ⊗R B → L⊗cR B, n⊗ b⊗ a �→ n⊗ ba.

(2) For any B-colinear map f : L→ L′, the map f⊗IB : L⊗cRB → L′⊗cRB
is a B-Hopf module morphism.

(3) There is a B-Hopf module morphism

γL : L⊗cR B → L⊗R B, l ⊗ b �→ �L(l)(1B ⊗ b).

Proof. (1) To prove the colinearity of IL ⊗ µ one needs to show the
commutativity of the diagram

L⊗cR B ⊗cR B
IL⊗µ ��

�L⊗cB⊗cB
��

L⊗cR B
�L⊗cB
��

L⊗cR B ⊗cR B ⊗R B
IL⊗µ⊗IB �� L⊗cR B ⊗R B ,

which follows from the multiplicativity of ∆.
(2) Clearly f ⊗ IB is B-linear, and, as shown in 13.5, it is also B-colinear.
(3) Obviously γL is right B-linear, and colinearity follows from the com-

mutativity of the diagram (which is easily checked)

L⊗cR B
γL ��

�L⊗B
��

L⊗R B
IL⊗∆

��
L⊗cR B ⊗R B

γL⊗I �� L⊗R B ⊗R B

l ⊗ b
� ��

	

��

∑
l0 ⊗ l1b	

��∑
l0 ⊗ b1 ⊗ l1b2

� ��
∑
l0 ⊗ l1b1 ⊗ l2b2.

This completes the proof. �
Right B-Hopf modules together with B-Hopf module morphisms form a

category that is denoted by MB
B. This category is closed under direct sums

and factor modules and has the following properties.
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14.5. The category MB
B. Let B be an R-bialgebra.

(1) The right B-Hopf module B ⊗bR B is a subgenerator in MB
B.

(2) The right B-Hopf module B ⊗cR B is a subgenerator in MB
B.

(3) For any M ∈MB
B, N ∈MB,

HomBB(M,N ⊗bR B)→ HomB(M,N), f �→ (IN ⊗ ε) ◦ f,

is an R-module isomorphism with inverse map h �→ (h⊗ IB) ◦ �M .
(4) For any M ∈MB

B, N ∈MB,

HomBB(N ⊗cR B,M)→ HomB(N,M), f �→ f(−⊗ 1B),

is an R-module isomorphism with inverse map h �→ �M ◦ (h⊗ IB).

(5) For any K,L ∈MR,

HomBB(K ⊗R B,L⊗R B)→ HomR(K,L), f �→ (IL ⊗ ε) ◦ f(−⊗ 1B),

is an R-module isomorphism with inverse map h �→ h⊗ IB.

Proof. (1) Let M ∈MB
B. For a B-module epimorphism f : B(Λ) →M ,

f ⊗ IB : B
(Λ) ⊗bR B →M ⊗bR B

is an epimorphism in MB
B (by 14.3), and so M ⊗bR B is generated by

B(Λ) ⊗bR B �
(
B ⊗bR B

)(Λ)
.

Moreover, �M :M →M⊗bRB is a (B-splitting) Hopf module monomorphism,
and so M is subgenerated by B ⊗bR B.

(2) For any M ∈MB
B, there is a comodule epimorphism B(Λ) →M ⊗RB,

and from this we obtain a Hopf module epimorphism

(B ⊗cR B)(Λ) � B(Λ) ⊗cR B → (M ⊗R B)⊗cR B.

Moreover, there is a Hopf module monomorphism �M ⊗ IB : M ⊗cR B →
(M ⊗R B)⊗cR B and a Hopf module epimorphism M ⊗cR B →M , and hence
M is subgenerated by B ⊗cR B.

(3) There is a commutative diagram with exact rows (⊗ means ⊗bR),

0 �� HomBB(M,N⊗B) ��

���
�
�

HomB(M,N⊗B)
(IN⊗ε)◦−
��

β1 �� HomB(M⊗B,N⊗B)
(IN⊗ε)◦−
��

0 �� HomB(M,N) �� HomR(M,N)
β2 �� HomR(M⊗B,N),
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where β1(f) = f ◦ �M − �N⊗B ◦ (f ⊗ IB) and β2(g) = g ◦ �M − �N ◦ (g ⊗ IB).
As shown in 3.9, the second and third vertical maps are isomorphisms and
hence the first one is also an isomorphism.

(4) Consider the commutative diagram with exact rows (⊗ for ⊗cR),

0 �� HomBB(N⊗B,M) ��

���
�
�

HomB(N⊗B,M) γ1 ��

−◦(−⊗1B)

��

HomB(N⊗B,M⊗B)
−◦(−⊗1B)

��
0 �� HomB(N,M) �� HomR(N,M)

γ2 �� HomR(N,M⊗B),

where γ1(f) = �M ◦ f − (f ⊗ IB) ◦ �N⊗B and γ2(g) = �M ◦ g − (g ⊗ IB) ◦ �N .
The second and third vertical maps are isomorphisms and hence the first one
is an isomorphism, too.

(5) View K as a trivial B-comodule. Then K ⊗cR B � K ⊗R B, and, by
(4) and 3.9, HomBB(K ⊗R B,L ⊗R B) � HomB(K,L ⊗R B) � HomR(K,L),
as required. �

14.6. MB
B for BR flat. Let B be flat as an R-module and M,N ∈ MB

B.
Then:

(1) MB
B is a Grothendieck category.

(2) The functor HomBB(M,−) :MB
B →MR is left exact.

(3) The functor HomBB(−, N) :MB
B →MR is left exact.

Proof. (1) For any morphism f :M → N inMB
B, Ke f is a B-submodule

as well as a B-subcomodule (since BR flat) and hence Ke f ∈MB
B.

(2) Any exact sequence 0→ X → Y → Z inMB
B induces the commutative

diagram with exact columns

0

��

0

��

0

��

0 �� HomBB(M,X) ��

��

HomBB(M,Y ) ��

��

HomBB(M,Z)

��
0 �� HomB(M,X) ��

��

HomB(M,Y ) ��

��

HomB(M,Z)

��
0 �� HomB(M,X⊗bRB) �� HomB(M,Y ⊗bRB) �� HomB(M,Z⊗bRB).

The columns are simply the defining sequences of HomBB(M,−) in 14.1. The
second and third rows are exact because of the left exactness of HomB(M,−)
and −⊗R B. Now the diagram lemmata imply that the first row is exact.

(3) This is shown with a similar diagram that uses − ⊗cR B instead of
−⊗bR B. �
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14.7. Coinvariants of comodules. For M ∈MB, the coinvariants of B in
M are defined as

M coB :=
{
m ∈M | �M(m) = m⊗ 1B

}
= Ke (�M − (−⊗ 1B)).

This is clearly an R-submodule of M and there is an isomorphism

HomB(R,M)→M coB, f �→ f(1),

where R is considered as a B-comodule. In particular, this implies that
BcoB = R1B. Furthermore, for any R-module K,

HomB(K,M) � HomR(K,M
coB),

where K is considered as a trivial B-comodule.

The last isomorphism follows by the fact that f ∈ HomB(K,M) is equiv-
alent to the commutativity of the diagram

K
f ��

−⊗1B
��

M

�M

��

k
� ��

	

��

f(k)
	

��
K ⊗R B

f⊗IB ��M ⊗R B k ⊗ 1B � �� f(k)⊗ 1B = �M(f(k)) .

14.8. Coinvariants of Hopf modules. For any M ∈MB
B, the map

νM : HomBB(B,M)→M coB, f �→ f(1B),

is an R-module isomorphism with the inverse ωM : m �→ [b �→ mb]. Further-
more, the diagram

HomBB(B,M)⊗R B ��

νM⊗IB
��

M f ⊗ b � ��

��

f(b)

M coB ⊗R B ��M f(1B)⊗ b �� f(1B)b

is commutative. In particular, HomBB(B,B)
�−→ BcoB = R 1B is a ring iso-

morphism.

Proof. The isomorphism νM is obtained from the following commutative
diagram of R-module maps with exact rows:

0 �� HomBB(B,M)
��

���
�
�

HomB(B,M)
γ1 ��

�
��

HomB(B,M ⊗R B)
�
��

0 ��M coB �� M
γ2 ��M ⊗R B,

where γ1(f) = �M ◦ f − (f ⊗ IB) ◦ ∆, that is, the top row is the defining
sequence of HomBB(B,M), and γ2(m) = �M(m)−m⊗ 1B. �
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14.9. Coinvariants of trivial Hopf modules.

(1) For any K ∈MR, Hom
B
B(B,K ⊗R B) � K as R-modules.

(2) For all L ∈MR and M ∈MB
B, there are R-module isomorphisms

HomBB(L⊗RB,M) � HomR(L,M
coB) and EndBB(B⊗RB) � EndR(B).

(3) There is an adjoint pair of functors

−⊗R B :MR →MB
B, HomBB(B,−) :MB

B →MR,

and HomBB(B,−⊗R B) � IMR
.

Proof. (1) Consider R as a B-comodule as in 14.5(4). Then the Hom-
tensor relation 3.9(1) implies

HomBB(B,K ⊗R B) � HomBB(R⊗cR B,K ⊗R B) � HomB(R,K ⊗R B) � K.

(2) Combining 14.5(4) and 14.7, one obtains the chain of isomorphisms

HomBB(L⊗R B,M) � HomB(L,M) � HomR(L,M
coB).

(3) By 14.8, the adjointness is just an interpretation of the isomorphism
in (2), and, by (1), the composition of the two functors is isomorphic to the
identity functor on MR. �

14.10. Coinvariants and B-modules. For any N ∈MB, the map

ν ′N⊗B : Hom
B
B(B,N ⊗bR B)→ N, f �→ (IN ⊗ ε) ◦ f(1B) ,

is an R-isomorphism with the inverse n �→ [b �→
∑
nb1 ⊗ b2]. Furthermore,

the diagram

HomBB(B,N ⊗bR B)⊗R B ��

ν′N⊗B⊗IB
��

N ⊗bR B

N ⊗R B
γN �� N ⊗bR B

g ⊗ b � ��

��

g(b)

(IN⊗ε)g(1B)⊗b � �� g(1B)∆b ,

where γN is described in 14.3(3), is commutative. This yields in particular

(B ⊗bR B)coB � HomBB(B,B ⊗bR B) � B ,

and the commutative diagram

HomBB(B,B ⊗bR B)⊗R B ��

��

B ⊗bR B

B ⊗R B
γB �� B ⊗bR B

h⊗ a
� ��

��

h(a)

(IB ⊗ ε)h(1B)⊗ a � �� h(1B)∆a.
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Proof. By 14.5, HomBB(B,N ⊗bR B) � HomB(B,N) � N and commuta-
tivity of the diagrams is shown by a straightforward computation. �

14.11. Invariants. Let A be an R-algebra A and ϕ : A→ R a ring morphism.
Considering R as a left A-module, one may ask for the A-morphisms from
R→M , where M ∈ AM. Define the invariants of M by

AM = {m ∈M | am = ϕ(a)m for all a ∈ A}.

Then the map AHom(R,M)→ AM , f �→ f(1), is an R-module isomorphism.

14.12. Invariants for bialgebras. For any bialgebra B, the counit ε is a
ring morphism and hence induces a left and right B-module structure on R.
Therefore, for any left B-module M , the invariants of M corresponding to ε
come out as

BM = {m ∈M | bm = ε(b)m for all b ∈ B}.

Furthermore, the map BHom(R,M) → BM , f �→ f(1), is an R-module iso-
morphism. The left invariants BB of B are called left integrals in B,

BHom (R,B) � BB = {c ∈ B | bc = ε(b)c for all b ∈ B}.

Right invariants and right integrals in B are defined symmetrically .
On the other hand, for the dual algebra B∗, the map ϕ : B∗ → R,

f �→ f(1B), is a ring morphism. Coinvariants of right B-comodules are closely
related to invariants of left B∗-modules corresponding to ϕ.

14.13. Invariants and coinvariants. Let B be a bialgebra that is locally
projective as an R-module (cf. 4.2).

(1) For any M ∈MB, B∗
M =M coB.

(2) For the trace ideal T = RatB(B∗), B
∗
T = T coB.

(3) If BR is finitely generated, then
B∗
B∗ = (B∗)coB.

Proof. (1) Let m ∈ B∗
M and f ∈ B∗. From f⇀m =

∑
m0f(m1) we

conclude
(IM ⊗ f)�M(m) = (IM ⊗ f)(m⊗ 1B).

Now local projectivity of B implies that �M(m) = m⊗1B, that is, m ∈M coB,
as required. Conversely, take any m ∈M coB and compute

f⇀m = (IM ⊗ f)�M(m) = mf(1B) = mϕ(f).

This shows that m ∈ B∗
M , and therefore B

∗
M =M coB.
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(2) From the definition of the trace ideal we know that T ∈ MB; hence
the assertion follows from (1).

(3) If BR is finitely generated and projective, then T = B∗ and the asser-
tion follows from (2). �

For a bialgebra B the dual B∗ = HomR(B,R) also has a natural (B,B)-
bimodule structure with the following properties.

14.14. B-module structure of B∗. B∗ is a (B,B)-bimodule by

⇁ : B ⊗R B∗ → B∗, b⊗ f �→ [c �→ f(cb)],
↽ : B∗ ⊗R B → B∗, f ⊗ b �→ [c �→ f(bc)],

and for a, b ∈ B, f, g ∈ B∗,

a⇁(f ∗ g) =
∑
(a1⇁f) ∗ (a2⇁g) .

Proof. For any c ∈ B, [(a⇁f)↽b](c) = f(bca) = [a⇁(f↽b)](c), and

[a⇁(f ∗ g)](c) = (f ∗ g)(ca) =
∑
f(c1a1)g(c2a2)

=
∑
(a1⇁f)(c1) (a2⇁g)(c2)

=
∑
[(a1⇁f) ∗ (a2⇁g)](c) ,

as required. �

Every Hopf module M ∈MB
B is a right B-comodule, and hence it is a left

B∗-module (in the canonical way). This yields an action of Bop⊗RB∗ on M ,

Bop ⊗R B∗ ⊗RM →M, (a⊗ f)⊗m �→ (a⊗ f)�M(m) =
∑

m0af(m1).

This action is obviously an R-linear map, but it does not make M a module
with respect to the canonical algebra product in Bop ⊗R B∗. On the other
hand, there exists a different multiplication on Bop ⊗R B∗ that makes M a
module over the new algebra. Denote this product by “?”. For all a ∈ B,
f, g ∈ B∗, and m ∈M , a product ? has to satisfy the associative law

[(a⊗ f)?(b⊗ g)](m) = (a⊗ f)((b⊗ g)m) =
∑
(a⊗ f)(m0bg(m1))

=
∑
m0b1a f(m1b2)g(m2)

=
∑
m0b1a (b2⇁f) ∗ g(m1)

= [
∑
b1a⊗ (b2⇁f) ∗ g](m).

From this we can see how the multiplication ? on Bop ⊗R B∗ should be con-
structed in order to possess the desired properties.
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14.15. Smash product Bop#B∗. Consider an algebra Bop#B∗, which is
isomorphic to the tensor product Bop ⊗R B∗ as an R-module and has the
product

(a#f)(b#g) := ((∆b)(a#f)) (1B#g) =
∑

b1a#(b2⇁f) ∗ g,

where a#f = a⊗f is the notation. Then Bop#B∗ is an associative R-algebra
with unit 1B#ε, and the maps

Bop → Bop#B∗, a �→ a#ε,
B∗ → Bop#B∗, f �→ 1B#f,

are injective ring morphisms, making every left B#B∗-module a right B-
module and a left B∗-module. The algebra Bop#B∗ is called a smash product.

Every M ∈MB
B is a left Bop#B∗-module, and therefore MB

B is embedded
in σBop#B∗ [B ⊗bR B] ⊂ Bop#B∗M. If BR is locally projective, then

MB
B = σB#B∗ [B ⊗bR B] = σB#B∗ [B ⊗cR B].

In particular, MB
B = Bop#B∗M provided that BR is finitely generated and

projective.

Proof. The first assertions are immediate consequences of the action
considered above and the definition of the product #. The local projectivity
implies that the right B-comodule structures correspond to left B∗-module
structures.

If BR is finitely generated and projective, then there is a right coaction
(see 3.11) B∗ → EndR(B) � B∗ ⊗R B, g �→ (IB∗ ⊗ g) ◦∆. The map

B∗ ⊗cR B → Bop#B∗, f ⊗ b �→ b#f,

is an isomorphism of leftBop#B∗-modules. Indeed, note that, for any b, x ∈ B
and f, g ∈ B∗,∑

(b⇁f)(g0(x)g1) = (b⇁f)(IB ⊗ g)∆(x) = (b⇁f) ∗ g(x).

Using these identities we compute

(a#f)(g ⊗ b) = (a⊗ f)�B
∗⊗B(g ⊗ b) =

∑
g0 ⊗ b1af(g1b2)

�→
∑
b1a#(b2⇁f)(g1)g0 =

∑
b1a#(b2⇁f) ∗ g

= (a#f)(b#g),

that is, the map defined above is a morphism of left Bop#B∗-modules. Clearly
it is an isomorphism. Therefore, Bop#B∗ ∈MB

B and hence M
B
B = Bop#B∗M.

�

References. Abe [1]; Dǎscǎlescu, Nǎstǎsescu and Raianu [14]; Lomp
[153]; Montgomery [37]; Sweedler [45].
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15 Hopf algebras

Bialgebras can be viewed as a generalisation of algebras of functions on
monoids. Once one starts studying algebras of functions on groups, one im-
mediately realises that the inverse in the group induces an R-module endo-
morphism of the corresponding bialgebra. The abstract version of such an
endomorphism in a general noncommutative algebra is known as an antipode,
and a bialgebra with an antipode is called a Hopf algebra. In this section
we study Hopf algebras. In particular, we derive the Fundamental Theorem
of Hopf algebras, which states that the category of Hopf modules of a Hopf
algebra is equivalent to the category of R-modules. We also give a number of
examples of Hopf algebras at the end of this section.

15.1. The ring (EndR(B), ∗ ). For any R-bialgebra B, (EndR(B), ∗) is an
associative R-algebra with product, for f, g ∈ EndR(B),

f ∗ g = µ ◦ (f ⊗ g) ◦∆,

and unit ι ◦ ε, that is, ι ◦ ε(b) = ε(b)1B, for any b ∈ B (cf. 1.3). If B is com-
mutative and cocommutative, then (EndR(B), ∗) is a commutative algebra.

Definitions. An element S ∈ EndR(B) is called a left (right) antipode if it is
left (right) inverse to IB with respect to the convolution product on EndR(B),
that is, S ∗ IB = ι ◦ ε (resp. IB ∗ S = ι ◦ ε). In case S is a left and right
antipode, it is called an antipode. The corresponding conditions are

µ ◦ (S ⊗ IB) ◦∆ = ι ◦ ε, µ ◦ (IB ⊗ S) ◦∆ = ι ◦ ε.

Explicitly, for all b ∈ B, an antipode S satisfies the following equalities:∑
S (b1) b2 = ε(b)1B =

∑
b1S (b2) .

Left and right antipodes need not be unique, whereas an antipode is unique
whenever it exists. A bialgebra with an antipode is called a Hopf algebra.

Antipodes are related to the right Hopf module morphism (see 14.3, 14.10)

γB : B ⊗R B → B ⊗bR B, a⊗ b �→ (a⊗ 1B)∆b =
∑
ab1 ⊗ b2.

Notice that γB is also a left B-module morphism in an obvious way.

15.2. Existence of antipodes. Let B be an R-bialgebra.

(1) B has a right antipode if and only if γB has a left inverse in BM.

(2) If B has a left antipode, then γB has a right inverse in BM.

(3) γB is an isomorphism if and only if B has an antipode.
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Proof. (1) If β is a left inverse of γB, for all b ∈ B, 1B ⊗ b = β ◦
γB(1B⊗ b) = β(∆b) holds. This implies that ι◦ ε(b) = (IB⊗ ε)◦β(∆b). Then
S = (IB ⊗ ε) ◦ β(1B ⊗−) : B → B is a right antipode since

µ ◦ (IB ⊗S) ◦∆(b) =
∑

b1((IB ⊗ ε)β(1B ⊗ b2)) = (IB ⊗ ε) ◦ β(∆b) = ι ◦ ε(b),

where we used that β is left B-linear.
Now suppose that S : B → B is a right antipode. Then

β : B ⊗bR B → B ⊗R B, a⊗ b �→ (a⊗ 1B)(S ⊗ IB)(∆b) =
∑

aS(b1)⊗ b2,

is a left inverse of γB, since for any b ∈ B,

β ◦ γB(1B ⊗ b) = β(∆b) = (µ⊗ IB) ◦ (IB ⊗ S ⊗ IB) ◦ (IB ⊗∆)(∆b)
= (µ⊗ IB) ◦ (IB ⊗ S ⊗ IB) ◦ (∆⊗ IB)(∆b)

=
∑
µ ◦ (S ⊗ IB)(∆b1)⊗ b2

=
∑
ε(b1)1B ⊗ b2 = 1B ⊗ b .

(2) Let S be a left antipode, that is, µ◦ (S⊗ IB)(∆b) = ι◦ ε(b), for b ∈ B.
Then

β : B ⊗bR B → B ⊗R B, 1B ⊗ b �→ (S ⊗ IB)(∆b) =
∑

S(b1)⊗ b2,

is a right inverse of γB, since

γB ◦ β(1B ⊗ b) = γB((S ⊗ IB)(∆b)) =
∑
S(b1)b2 ⊗ b3

=
∑
ε(b1)1B ⊗ b2 = 1B ⊗ b .

(3) Suppose that γB is bijective. Take any f ∈ EndR(B) and observe that
if µ ◦ (IB ⊗ f)(∆b) = 0, for all b ∈ B, then f = 0. Indeed, any element in
B ⊗R B can be written as a sum of elements of the form (a⊗ 1B)(∆b) and

µ ◦ (IB ⊗ f)((a⊗ 1B)(∆b)) = a(µ((IB ⊗ f)(∆b))) = 0,

implying µ(IB ⊗ f)(B ⊗R B) = Bf(B) = 0, and so f = 0, as claimed.
By (1), there exists a right antipode S, and for this we compute

µ ◦ (IB ⊗ µ ◦ (S ⊗ IB) ◦∆)(∆b)
= µ ◦ (IB ⊗ µ) ◦ (IB ⊗ S ⊗ IB) ◦ (IB ⊗∆)(∆b)
= µ ◦ (µ⊗ IB) ◦ (IB ⊗ S ⊗ IB) ◦ (∆⊗ IB)(∆b)

=
∑
ε(b1)b2 = b = µ ◦ (IB ⊗ ι ◦ ε)(∆b).

By the preceding observation this implies µ◦(S⊗IB)◦∆ = ι◦ε, thus showing
that S is also a left antipode. �
Definition. Let H be a Hopf algebra with antipode S. An R-submodule
J ⊂ H is called a Hopf ideal if J is a coideal, an ideal, and S(J) ⊂ J .
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15.3. Factors by Hopf ideals. For any Hopf ideal J ⊂ H, the factor
module H/J is a Hopf algebra and the canonical map H → H/J is a bialgebra
morphism.

Proof. Clearly H/J is a factor algebra, and a factor coalgebra with
counit ε̄ : H/J → R (see 2.4) satisfying the compatibility conditions and the
projection ( ) : H → H/J is a bialgebra map. Since S(J) ⊂ J , the map
S : H → H induces a morphism

S̄ : H/J → H/J, h �→ S(h),

and for this we compute∑
S̄(h1)h2 =

∑
S(h1)h2 = ε(h)1H = ε̄(h)1H/J .

Similarly we get
∑
h1S̄(h2) = ε̄(h)1H/J , so that S̄ is an antipode for H/J . �

15.4. Properties of antipodes. Let H be a Hopf algebra with antipode S.
Then:

(1) S is an algebra anti-morphism, that is, for all a, b ∈ H, S(ab) =
S(b)S(a), and S ◦ ι = ι.

(2) S is a coalgebra anti-morphism, that is, tw ◦ (S ⊗ S) ◦∆ = ∆ ◦ S and
ε ◦ S = ε.

(3) If S is invertible as a map, then, for any b ∈ H,∑
S−1(b2)b1 = ε(b)1H =

∑
b2S

−1(b1) .

Proof. (1) Consider the convolution algebra H̃ := (HomR(H⊗RH,H), ∗̃)
corresponding to the canonical coalgebra structure ∆H⊗RH on H ⊗R H with
the counit ε̃ = ε⊗ ε. In particular, the unit in H̃ comes out as

ι̃ : H ⊗R H ε⊗ε−→ R
ι−→ H .

In addition to the product µ : H ⊗R H → H, consider the R-linear maps

ν : H ⊗R H → H, a⊗ b �→ S(b)S(a), ρ : H ⊗R H → H, a⊗ b �→ S(ab) .

To prove that S is an anti-multiplicative map, it is sufficient to show that
ρ∗̃µ = µ∗̃ν = ι̃ ◦ ε̃ (the identity in H̃). By the uniqueness of inverse elements
we are then able to conclude that ν = ρ. Consider the R-linear maps

H ⊗R H
∆H⊗H�� H ⊗R H ⊗R H ⊗R H

ρ⊗µ ��
µ⊗ν

�� H ⊗R H
µ �� H .
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Take any a, b ∈ H and compute

a⊗ b �→
∑
a1 ⊗ b1 ⊗ a2 ⊗ b2
ρ⊗µ�−→

∑
S(a1b1)a2b2 = S ∗ IH(ab) = ε(ab)1H ,

µ⊗ν�−→
∑
a1b1S (b2)S (a2)

=
∑
a1S (a2) ε(b) = ε(a)ε(b)1H .

Thus ν = ρ, and S is an anti-multiplicative map, that is, S(ab) = S(a)S(b).
Furthermore, 1H = ι ◦ ε(1H) = (IH ∗ S)(1H) = S(1H), so that S is a unital
map and hence an algebra anti-morphism.

(2) This is a dual statement to (1), and we use a similar technique as for
the proof of (1). In this case consider the convolution algebra corresponding
to H as a coalgebra and H ⊗R H as an algebra, (HomR(H,H ⊗R H), ∗). Let
ν := tw ◦ (S ⊗ S) ◦ ∆ and ρ := ∆ ◦ S. Direct computation verifies that
ρ ∗∆ = ιH ◦ εH⊗H = ∆ ∗ ν . From this we conclude that ρ = ν, so that S
is an anti-comultiplicative map. Furthermore, for all a ∈ H, we know that
ε(ι ◦ ε(a)) = ε(a), and ι ◦ ε(a) =

∑
S(a1)a2 . This implies

ε(a) = ε(ι ◦ ε(a)) =
∑

ε (S(a1)) ε(a2) = ε ◦ S(a) ,

hence S is a coalgebra anti-morphism, as stated.
(3) Apply S−1 to the defining properties of S. �
We now prove that Hopf algebras are precisely those R-bialgebras for

which the category MB
B is equivalent to MR. It is interesting to notice that

this can be seen from a single isomorphism.

15.5. Fundamental Theorem of Hopf algebras. For any R-bialgebra B
the following are equivalent:

(a) B is a Hopf algebra (that is, B has an antipode);

(b) γB : B ⊗R B → B ⊗bR B, a ⊗ b �→ (a ⊗ 1B)∆b, is an isomorphism in
MB
B;

(c) γB : B ⊗cR B → B ⊗R B, a ⊗ b �→ ∆a(1B ⊗ b), is an isomorphism in
MB
B;

(d) for every M ∈MB
B, M

coB⊗RB →M, m⊗ b �→ mb, is an isomorphism
in MB

B;

(e) for every M ∈MB
B, there is an isomorphism (in MB

B)

ϕM : HomBB(B,M)⊗R B →M, f ⊗ b �→ f(b);

(f) ϕB⊗B : HomBB(B,B ⊗bR B)⊗R B → B ⊗bR B is an isomorphism in MB
B;

(g) HomBB(B,−) :MB
B →MR is an equivalence (with inverse −⊗R B).
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If B is flat as an R-module, then (a)-(g) are equivalent to:

(h) B is a (projective) generator in MB
B;

(i) B is a subgenerator in MB
B, and ϕM is injective for every M ∈MB

B.

If BR is locally projective, then (a)− (i) are equivalent to:
(j) B is a subgenerator in MB

B and the image of Bop#B∗ → EndR(B) is
dense (for the finite topology).

For any Hopf module M over a Hopf algebra B, the coinvariants M coB

are an R-direct summand of M .

Proof. (a) ⇔ (b) was shown in 15.2, and by symmetry (see 14.4) the
same proof implies (a)⇔(c). (b) ⇔ (f) is clear by 14.10.

(d) ⇔ (e) This follows from the commutative diagram in 14.8.
(a) ⇒ (d) For any M ∈MB

B, consider φ : M → M coB,m �→
∑
m0S(m1).

The following equalities show that the image of φ is in M coB:

�M(φ(m)) = �M(
∑
m0S(m1)) =

∑
m0S(m3)⊗m1S(m2)

=
∑
m0S(m1)⊗ 1B = φ(m)⊗ 1B.

Now we show that the map

(φ⊗ IB) ◦ �M :M →M coB ⊗R B

is the inverse of the multiplication map �M :M coB ⊗R B →M . For m ∈M ,

�M ◦(φ⊗IB)(�M(m)) =
∑
φ(m0)m1 =

∑
m0S(m1)m2 =

∑
m0ε(m1) = m.

On the other hand, for n⊗ b ∈M coB ⊗R B,

(φ⊗ IB) ◦ �M(nb) = (φ⊗ IB)(
∑
nb1 ⊗ b2) =

∑
φ(nb1)⊗ b2

=
∑
nb1 S(b2)⊗ b3 =

∑
nε(b1)⊗ b2 = n⊗ b.

(e) ⇒ (f) is trivial (take M = B ⊗bR B).
(e) ⇔ (g) From 14.9 we know HomBB(B,− ⊗R B) � I

RM. Condition (f)
induces HomBB(B,−)⊗RB � IMB

B
, and the two isomorphisms characterise an

equivalence between MR and M
B
B.

(g) ⇒ (h) Obviously (g) always implies that B is a generator in MB
B and

that B is projective in MB
B (that is, Hom

B
B(B,−) : MB

B → MR preserves
epimorphisms).

Now suppose that RB is flat. ThenMB
B has kernels and Hom

B
B(B,−) is a

left exact functor.
(h) ⇒ (i) Suppose that B is a generator inMB

B. Of course any generator
is in particular a subgenerator. For any M ∈MB

B, the set Λ = HomB(B,M)
yields a canonical epimorphism

p : B(Λ) →M, bf �→ f(b).
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Choosing Λ′ = HomB(B,Ke p) we form – with a similar map p′ – the exact
sequence in MB

B,

B(Λ′)
p′ �� B(Λ)

p ��M �� 0 .

Now apply HomBB(B,−) to obtain the exact sequence

HomBB(B,B
(Λ′)) �� HomBB(B,B

(Λ)) �� HomBB(B,M)
�� 0 .

By the choice of Λ and Λ′, this sequence is exact. Now tensor with − ⊗R B
to obtain the commutative diagram with exact rows (⊗ for ⊗R),

HomBB(B,B
(Λ′))⊗B ��

�
��

HomBB(B,B
(Λ))⊗B ��

�
��

HomBB(B,M)⊗B
ϕM

��

�� 0

B(Λ′) �� B(Λ) ��M �� 0 .

The first two vertical maps are bijective since HomBB(B,−) commutes with
direct sums. By the diagram properties this implies the bijectivity of ϕM .

(i)⇒ (f) Assume that B is a subgenerator inMB
B and that ϕM is injective

for all M ∈ MB
B. Then clearly ϕN is bijective for all B-generated objects

N in MB
B and M is a subobject of such an N . Choose an exact sequence

0→M → N → L in MB
B where N and L are B-generated. Then clearly ϕN

and ϕL are bijective and there is a commutative diagram with exact rows,

0 �� HomBB(B,M)⊗RB ��

ϕM

��

HomBB(B,N)⊗RB ��

ϕN

��

HomBB(B,L)⊗RB
ϕL

��
0 �� M �� N �� L .

From this we conclude that ϕM is also bijective.
(h) ⇔ (j) If BR is locally projective, then, by 42.10(g), B is a generator

in σ[EndR(B)B]. Moreover, M
B
B = σ[Bop#B∗B ⊗bR B]. Now assume (h). Then

MB
B = σ[Bop#B∗B] and the density property follows by 43.12. On the other

hand, given the density property and the subgenerating property of B, one
has σ[EndR(B)B] = σ[Bop#B∗B] and B is a generator in MB

B.
The R-linear map φ : M → M coB considered in the proof (a)⇒(d) splits

the inclusion M coB →M , thus proving the final statement. �
Notice that parts of the characterisations in 15.5 apply to Hopf algebras

that are not necessarily flat as R-modules (see 15.11 for such examples).

15.6. Finitely generated Hopf algebras. For an R-bialgebra B with BR
finitely generated and projective, the following are equivalent:

(a) B is a Hopf algebra;
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(b) γB : B ⊗R B → B ⊗bR B is surjective;

(c) B has a left antipode;

(d) Bop#B∗ � EndR(B);

(e) B is a generator in Bop#B∗M.

Proof. (a)⇔(b)⇔(c) follow from 15.2 and the fact that, for finitely
generated projective R-modules, any surjective endomorphism is bijective.

(a) ⇒ (d) As a generator in MB
B = Bop#B∗M, B is a faithful Bop#B∗-

module and the density property of Bop#B∗ (see 15.5) implies Bop#B∗ �
EndR(B).

(e) ⇔ (d) Since B is a subgenerator in σ[EndR(B)B], the assertion follows
from 15.5(j).

(e)⇒ (a) Under the given conditionsMB
B = Bop#B∗M (see 14.15) and the

assertion again follows from the Fundamental Theorem 15.5. �
Clearly, if B is a finitely generated projective R-module, thenMB = B∗M

has (enough) projectives and 13.6 implies the following corollary.

15.7. Existence of integrals. Any Hopf algebra H with HR finitely gener-
ated and projective has left (and right) integrals on H.

15.8. Canonical isomorphisms. Let H be a Hopf algebra with antipode S.

(1) For any N ∈MH , the Hopf module morphism (see 14.3)

γN : N ⊗R H → N ⊗bR H, n⊗ h �→
∑

nh1 ⊗ h2,

is invertible with the inverse,

βN : N ⊗bR H → N ⊗R H, m⊗ k �→
∑

mS(k1)⊗ k2.

(2) For any L ∈MB, the Hopf module morphism (see 14.4)

γL : L⊗cR H → L⊗R H, l ⊗ h �→
∑

l0 ⊗ l1h,

is invertible with the inverse,

βL : L⊗R H → L⊗cR H, m⊗ k �→
∑

m0 ⊗ S(m1)k.

Proof. (1) Take any n⊗h ∈ N ⊗RH and m⊗k ∈ N ⊗bRH and compute

βN(γN(n⊗ h)) = βN(
∑
nh1 ⊗ h2)

=
∑
nh1S(h2)⊗ h3 =

∑
n⊗ ε(h1)h2 = n⊗ h ,

γN(βN(m⊗ k)) = γN(
∑
mS(k1)⊗ k2)

=
∑
mS(k1)k2 ⊗ k3 = m⊗ k .
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Thus βN is the inverse of γN , as required.
(2) Take any l ⊗ h ∈ L⊗cR H and m⊗ k ∈ L⊗R H and compute

βL(γL(l ⊗ h) = βL(
∑
l0 ⊗ l1h)

=
∑
l0 ⊗ S(l1)l2h =

∑
l0ε(l1)⊗ h = l ⊗ h ,

γL(βL(m⊗ k) = γL(
∑
m0 ⊗ S(m1)k

=
∑
m0 ⊗m1S(m2)k =

∑
m0ε(m1)⊗ k = m⊗ k .

Thus βL is the inverse of γL as required. �

15.9. Hom-tensor relations. Let H be a Hopf algebra with antipode S, and
L,M,N ∈MH .

(1) A right H-action on HomR(M,L) is defined by

(fh)(m) =
∑
f(mS(h1))h2, for h ∈ H, m ∈M, f ∈ HomR(M,L).

Denote HomR(M,L) with this H-module structure by HomR(M,L)s.
Then there is a functorial isomorphism

HomH(M ⊗bR N,L)→ HomH(N,HomR(M,L)s), f �→ [n �→ f(−⊗ n)],

with the inverse g �→ [m⊗ n �→ g(n)(m)].

(2) If S is invertible, then a right H-action on HomR(M,L) is defined by

(fh)(m)=
∑
f(mS−1(h2))h1, for h ∈ H, m ∈M, f ∈ HomR(M,L).

Denote HomR(M,L) with this H-module structure by HomR(M,L)t.
Then there is a functorial isomorphism

HomH(M⊗bRN,L)→ HomH(M,HomR(N,L)
t), f �→ [m �→ f(m⊗−)],

with the inverse g �→ [m⊗ n �→ g(m)(n)].

Proof. (1) Clearly, the defined right H-action is unital, and it is also
associative since, for all h, k ∈ H and m ∈M ,

(f(hk))(m) =
∑
f (mS(h1k1))h2k2

=
∑
f (mS(k1)S(h1))h2k2 = ((fh)k)(m).

The maps indicated yield the canonical isomorphism (see 40.18)

HomR(M ⊗bR N,L)→ HomR(N,HomR(M,L)s),
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and it is left to show that H-morphisms on the left-hand side correspond to
H-morphisms on the right-hand side. Let m ⊗ n ∈ M ⊗bR N , h ∈ H, and
f ∈ HomH(M ⊗bR N,L). Then

f(m⊗ nh)=
∑
f(mS(h1)h2 ⊗ nh3)=

∑
f(mS(h1)⊗ n)h2=(fh)(m⊗ n).

This shows that n �→ f(−⊗ n) is an H-linear map.
For g ∈ HomH(N,HomR(M,L)s) and m⊗n ∈M⊗bRN , the map m⊗n �→

g(n)(m) is H-linear since, for any h ∈ H,

(m⊗ n)!h =
∑
mh1 ⊗ nh2 �→

∑
g(nh2)(mh1) =

∑
(g(n)h2)(mh1)

=
∑
g(n)(mh1S(h2))h3 = g(n)(m)h .

(2) The proof is similar to the proof of (1). �
We conclude this section by giving some general examples of bialgebras

and Hopf algebras. More examples, for example, those coming from quantum
groups, can be found in various monographs and textbooks on the subject
(see the Preface or the introduction to this chapter).

15.10. Semigroup bialgebra. Let G be a semigroup with identity e. The
semigroup algebra R[G] is the R-module R(G) together with the maps (defined
on the basis G and linearly extended)

µ : R[G]×R[G] −→ R[G], (g, h) �→ gh and ι : R→ R[G], r �→ re .

Since R[G] is a free R-module, there are also linear maps (see 1.6)

∆ : R[G] −→ R[G]⊗R R[G], g �→ g ⊗ g, and ε : R[G] −→ R, 1 �→ 1, g �→ 0.

It is easily seen from the definitions that ∆ and ε are algebra morphisms.
If G is a group, then S : R[G] → R[G], g �→ g−1, is an antipode, that is,

in this case R[G] is a Hopf algebra.

15.11. Polynomial Hopf algebra. As noticed in 1.8, for any commutative
ring R, the polynomial algebra R[X] is a coalgebra by

∆2 : R[X]⊗R R[X]→ R[X], 1 �→ 1, X i �→ (X ⊗ 1 + 1⊗X)i,

ε2 : R[X]→ R, 1 �→ 1, X i �→ 0, i = 1, 2, . . . .

Together with the polynomial multiplication this yields a (commutative and
cocommutative) bialgebra that is a Hopf algebra with antipode

S : R[X]→ R[X], 1 �→ 1, X → −X.

For any a ∈ R, denote by J the ideal in R[X] generated by aX. Since

∆2(aX) = 1⊗ aX + aX ⊗ 1, ε2(aX) = 0 and S(aX) = −aX ,
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it is easily seen that J is a Hopf ideal. Therefore H = R[X]/J is a Hopf
algebra over R. Notice that H need no longer be projective or flat as an
R-module. In particular, if R is an integral domain and 0 �= a ∈ R, then
HomR(R/aR,R) = 0 and H

∗ = Hom(H,R) � R, and H-subcomodules of H
do not correspond to H∗-submodules.

15.12. Tensor algebra of a module. For an R-module M , define

T0(M) := R and Tn(M) :=M ⊗ · · · ⊗M, n-times,n ≥ 0.

Then T (M) :=
⊕

n≥0 Tn(M) is an N-graded algebra with the product

Tn(M)⊗R Tk(M) −→ Tn+k(M),
(x1 ⊗ · · · ⊗ xn)⊗ (y1 ⊗ · · · ⊗ yk) �−→ x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yk,

for all n, k ∈ N. These give rise to an R-linear map µ : T (M) ⊗R T (M) →
T (M). (T (M), µ) is called the tensor R-algebra over M . T0(M) = R is
a subalgebra of T (M) and the unit of R is the unit of T (M). Moreover,
T1(M) =M is a submodule of T (M).

The tensor algebra is a cocommutative Hopf algebra.
This can be derived from the

Universal property of T (M). Let A be a unital associative R-algebra and
let f : M → A be an R-linear map. Then there exists a unique R-algebra
morphism g : T (M)→ A such that f = g|M . Since, for every R-algebra map
h : T (M) → A, the restriction h|M : M → A is R-linear, there is in fact a
bijective correspondence,

HomR(M,A)→ AlgR(T (M), A),

where AlgR(T (M), A) denotes all R-algebra maps T (M)→ A.

Proof. For n ≥ 1, the map Mn → A, (m1, ...,mn) �−→ f(m1) · · · f(mn),
is R-multilinear and hence it induces an R-linear map

gn : Tn(M)→ A, m1 ⊗ · · · ⊗mn �−→ f(m1) · · · f(mn).

For n = 0 put g0 := ι : R → A, r �→ r1A. By the universal property of the
direct sum this yields an R-linear map g : T (M)→ A, with g|Tn(M) = gn. It
is easy to verify that g is an R-algebra morphism. �

To define comultiplication on T (M), consider the maps, for n ≥ 1,

hn :M
n → T (M)⊗R T (M),

(x1, · · · , xn) �→
∑
0≤i≤n

(x1 ⊗ · · · ⊗ xi)⊗ (xi+1 ⊗ · · · ⊗ xn),
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which is R-multilinear and factorises over h̃n : Tn(M) → T (M) ⊗R T (M),
yielding an R-linear map ∆ : T (M)→ T (M)⊗R T (M). It is straightforward
to show that this is a coassociative and cocommutative coproduct with counit

ε : T (M)→ R, 1 �→ 1, z �→ 0, for z ∈ Tn(M), n ≥ 1 .

Moreover, the algebra and coalgebra structures on T (M) are compatible with
each other, thus making T (M) a bialgebra.

To define an antipode observe that, for the opposite algebra T (M)op, the
R-module map M → T (M)op, m �→ −m, can be extended to an algebra
morphism S : T (M) → T (M)op (by the universal property), which in turn
can be considered as an algebra anti-morphism S : T (M) → T (M). By
definition, for m1 ⊗ · · · ⊗mn ∈ Tn(M),

S(m1 ⊗ · · · ⊗mn) = (−1)nmn ⊗ · · · ⊗m1 ,

and from this we can deduce that S is an antipode for the bialgebra T (M).

Other Hopf algebras can be derived from the Hopf algebra T (M).

15.13. Symmetric algebra of a module. Let M be an R-module and
T (M) its tensor algebra. The symmetric algebra of M , denoted by S(M), is
the factor algebra of T (M) by the (two-sided) ideal J generated by the subset

{x⊗ y − y ⊗ x | x, y ∈M} ⊂ T (M).

Properties. S(M) is a commutative graded algebra. S(M) contains R as a
subring and M as a submodule.
Proof. Denoting by x̄ the image of x ∈ M under T (M) → T (M)/J ,

we see that S(M) is generated by {x̄ |x ∈ M}. It follows from the defining
elements of J that x̄ȳ = ȳx̄ (product in S(M)) for all x, y ∈M. Hence S(M)
is commutative. Furthermore, writing Jn := J ∩Tn(M), it can be shown that
J = ⊕NJn and hence

S(M) =
⊕

N

Tn(M)/Jn,

which makes S(M) an N-graded algebra. The other assertions follow from
the fact that T0(M) ∩ J = 0 and T1(M) ∩ J = 0. �
Remark. Since every permutation of n elements can be generated by trans-
positions, we know, for n ≥ 1, that Jn is the R-submodule of Tn(M) generated
by all elements of the form

x1 ⊗ x2 ⊗ · · · ⊗ xn − xσ(1) ⊗ xσ(2) · · · ⊗ xσ(n),

where all xi ∈M and the σ are permutations of n-elements.
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Universal property of S(M). Let B be a unital associative and commuta-
tive R-algebra and f : M → B an R-linear map. Then there exists a unique
R-algebra morphism g : S(M)→ B such that f = g|M . This yields a bijective
correspondence

AlgR(S(M), B)→ HomR(M,B).

Proof. By the universal property of T (M) there exists an algebra map
f̃ : T (M)→ B such that

f̃(x⊗ y) = g(x)g(y) = g(y)g(x) = f̃(y ⊗ x).

Hence all x⊗ y − y ⊗ x are in Ke f̃ , implying J ⊂ Ke f̃ , and by factorisation
we obtain the assertion. �
Proposition. For any two R-modules M1,M2, there is an R-algebra isomor-
phism

g : S(M1 ⊕M2)→ S(M1)⊗R S(M2).

Proof. Put M = M1 ⊕M2. The canonical injections ei : Mi → M, i =
1, 2, yield R-algebra morphisms s(ei) : S(Mi)→ S(M), i = 1, 2. Since S(M)
is commutative, there exists a unique R-algebra map h : S(M1) ⊗ S(M2) →
S(M), such that s(ei) = h◦fi, i = 1, 2, where fi : S(Mi)→ S(M1)⊗S(M2) are
the canonical morphisms. They can be extended to an R-algebra morphism
g : S(M)→ S(M1)⊗ S(M2), which is the inverse map for h. �

The last proposition is the key for constructing the coalgebra structure of
S(M). The diagonal map ϑ : M → M ⊕M, x �−→ (x, x), is R-linear and
induces an R-algebra morphism s(ϑ) : S(M) → S(M ⊕M). Combined with
the isomorphism g : S(M ⊕M)→ S(M)⊗R S(M), it yields an R-linear map

∆ := g ◦ s(ϑ) : S(M)→ S(M)⊗R S(M),

which makes S(M) a coalgebra. Tracing back the definitions we find that ∆
is coassociative and is an R-algebra morphism with

∆(x) = g(x, x) = x⊗ 1 + 1⊗ x, for all x ∈M.

The counit for this cocommutative comultiplication is

ε : S(M)→ R, 1 �→ 1, z �→ 0, for z ∈ Sn(M), n ≥ 1.

The structure maps ∆ : S(M)→ S(M)⊗R S(M) and ε : S(M)→ R are
algebra morphisms and hence S(M) is a bialgebra.

For the antipode S of T (M) and x, y ∈M , we observe

S(x⊗ y − y ⊗ x) = S(y)S(x)− S(x)S(y) = (−y)⊗ (−x)− (−x)⊗ (−y),

that is, S(J) ⊂ J for the defining ideal J ⊂ T (M) of S(M). Hence S factors
to a map S(M)→ S(M) that is an antipode, making S(M) a cocommutative
Hopf algebra.
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15.14. Exterior algebra of a module. Let M be an R-module and T (M)
its tensor algebra. The exterior algebra ofM , denoted by Λ(M), is the factor
algebra of T (M) by the ideal K generated by the subset

{x⊗ x | x ∈M} ⊂ T (M).

Putting Kn := K ∩ Tn(M) and Λn(M) := Tn(M)/Kn, we obtain

K =
⊕

N

Kn and Λ(M) =
⊕

N

Λn(M).

It is easy to check that this makes Λ(M) an N-graded algebra.

Similar to the symmetric case, K0 = K1 = 0, and hence we may assume
R ⊂ Λ(M) and M ⊂ Λ(M). The product of two elements u, v ∈ Λ(M) is
usually written as u ∧ v and is called the exterior product of u and v. By
construction, the elements of Λn(M), n ≥ 2, are sums of elements of the form
x1 ∧ x2 ∧ · · · ∧ xn with xi ∈ M . It is an elementary computation to verify
that this product is zero if any two of the xi are equal (or, over a field, if the
x1, . . . , xn are linearly dependent).

Universal property of Λ(M). Let B be an associative R-algebra and let
f : M → B be an R-linear map such that f(x)2 = 0, for all x ∈ M. Then
there exists a unique R-algebra morphism h : Λ(M)→ B such that f = h|M .

As for the symmetric algebra, for any R-modules M1,M2, there is an
isomorphism g : Λ(M1 ⊕ M2) � Λ(M1) ⊗R Λ(M2). The diagonal map δ :
M →M ⊕M, x �→ (x, x), induces an R-algebra morphism

Λ(δ) : Λ(M)→ Λ(M ⊕M).

Combined with the isomomorphism g : Λ(M ⊕M) → Λ(M) ⊗R Λ(M), this
gives an R-linear map

g ◦ Λ(δ) : Λ(M)→ Λ(M)⊗R Λ(M), x �→ x⊗ 1 + 1⊗ x,

which makes Λ(M) a coalgebra. The counit is

ε : Λ(M)→ R, 1 �→ 1, z �→ 0, for z ∈ Λn(M), n ≥ 1.

For the antipode S of T (M), obviously S(K) ⊂ K for the defining ideal
K ⊂ T (M), and hence it factorises to an antipode Λ(M)→ Λ(M).

15.15. Exercises

(1) Let H be a Hopf algebra with antipode S that is finitely generated and
projective as an R-module. Show that H∗ with the canonical structure maps
is again a Hopf algebra.
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(2) Prove that for a Hopf algebraH with antipode S, the following are equivalent:

(a) for any h ∈ H,
∑

S(h2)h1 = ε(h)1H ;
(b) for any h ∈ H,

∑
h2S(h1) = ε(h)1H ;

(c) S ◦ S = IH .

(3) Let H = R[X]/J be the Hopf algebra considered in 15.11. Show that every
element in H is contained in an H-subcomodule that is finitely generated as
an R-module.

(4) Let H, K be Hopf algebras with antipodes SH , SK , respectively. Prove that,
for any bialgebra morphism f : H → K, SK ◦ f = f ◦ SH .

(5) Let L be a Lie algebra over R and assume L to be free as an R-module. In the
tensor algebra T (L) (over the R-module L) consider the ideal J generated by
the subset

{x⊗ y − y ⊗ x− xy | x, y ∈ L}.
The factor algebra U(L) := T (L)/J is called the universal enveloping R-
algebra of L. Prove that U(L) is a Hopf algebra.

(6) Let R be a Noetherian ring and B an R-bialgebra. Assume that the finite
dual B◦ is a pure R-submodule of RB. Prove that B◦ is again a bialgebra with
the coproduct as given in 5.7, and the product induced by the convolution
product on B∗. Prove also that, if B is a Hopf algebra, then B◦ is a Hopf
algebra.

(7) Let G be a group and R a Noetherian ring. Prove that if if R[G]◦ is R-pure
in R[G]∗, then R[G]◦ is a Hopf-algebra with antipode

R[G]◦ → R[G]◦, ξ �→ [g �→ ξ(g−1), for g ∈ G].

(8) Let R be a Noetherian ring and R[X] the polynomial ring. Prove:

(i) The coalgebra structure ∆1, ε1 on R[X] (see 1.8) induces an algebra
structure on the finite dual R[X]◦ with product (ξ, ζ ∈ R[X]◦)

(ξ · ζ)(xi) = (ξ ⊗ ζ)∆1(xi) = ξ(xi)ζ(xi), i ≥ 0,

and unit u1 : R → R[x]◦, 1 �→ [xi �→ 1, i ≥ 0], which is compatible with
the coalgebra structure on R[X]◦ (see 5.13).

(ii) The coalgebra structure ∆2, ε2 on R[X] (see 1.8) induces an algebra
structure on R[X]◦ with product

(ξ ∗ ζ)(xi) = (ξ ⊗ ζ)∆2(xi) =
i∑
j=0

(
i

j

)
ξ(xj)ζ(xi−j), i ≥ 0,

and unit u2 : R → R[x]◦, 1 �→ [xi �→ δi,0, i ≥ 0], which makes R[x]◦ a
Hopf algebra with antipode

R[x]◦ → R[x]◦, ξ �→ [xi �→ (−1)i ξ(xi), i ≥ 0].

References. Bourbaki [5]; Dǎscǎlescu, Nǎstǎsescu and Raianu [14]; Lomp
[153]; Montgomery [37]; Nakajima [164]; Pareigis [174]; Sweedler [45]; Wis-
bauer [212].
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16 Trace ideal and integrals for Hopf algebras

Sections 4, 7 and 8 displayed clearly the significance and usefulness of the
dual algebra C∗ of a coalgebra C for analysing the structure of C and of the
category of its comodules MC . The relationship with C∗ allows one to turn
questions about the structure of MC into questions about modules over C∗.
Since a Hopf algebra H is a coalgebra with an additional structure, H∗ is a
(convolution) algebra, and the results in Sections 4, 7 and 8 can be applied
in particular to comodules of a Hopf algebra. In this section we investigate
the relationship between H and H∗. We concentrate on properties that are
typical for Hopf algebras, in particular, on those that are related to Hopf
modules. One of such properties is the fact that the antipode S of H induces
a right H-module structure on H∗ that makes the rational module RatH(H∗)
(cf. 7.1) a right Hopf module.

16.1. Right H-module structure on H∗. Let H be a Hopf R-algebra,
locally projective as an R-module, and suppose that R is Noetherian. Let T =
RatH(H∗) be the left trace ideal with the right H-coaction �T : T → T ⊗R H.
Then H∗ is a right H-module with the multiplication

↽s : H∗ ⊗R H → H∗, f ⊗ a �→ S(a)⇁f .

Explicitly, for each c ∈ H (cf. 14.14 for the definition of ⇁),

[f↽s a](c) = [S(a)⇁f ](c) = f(cS(a)).

(1) For all a ∈ H and g, f ∈ H∗,

g ∗ (f↽s a) =
∑
[(a2⇁g) ∗ f ]↽s a1 .

(2) With this structure T is a right H-submodule of H∗ and �T is a Hopf
module structure map.

(3) HR is finitely generated if and only if H
∗ is a Hopf module.

Proof. Since S is a ring anti-morphism, the definition clearly yields a
right module structure on H∗.

(1) Evaluating both expressions at x ∈ H, we obtain∑
([(a2⇁g) ∗ f ]↽s a1)(x) =

∑
((a2⇁g)⊗ f)(x1S(a12)⊗ x2S(a11))

=
∑
g(x1S(a2)a3)f(x2S(a1))

=
∑
g(x1ε(a2))f(x2S(a1))

=
∑
g(x1)f(x2S(a)) = g ∗ (f↽s a)(x) .
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(2) Let f ∈ T and �T (f) =
∑
f0⊗f 1. For any g ∈ H∗, g ∗f =

∑
g(f 1)f0,

and for all a ∈ H we obtain from (1),

g ∗ (f↽s a) =
∑
[(a2⇁g)(f 1)f0]↽s a1 =

∑
g(f 1a2)(f0↽s a1) .

This shows that the left ideal generated by f↽s a in H∗ is a submodule of
the R-module generated by the finite family f0↽s a1. Since R is Noetherian,
H∗∗(f↽s a) is a finitely presented R-module and hence f↽s a ∈ T by 7.5. This
proves that T is a right H-submodule in H∗. Furthermore, since the identity
in (1) holds for all g ∈ H∗, the local projectivity implies that

�T (f↽s a) =
∑
(f 0↽s a1)⊗ f 1a2 = �T (f)∆a ,

so that T is an H-Hopf module with the specified structure maps.
(3) If HR is finitely generated, then Rat

H(H∗) = H∗ is a Hopf module. On
the other hand, if H∗ is a Hopf module, then in particular it is an H-comodule
and hence HR is finitely generated (see 4.7). �

16.2. Coinvariants in H∗. Let H be a Hopf R-algebra that is locally projec-
tive as an R-module, and let T = RatH(H∗). Then for all t ∈ T the following
statements are equivalent:

(a) t is a left integral on H;

(b) t ∈ T coH .

If R is Noetherian, then (a) and (b) are equivalent to:

(c) α : H → H∗, b �→ t↽s b, is a left H∗-morphism;

(d) β : H ×H → R, (c, d) �→ (t↽s d)(c), is an H-balanced bilinear form.

Proof. (a) ⇔ (b) By 13.6, (a) implies t ∈ T and �T (t) = t⊗ 1H . This is
equivalent to t ∈ T coH (see 14.7).

Now assume that R is Noetherian.
(b) ⇒ (c) Let t ∈ T coH . From 16.1 we know that α(t) ⊂ T , so that there

is a commutative diagram

H
α ��

∆
��

T

�T

��

b
� ��

	

��

t↽s b	

��
H ⊗R H

α⊗IH �� T ⊗R H ∆(b) � ��
∑
t↽s b1 ⊗ b2 ,

showing that α is a right H-comodule (hence a left H∗-module) morphism.
(c) ⇒ (a) Since α is a left H∗-module morphism, α(1H) = t ∈ T and

t⊗ 1H = �T (t) (see 13.6).
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(c) ⇔ (d) By definition, (c) is satisfied if and only if

t↽s (f⇀d) = f ∗ (t↽s d), for d ∈ H, f ∈ H∗.

For any c, d ∈ H, f ∈ H∗,

β(c↼f, d) = (t↽s d)(c↼f) = [f ∗ (t↽s d)](c),
β(c, f⇀d) = [t↽s (f⇀d)](c).

From this the assertion is clear. �

16.3. The trace ideal as projective generator. Let H be a Hopf R-algebra
that is a locally projective R-module, and let T := RatH(H∗). Consider the
following properties:

(i) T is a projective generator in MH ,

(ii) T is a faithfully projective R-module,

(iii) T coH is a faithfully flat R-module,

(iv) H is cogenerated by H∗ as left H∗-module.

Then there is a chain of implications (i)⇒ (ii)⇒ (iii)⇒ (iv).

(1) If (iii) holds, then S is injective.

(2) If R is a QF ring, then (iv)⇒ (i).

Proof. (i) ⇒ (ii) By 3.22, a projective object T in MH is projective
in MR. Moreover, T generates H and hence also R. This shows that T is
faithfully projective in MR.

(ii) ⇒ (iii) By the Fundamental Theorem 15.5, T � T coH ⊗R H. Since H
and T are faithfully flat R-modules, we conclude that so is T coH .

(iii) ⇒ (iv) For any t ∈ T coH , the map H → H∗, b �→ t↽s b, is a left
H∗-morphism. Since T coH ⊗ b �= 0, for any nonzero b ∈ H, the isomorphism
T coH ⊗R H → T , t ⊗ b �→ t↽s b, implies that there exists t ∈ T coH such that
t↽s b �= 0. Hence H is cogenerated by H∗.

(1) To prove that S is injective take any a ∈ H such that S(a) = 0. Then

T coH ⊗ a � T coH↽s a = S(a)⇁T coH = 0.

This implies that a = 0 and hence S is injective.
(2) The implication (iv) ⇒ (i) over QF rings will be shown in 16.8. �

16.4. Proposition. Let H be a Hopf R-algebra that is a locally projective
R-module, and let T = RatH(H∗). For the conditions

(i) there exists a generator P in MH which is projective in H∗M,

(ii) MH is closed under extensions in H∗M,
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(iii) H is a generator in MH ,

(iv) if R is Artinian then T and T coH are faithfully projective as R-modules,

the implications (i)⇒ (ii)⇒ (iii) and (ii)⇒ (iv) hold true.

Proof. (i) ⇒ (ii) is a special case of Corollary 42.18.
(ii) ⇒ (iii) By 42.16, T is a generator in MH and, by 15.5, H generates

T (as a right Hopf module). Thus H is a generator in MH .
(ii)⇒ (iv) Since R is Artinian and H is projective as an R-module, H∗ is

also a projective R-module. By 7.11, H∗/T is flat as a right H∗-module and
hence is a direct limit of projective H∗-modules, which are also projective
R-modules. Therefore H∗/T is projective as an R-module and so is T . This
also implies that T coB is faithfully projective (see 16.3, (ii) ⇒ (iii)). �

Although in general left semiperfect coalgebras need not be right semiper-
fect, the above proposition implies that for Hopf algebras over QF rings these
two notions are equivalent.

16.5. Corollary. Let H be a right semiperfect Hopf R-algebra with HR locally
projective, and let R be a QF ring. Then:

(1) H is cogenerated by H∗ as a left H∗-module.

(2) H is left semiperfect as coalgebra and RatH(H∗) = HRat(H∗).

Proof. (1) follows from 16.3 (iii)⇒(iv).
(2) As shown in 9.13, (1) implies that H is left semiperfect. Now it follows

by 9.9 that the left and right trace ideals coincide. �
Next we prove a uniqueness theorem for the coinvariants of Hopf algebras

over QF rings.

16.6. Lemma. Let H be a right semiperfect Hopf R-algebra with HR locally
projective, and let T = RatH(H∗). If R is a QF ring, then:

(1) for every M ∈MH that is finitely generated as an R-module,

lengthR(HomH∗(H,M)) ≤ lengthR(M),

where lengthR(M) denotes the composition length of the R-module M .

(2) In particular, T coH = Rχ � R, for some χ ∈ T coH .

(3) There exists t ∈ T with t(1H) = 1R.

(4) For any χ ∈ T coH with T coH = Rχ, there exists some a ∈ H such that
χ↽s a(1H) = 1R.

Proof. (1) By 16.4(3), R is a direct summand of T coH . By the Funda-
mental Theorem 15.5, this implies that H � R ⊗R H is a direct summand
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of T coH ⊗R H � T in MH
H , and hence also in M

H , yielding an epimorphism
HomH∗(T,M)→ HomH∗(H,M). Under the given conditions, 9.7 implies that

M � HomH∗(H∗,M) � HomH∗(T,M),

and from this the assertion follows.
(2) With the trivial coaction R → R ⊗R H, r �→ r ⊗ 1H , R is a right H-

comodule. Now (1) implies that lengthR(HomH∗(H,R)) ≤ lengthR(R). Since
T = RatH(H∗) by 16.5, we know from 13.6 that HomH∗(H,R) = T coH , so
that lengthR(T

coH) ≤ lengthR(R). Since R is a direct summand of T
coH , this

implies that R � T coH .
(3) By 9.6 and 7.11, for any N ∈MH , the canonical map T ⊗H∗N → N is

an isomorphism. In particular, the map T ⊗H∗R→ R, t⊗r �→ t⇀r = rt(1H),
is an isomorphism. Therefore there exist t1, . . . , tn ∈ T and r1, . . . , rn ∈ R,
such that

1R =
n∑
i=1

ti⇀ri =
n∑
i=1

riti(1H) = [
n∑
i=1

riti](1H).

Hence t :=
n∑
i=1

riti ∈ T and t(1H) = 1R.

(4) By (2), there exists χ ∈ T coH such that T coH = Rχ � R. By the
Fundamental Theorem 15.5, the map T coH ⊗R H → T , χ⊗ h �→ χ↽sh, is an
isomorphism in MH

H . Thus there exists a ∈ H such that χ↽s a = t. �

16.7. Bijective antipode. Let H be a (right) semiperfect Hopf R-algebra
that is locally projective as an R-module. If R is a QF ring, then the antipode
S of H is bijective.

Proof. Let T := RatH(H∗) and let T coH = Rχ (see 16.6). By 16.3, S is
injective. Now, suppose that S(H) �= H. Since S(H) is a subcoalgebra, we
may consider it as a left subcomodule of H. Then 0 �= H/S(H) ∈ HM, and
hence there is a nonzero morphism ω : H/S(H) → E(U) in HM, for some
simple object U with injective hull E(U) in HM. Since R is a cogenerator in
MR, there is an R-morphism α : E(U)→ R with α◦ω �= 0. The composition
of α ◦ ω with the canonical projection, π : H → H/S(H), gives a nonzero
R-morphism λ := α ◦ ω ◦ π : H → R. Note that Keλ ⊃ N ⊃ S(H), where
Keω = N/S(H). By definition, N ⊂ H is a left subcomodule and H/N
is finitely R-generated (since E(U) is). So, by 7.5, λ ∈ T and there exists
b ∈ H such that λ = χ↽s b. By construction, λ(S(H)) = χ↽s b(S(H)) = 0.
Therefore, for any h ∈ H,

0 = χ↽s b(S(h)) = χ(S(h)S(b)) = χ(S(bh)) = χ ◦ S(bh),

and we conclude that χ ◦ S(bH) = 0. It is straightforward to prove that,
for the left integral χ, the composition χ ◦ S is a right integral and hence
χ ◦ S(H∗

⇀bH) = 0.



16. Trace ideal and integrals for Hopf algebras 163

Since H is a progenerator in MH
H (see 15.5), there exists an ideal J ⊂ R

such that the Hopf submodule H∗
⇀bH ⊂ H is of the form JH, and

0 = χ ◦ S(H∗
⇀bH) = χ ◦ S(JH) = Jχ ◦ S(H).

As we have seen in 16.6, there exists a ∈ H with χ ◦ S(a) = 1R. This implies
J = 0 and bH ⊂ JH = 0, that is, b = 0, contradicting the fact that by
construction 0 �= λ = χ↽s b. �

16.8. Semiperfect Hopf algebras over QF rings. Let H be a Hopf R-
algebra that is locally projective as an R-module, and let T = RatH(H∗). If
R is a QF ring, then the following are equivalent:

(a) H is a right semiperfect coalgebra;

(b) T is a projective generator in MH ;

(c) T is a faithful and flat R-module;

(d) T coH is a faithful and flat R-module;

(e) H is cogenerated by H∗ as a left H∗-module (left QcF);

(f) H is projective in MH ;

(g) H is a projective generator in MH ;

(h) T coH = Rχ � R, for some χ ∈ T coH ;

(i) T is a flat R-module and the injective hull of R in HM is finitely gen-
erated as an R-module;

(j) there exists a left H∗-monomorphism H → H∗, that is, H is a left
co-Frobenius Hopf algebra;

(k) H is a left semiperfect coalgebra.

The left-side versions of (b)–(j) are also equivalent to (a).

Proof. (a) ⇒ (c) ⇒ (d) ⇒ (e) We know from 9.6 that MH has a
generator that is projective in H∗M. So the assertions follows from 16.4.

(e) ⇒ (f) ⇒ (k) are clear by 16.5 and 9.13.
(a) ⇒ (b) Since (a) ⇒ (k), we obtain from 9.9 that T is a ring with

enough idempotents. From 9.6 (and [46, 49.1]) we know that T is a projective
generator in MH(= TM).

(a) ⇒ (g) The implications (a) ⇒ (f) and (a) ⇒ (k) imply that H is
projective as a left and right comodule. So, by 9.13 and 9.15, H is a projective
generator in MH (and HM).

(b) ⇒ (a), (g) ⇒ (a), and (j) ⇒ (e) are trivial, while (a) ⇒ (h) is shown
in 16.6(2).

(a) ⇒ (i) As mentioned before, 16.4 applies and so TR is projective, and
by 9.6, injective hulls of simple comodules in HM are finitely generated.
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(i)⇒ (c) Let E(R) denote the injective hull of R in HM. Assume it to be
finitely generated as an R-module. Then E(R)∗ is projective and cogenerated
by T . The inclusion R ⊂ E(R)∗ implies that R is cogenerated by T . Hence
T is a faithful R-module.

(h) ⇒ (j) This follows from the fact that H → H∗, b �→ χ↽s b, is a
monomorphism.

(k) ⇒ (a) This follows from (a) ⇒ (k) by left-right symmetry. �
Over a field every nonzero vector space is faithfully flat, so 16.8 implies:

16.9. Corollary. For a Hopf algebra H over a field F and T = RatH(H∗),
the following are equivalent:

(a) H is a right semiperfect coalgebra;

(b) T �= 0;
(c) T coH �= 0;
(d) T coH is one-dimensional over F ;

(e) the injective hull of F in HM is finite dimensional;

(f) H is cogenerated by H∗ as a left H∗-module;

(g) H is projective (and a generator) in MH ;

(h) H is left co-Frobenius;

(i) H is a left semiperfect coalgebra.

The left side versions of (b)–(g) are also equivalent to (a).
If these conditions are satisfied, then the antipode of H is bijective.

Definitions. Let B be an R-bialgebra. A left integral t ∈ B∗ is called a total
left integral on B if t(1B) = 1R or, equivalently, t ◦ ι = 1R.

A Hopf algebra H is said to be left (H,R)-cosemisimple if, for any M ∈
HM, subcomodules of M that are R-direct summands of M are also direct
summands as comodules. H is said to be left cosemisimple if it is semisimple
as a left comodule.

16.10. Total integrals on H. For a Hopf R-algebra H, the following are
equivalent:

(a) there exists a total left integral t on H;

(b) there exists an R-linear map α : H ⊗R H → R satisfying

α ◦∆ = ε and (IH ⊗ α) ◦ (∆⊗ IH) = (α⊗ IH) ◦ (IH ⊗∆);

(c) every left H-comodule is (H,R)-cosemisimple;

(d) H is (H,R)-cosemisimple as a left H-comodule.
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Proof. (a) ⇒ (b) Let t : H → R be a total left integral on H and
consider the map

α : H ⊗R H
IH⊗S−→ H ⊗R H

µ→ H
t→ R, h⊗ h′ �→ t(hS(h′)).

The properties of the antipode immediately imply that

α ◦∆ = t ◦ µ ◦ (IH ⊗ S) ◦∆ = t ◦ ι ◦ ε = ε.

Furthermore, using 13.6(1), we obtain for all h, h′ ∈ H,

(α⊗ IH)(IH ⊗∆)(h⊗ h′) =
∑

t(hS(h′1))h′2

=
∑
(hS(h′1))1t((hS(h′1))2)h′2

=
∑

h1S(h
′
2)h

′
3t(h2S(h

′
1))

=
∑

h1t(h2S(h
′)) = (IH ⊗ α)(∆⊗ IH)(h⊗ h′).

(b)⇒ (c) Suppose there is an R-linear map α : H⊗RH → R satisfying the
conditions in (b). LetM be a left H-comodule with subcomodule i : N →M ,
which is an R-direct summand, that is, there exists an R-linear p : M → N
such that p ◦ i = IN . Define

β := (α⊗ IN) ◦ (IH ⊗ N�) ◦ (IH ⊗ p) ◦ M� :M → N,

m �→
∑

α(m−1 ⊗ p(m0)−1)p(m0)0.

We have to show that β is a left H-comodule morphism satisfying β ◦ i = IN .
Compute

β ◦ i = (α⊗ IN) ◦ (IH ⊗ N�) ◦ (IH ⊗ p) ◦ M� ◦ i
= (α⊗ IN) ◦ (IH ⊗ N�) ◦ (IH ⊗ p) ◦ (IH ⊗ i) ◦ N�
= (α⊗ IN) ◦ (IH ⊗ N�) ◦ N� = (α⊗ IN) ◦ (∆⊗ IN) ◦ N�
= (α ◦∆⊗ IN) ◦ N� = (ε⊗ IN) ◦ N� = IN .

To verify that β is H-colinear, we prove that (IH ⊗ β) ◦M� = N� ◦ β. For this
we use the properties of α and compute, for all m ∈M ,

(IH ⊗ β) ◦ M�(m) =
∑

m−2 ⊗ α(m−1 ⊗ p(m0)−1)p(m0)0

=
∑

p(m0)−1α(m−1 ⊗ p(m0)−2)p(m0)0

= N� ◦ β(m),
as required.

(c) ⇒ (d) is trivial.
(d)⇒ (a) The map ι : R→ H is a left H-comodule map that splits as an

R-linear map. Hence there is a left H-comodule morphism t : H → R such
that t ◦ ι = 1R, that is, t is a total left integral. �
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16.11. Corollary. Let H be a Hopf R-algebra with a total left integral over
a semisimple ring R. Then H is a direct sum of simple left comodules, that
is, it is a semisimple right H∗-module.

For a Hopf algebra H there is an interesting relationship between integrals
in H and the centre of H ⊗R H considered as an H-bimodule in the natural
way. Let

Z(H⊗RH) = {u ∈ H⊗RH |hu = uh for all h ∈ H} � HHomH(H,H⊗RH).

16.12. Coinvariants and Z(H ⊗R H). Define the R-linear maps

γ : HH → Z(H ⊗R H), h �→ (IH ⊗ S)∆(h),

δ : Z(H ⊗R H)→ HH,
∑
i ai ⊗ bi �→

∑
aiε(bi),

where HH = {h ∈ H | for all h′ ∈ H, h′h = ε(h′)h} is the R-module of left
invariants (cf. 14.12). Then δ ◦ γ = IHH .

Proof. First we need to show that the image of γ lies in Z(H ⊗R H).
Consider the following equalities for all h ∈ HH and a ∈ H,

∆(h)⊗ a =
∑

∆(ε(a1)h)⊗ a2 =
∑

∆(a1h)⊗ a2 =
∑

a1h1 ⊗ a2h2 ⊗ a3.

Now apply IH ⊗ S and IH ⊗ µ to obtain

(IH ⊗ S)∆(h) a =
∑
h1 ⊗ S(h2)a =

∑
a1h1 ⊗ S(a2h2)a3

=
∑
a1h1 ⊗ S(h2)S(a2)a3

=
∑
ah1 ⊗ S(h2) = a (IH ⊗ S)∆(h) .

Thus the image of γ is in Z(H ⊗R H), as required. The multiplicativity of ε
ensures that the image of δ is in HH. Finally, the fact that γ is a section of
δ follows immediately from the counit properties and from the counitality of
the antipode. This completes the proof. �

Notice that similar maps exist for the right-hand versions.

16.13. Separable Hopf algebras. For any Hopf R-algebra H, the following
are equivalent:

(a) H is a separable R-algebra;

(b) H is left (right) (H,R)-semisimple;

(c) R is projective as a left (right) H-module;

(d) there exists a left (right) integral h in H with ε(h) = 1R.
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Proof. (a) ⇒ (b) ⇒ (c) are well known in classical ring theory.
(c) ⇒ (d) Since R is a projective left H-module, the counit ε : H → R

is split by a left H-module morphism α : R → H. Then α(1R) ∈ HH and
ε(α(1R)) = 1R, that is, α(1R) is a normalised left integral in H (see 14.12).
Similar arguments apply for the right-hand case.

(d)⇒ (a) Take any h ∈ HH with ε(h) = 1R. Then γ(h) = (IH⊗S)∆(h) ∈
Z(H ⊗R H) (see 16.12) and

µ(γ(h)) =
∑

h1S(h2) = ε(h) = 1R.

Therefore γ(h) is a separability idempotent. �
Recall that a separable R-algebra that is projective as an R-module is a

finitely generated R-module. In particular, if R is a field, we obtain

16.14. Separable Hopf algebras over fields. For any Hopf algebra H
over a field F , the following are equivalent:

(a) H is a separable F -algebra;

(b) H is semisimple as a left (or right) H-module;

(c) F is projective as a left (or right) H-module;

(d) there exists a left (right) integral h ∈ H with ε(h) �= 0.
Remarks. The assertions of 16.10 were proved in [148, Theorem]. The
uniqueness of integrals of Hopf algebras over fields (see 16.6) was shown in
[191]. Our proof adapts techniques of the proof given in [60, Theorem 3.3].

It was shown in [177, Proposition 2] that for semiperfect Hopf algebras
over fields the antipode is bijective. The original proof was simplified in [88].
We essentially followed these ideas to prove the corresponding result for Hopf
algebras over QF rings in 16.7.

Some of the equivalences given in 16.9 appear in [152, Theorem 3]. The
characterisation of these algebras by (g) is given in [191, Theorem 1] and
for affine group schemes it is shown in [109]. The characterisation of Hopf
algebras in 16.13 is taken from [153].

16.15. Exercises
Let H be a Hopf R-algebra that is finitely generated and projective as an R-

module. Prove:
(i) The antipode S of H is bijective.
(ii) The right coinvariants (H∗)coH of H∗ form a finitely generated projective

R-module of rank 1.
(iii) If (H∗)coH � R, then H � H∗ as left H-modules (that is, H is a Frobenius

algebra).

References. Beattie, Dǎscǎlescu, Grünenfelder and Nǎstǎsescu [60]; Dǎs-
cǎlescu, Nǎstǎsescu and Raianu [14]; Larson [148]; Lomp [153]; Menini, Tor-
recillas and Wisbauer [157]; Pareigis [173]; Sullivan [191].
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Chapter 3

Corings and comodules

Our adventure with corings starts here. Corings should be seen as one of the
most fundamental algebraic structures that include rings and coalgebras as
special cases. They appear naturally in the following chain of generalisations:
coalgebras over fields; coalgebras over commutative rings; and coalgebras
over noncommutative rings (= corings). The scope of applications of corings
is truly amazing, and their importance can be explained at least on two
levels. First, corings are a “mild” generalisation of coalgebras, in the sense
that several properties of coalgebras over commutative rings carry over to
corings. In particular, various general properties of corings can be proven
by using the same techniques as for coalgebras over rings. From this point
of view the step from coalgebras over fields to coalgebras over commutative
rings is much bolder and adventurous than that from coalgebras over rings
to corings. Second, the range of problems that can be described with the use
of corings is much wider than the problems that could ever be addressed by
coalgebras. In situations such as ring extensions, even if a commutative ring
is extended, one will always require corings. In addition to all this, the theory
of corings also has an extremely useful unifying power. We shall soon see that
several results about the structure of Hopf modules (cf. Section 14), including
the Fundamental Theorem of Hopf algebras 15.5, and their generalisations to
different classes of Hopf-type modules, are simply special cases of structure
theorems for corings.

In this chapter we outline the scenery for the theory of corings. We stress
the relationship between corings and coalgebras over rings, and thus the pat-
tern of our presentation follows that of Chapter 1. We often use the same or
very similar techniques as in Chapter 1 to prove more general results about
corings. At the same time we indicate the differences and pay particular at-
tention to several fine points arising from the noncommutativity of the base
algebra. Section 24 has the full coring flavour: we discuss the effects of the
change of base for the corings and their comodules.

In the present chapter we concentrate on the theory of corings and their
comodules. Examples can be found in Chapter 4 and, specifically, in Chapters
5 and 6. Throughout, R denotes a commutative and associative ring with a
unit and A an associative R-algebra with a unit.

169
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17 Corings and their morphisms

Extending the notion of an R-coalgebra to noncommutative base rings leads
to corings over an algebra A. They are based on bimodules over A (instead
of R-modules). The formalism related to the basic notions is very much the
same as for coalgebras, except that we have to pay attention to the left-sided
and right-sided properties of the bimodules.

The notion of a coring can be viewed as an example of a coalgebra in
a monoidal category also called a tensor category (see 38.31). For this the
category of (A,A)-bimodules AMA is taken with the usual tensor product
over A, and the neutral object is A itself. Thus an A-coring is simply a
coalgebra in the monoidal category (AMA,⊗A, A). More explicitly, we have
the following definition.

17.1. Corings. An A-coring is an (A,A)-bimodule C with (A,A)-bilinear
maps

∆ : C → C ⊗A C and ε : C → A,

called (coassociative) coproduct and counit, with the properties

(IC ⊗∆) ◦∆ = (∆⊗ IC) ◦∆, and (IC ⊗ ε) ◦∆ = IC = (ε⊗ IC) ◦∆.

These can be expressed by the commutativity of the diagrams

C
∆ ��

∆

��

C ⊗A C
IC⊗∆

��
C ⊗A C

∆⊗IC�� C ⊗A C ⊗A C ,

C
∆ ��

IC

����
���

���
���

∆

��

C ⊗A C
ε⊗IC
��

C ⊗A C
IC⊗ε �� C .

As for coalgebras, we will use the Σ-notation, writing for c ∈ C,

∆(c) =
k∑
i=1

ci ⊗ c̃i =
∑

c1 ⊗ c2,

and – again as for coalgebras – the coassociativity of ∆ is expressed by the
formulae ∑

∆(c1)⊗ c2 =
∑
c11 ⊗ c12 ⊗ c2 =

∑
c1 ⊗ c2 ⊗ c3

=
∑
c1 ⊗ c21 ⊗ c22 =

∑
c1 ⊗∆(c2),

and the conditions on the counit are∑
ε(c1)c2 = c =

∑
c1ε(c2).
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17.2. Base ring extension. Given an R-algebra morphism φ : A→ B, any
B-module has a natural A-module structure, and for an A-coring C, the map

ϑ : C → C ⊗A C → C ⊗A B ⊗A C, c �→
∑

c1 ⊗ c2 �→
∑

c1 ⊗ 1B ⊗ c2,

induces a comultiplication and a counit,

∆BCB = IB ⊗ ϑ⊗ IB : B ⊗A C ⊗A B → B ⊗A C ⊗A B ⊗A C ⊗A B,

ε : B ⊗A C ⊗A B → B, b⊗ c⊗ b′ �→ bε(c)b′,

which makes BCB = B ⊗A C ⊗A B a B-coring, called a base ring extension
of C (compare 1.4 for the commutative case).

Let us consider some examples of corings.

17.3. The trivial A-coring. The algebra A is a coring with the canonical
isomorphism A→ A⊗A A as a coproduct and the identity map A→ A as a
counit. This coring is known as a trivial A-coring.

17.4. Coring defined by preordered sets. Let G be a set and Q ⊂ G×G
a relation on G that is reflexive, transitive and locally finite; that is, for any
g, h ∈ G,

ω(g, h) = {f ∈ G | (g, f) ∈ Q and (f, h) ∈ Q} is a finite set.

For any ring A, let C = A(Q) be the free left A-module with basis Q and
consider C as an A-bimodule by

a(
∑

aλ(gλ, hλ)) =
∑

aaλ(gλ, hλ), (
∑

aλ(gλ, hλ))b =
∑

aλb(gλ, hλ),

where (gλ, hλ) ∈ Q and all aλ and a, b are in A.
Define comultiplication and counit by the (A,A)-bilinear maps

∆ : C → C ⊗A C, (g, h) �→
∑
f∈ω(g,h)(g, f)⊗ (f, h),

ε : C → A, (g, h) �→ δgh, for (g, h) ∈ Q,

where δgh is the Kronecker symbol. Now, transitivity of Q implies that ∆ is
coassociative, and reflexivity of Q implies that ε is a counit. Hence C is an
A-coring. Notice that C is generated by A as an (A,A)-bimodule.

Putting Q = {(g, g) | g ∈ G} in the above example, we obtain the

17.5. Grouplike coring on a set G. For any set G, C = A(G) is an A-coring
by the comultiplication and counit

∆ : C → C ⊗A C, g �→ g ⊗ g,

ε : C → A, g �→ 1A, for g ∈ G .
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We have seen in 1.9 that finitely generated projective R-modules lead
to interesting examples of coalgebras. For bimodules, a similar construction
provides important corings.

17.6. Coring of a projective module. For R-algebras A,B, let P be a
(B,A)-bimodule that is finitely generated and projective as a right A-module.
Let p1, . . . , pn ∈ P and π1, . . . , πn ∈ P ∗ = HomA(P,A) be a dual basis for PA.
Then there is a (B,B)-bimodule isomorphism

P ⊗A P ∗ → EndA(P ), p⊗ f �→ [q �→ pf(q)].

Furthermore, the (A,A)-bimodule P ∗ ⊗B P is an A-coring with coproduct
and counit defined by

∆ : P ∗ ⊗B P → (P ∗ ⊗B P )⊗A (P ∗ ⊗B P ), f ⊗ p �→
∑
f ⊗ pi ⊗ πi ⊗ p,

ε : P ∗ ⊗B P → A, f ⊗ p �→ f(p).

Note that ∆ is well defined. Indeed, denote the endomorphism ring
EndA(P ) by S. Using the above isomorphism, we can identify (P

∗ ⊗B P )⊗A
(P ∗ ⊗B P ) with P ∗ ⊗B S ⊗B P and the map ∆ with f ⊗ p �→ f ⊗ 1S ⊗ p.
The latter is well defined since the canonical map B → S (provided by left
multiplication) is an algebra map. This also shows that ∆ is independent of
the choice of the dual basis for PA. Clearly, ∆ is coassociative. The dual
basis property implies that ε is a counit.

As a special case we may consider the (A,A)-bimodule P = An, for n ∈ N.
Then P ∗ ⊗A P can be identified with the ring Mn(A) of all n × n matrices
with entries from A, and this leads to the matrix coring. Notice that this can
also be derived from the construction in 17.4.

17.7. Matrix coring. Let {eij}1≤i,j≤n be the canonical A-basis for Mn(A)
and define the coproduct by

∆ :Mn(A)→Mn(A)⊗AMn(A) : eij �→
∑

k
eik ⊗ ekj

and the counit by ε : Mn(A) → A : eij �→ δij. The resulting coring is called
the (n, n)-matrix coring over A and is denoted by M c

n(A).

Notation. From now on A will always denote an associative R-algebra
with unit (A, µ, ι) and C will stand for a coassociative A-coring (C,∆, ε).
Z(S) denotes the centre of any ring S. The A-linear maps C → A have ring
structures that allow one to describe properties of the coring itself, and we
put

C∗ = HomA(C, A), ∗C = AHom(C, A), ∗C∗ = AHomA(C, A) = ∗C ∩ C∗.
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17.8. The dual rings.

(1) C∗ is a ring with unit ε by the product (for f, g ∈ C∗, c ∈ C)

f ∗r g : C ∆−→ C ⊗A C
f⊗IC−→ C g−→ A, f ∗r g(c) =

∑
g(f(c1)c2),

and there is a ring anti-morphism iR : A→ C∗, a �→ ε(a−).
(2) ∗C is a ring with unit ε by the product (for f, g ∈ ∗C, c ∈ C)

f ∗l g : C ∆−→ C ⊗A C
IC⊗g−→ C f−→ A, f ∗l g(c) =

∑
f(c1g(c2)),

and there is a ring anti-morphism iL : A→ ∗C, a �→ ε(−a).
(3) ∗C∗ is a ring with unit ε by the product (for f, g ∈ ∗C∗, c ∈ C)

f ∗ g(c) =
∑

f(c1)g(c2),

and there is a ring morphism Z(A)→ Z(∗C∗), a �→ ε(a−) = ε(−a) .
(4) There are inclusions Z(∗C) ⊂ Z(∗C∗) and Z(C∗) ⊂ Z(∗C∗).

Proof. (1) For every c ∈ C and f ∈ C∗,

f ∗r ε(c) =
∑
ε(f(c1)c2) = f(c), ε ∗r f(c) =

∑
f(ε(c1)c2) = f(c),

showing that ε is the unit in C∗. Associativity of the product follows from
the equalities, for f, g, h ∈ C∗, c ∈ C,

f ∗r (g ∗r h)(c) =
∑

h(g ∗r f(c1)c2) =
∑

h(g(f(c1)c2)c3)

=
∑

g ∗r h(f(c1)c2) = (f ∗r g) ∗r h(c).

Finally, for all a, a′ ∈ A and c ∈ C we compute

(iR(a) ∗r iR(a′))(c) =
∑
iR(a

′)(iR(a)(c1)c2) =
∑
ε(a′ε(ac1)c2)

= ε(a′ac) = iR(a
′a)(c).

This proves that iR is an anti-algebra map.
Similar computations show that ∗C is an associative algebra and that iL

is an algebra anti-morphism, thus proving (2) and (3).
(4) For f ∈ Z(∗C), a ∈ A, and c ∈ C,

f(ca) = f ∗l ε(−a)(c) = ε(−a) ∗l f(c) = f(c)a ,

which shows f ∈ C∗ and hence Z(∗C) ⊂ ∗C∗. This obviously implies Z(∗C) ⊂
Z(∗C∗). Similarly we get Z(C∗) ⊂ Z(∗C∗). �

Of course, if A = R, then C∗ = ∗C = ∗C∗, and 17.8 reduces to 1.3.
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17.9. Dual rings of a coring associated to a projective module. Con-
sider the A-coring P ∗⊗BP of Example 17.6. Its left dual algebra is isomorphic
to BEnd(P ) by the bijective maps

∗(P ∗ ⊗B P ) = AHom(P
∗ ⊗B P,A) � BHom(P,

∗(P ∗)) � BEnd(P ),

which yield a ring isomorphism provided the product in BEnd(P ) is given by
the composition ϕϕ′ = ϕ ◦ ϕ′. Explicitly, the isomorphisms are given by

BEnd(P )→ ∗(P ∗ ⊗B P ), ϕ �→ [f ⊗ p �→ f(ϕ(p))],

and the inverse ξ �→ [p �→
∑
i piξ(πi ⊗ p)], with {pi, πi} a dual basis of PA.

For the right dual algebra there are the isomorphisms

(P ∗ ⊗B P )∗ = HomA(P ∗ ⊗B P,A) � EndB(P
∗).

It is interesting to observe how a dual of a ring extension can be made into
a coring provided suitable finitely generated projective module type assump-
tions are made. This is well known and straightforward to see for the dual
of algebras but needs some more care over noncommutative rings. The con-
struction goes under the name of the dual coring theorem. First we consider
the following situation.

17.10. Ring anti-morphism. Let φ : A→ S be a ring anti-morphism and
as usual view S as an (A,A)-bimodule with left and right multiplication of
s ∈ S by a, b ∈ A,

as = sφ(a), sb = φ(b)s.

Note that on the right-hand sides the product in S is used. Since S is an
(A,A)-bimodule, one can consider two types of dual bimodules, the right dual
with left and right A-action

S∗ = HomA(S,A), (aσb)(s) = aσ(bs) = aσ(sφ(b)), for σ ∈ S∗,

and the left dual with multiplications

∗S = AHom(S,A), (aσb)(s) = σ(sa)b = σ(φ(a)s)b, for σ ∈ ∗S.

Given the above situation, S∗ and ∗S are corings under suitable conditions.

17.11. Dual coring theorem. Let φ : A→ S be an algebra anti-morphism.

(1) If S is a finitely generated projective right A-module, then there is a
unique A-coring structure on S∗ whereby the evaluation map

β : S → ∗(S∗) = AHom(HomA(S,A), A), s �→ [σ �→ σ(s)],
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is an algebra isomorphism. Here ∗(S∗) has an algebra structure as in
17.8, and the following diagram, where iL is as in 17.8(2), commutes:

A
φ ��

iL ���
��

��
��

� S

β����
��
��
��

∗(S∗) .

(2) If S is a finitely generated projective left A-module, then there is a
unique A-coring structure on ∗S whereby the evaluation map

β : S → (∗S)∗ = AHom(HomA(S,A), A), s �→ [σ �→ σ(s)],

is an algebra isomorphism. Here (∗S)∗ has an algebra structure as in
17.8, and the following diagram, where iR is as in 17.8(1), commutes:

A
φ ��

iR ���
��

��
��

� S

β����
��
��
��

(∗S)∗ .

Proof. (1) Write C = S∗ and define ε : C → A by c �→ c(1S). Then, for
a, b ∈ A and c ∈ C,

ε(acb) = acb(1S) = ac(φ(b)) = ac(1Sb) = ac(1S)b = aε(c)b,

where we used that c is a right A-module map c : S → A. Thus ε is an
(A,A)-bimodule morphism. Since S is a finitely generated projective right
A-module, the natural map

θ : S∗ ⊗A S∗ → HomA(S ⊗A S,A), c⊗A c′ �→ [s⊗A s′ �→ c(c′(s)s′)],

is an (A,A)-bimodule isomorphism with the inverse map

θ−1 : HomA(S ⊗A S,A)→ S∗ ⊗A S∗, σ �→ σ(si ⊗A −)⊗A ci ,

where {si}i∈I ⊂ S, {ci}i∈I ⊂ S∗ = C is a dual basis in S. Consider the map

κ : C → HomA(S ⊗A S,A), c �→ [s⊗A s′ �→ c(s′s)].

First note that κ is well defined, that is, κ(c) is a right A-module map for
any c ∈ C. Indeed,

κ(c)(s⊗A s′a) = c((s′a)s) = c(φ(a)s′s) = c((s′s)a) = c(s′s)a = κ(c)(s⊗A s′)a,
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for all s, s′ ∈ S and a ∈ A. Then note that κ is an (A,A)-bimodule map,
since, for all a, b ∈ A, s, s′ ∈ S and c ∈ C,

κ(acb)(s⊗A s′) = (acb)(s′s) = ac(s′sφ(a)), and

(aκ(c)b)(s⊗A s′) = aκ(c)(bs⊗A s′) = aκ(c)(sφ(b)⊗A s′) = ac(s′sφ(a)).

Thus we can define an (A,A)-bimodule map ∆ = θ−1 ◦ κ : C → C ⊗A C.
Evaluated at s⊗ s′ ∈ S ⊗A S, for c ∈ C, the map ∆(c) ∈ C ⊗A C reads,

∆(c)(s⊗ s′) = c(s′s).

The associativity of the product in S implies the coassociativity of ∆. Simi-
larly, the fact that 1S is a unit in S implies that ε is a counit for ∆. In this
way a coring structure on C = S∗ has been constructed.

Now we look at the map β, which is well defined since, for all c ∈ S∗,
a ∈ A and s ∈ S,

β(s)(ac) = (ac)(s) = ac(s) = aβ(s)(c),

that is, for all s ∈ S, β(s) is a left A-module map S∗ → A. It is a bijection
since SA is a finitely generated and projective module. We need to show that
β is an algebra map, where ∗C = ∗(S∗) has the algebra structure given in
17.8(2). Recall that the product in ∗C is given by

(f ∗l g)(c) =
∑

f(c1g(c2)), for all f, g ∈ ∗C, c ∈ C.

In particular, using the explicit form of θ−1 given in terms of a dual basis in
S, for all s, s′ ∈ S, we obtain

(β(s) ∗l β(s′))(c) =
∑

β(s)(c1β(s
′)(c2)) =

∑
(c1β(s

′)(c2))(s)

=
∑
(c1c2(s

′))(s) =
∑
ic(ssi)c

i(s′)

=
∑
ic(ssic

i(s′)) = c(ss′) = β(ss′)(c).

Therefore β is a ring morphism, as claimed.

The uniqueness of ∆ and ε follows directly from their construction. Fi-
nally, recall that, for all c ∈ C and a ∈ A, iL(a)(c) = ε(c)a, but note also
that

β(φ(a))(c) = c(φ(a)) = c(1Sa) = c(1S)a = ε(c)a,

so that β ◦ φ = iL, as required. This completes the proof of the first part of
the theorem.

(2) This is proven in a way similar to the proof of part (1). �
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17.12. Coring morphism. Given two A-corings C, C ′, an (A,A)-bilinear
map f : C → C ′ is said to be a coring morphism provided the diagrams

C
f ��

∆

��

C ′

∆′
��

C ⊗A C
f⊗f �� C ′ ⊗A C ′

C
f ��

ε
����

���
���

�� C ′

ε′
��
A

are commutative. Explicitly, we require that

∆′ ◦ f = (f ⊗ f) ◦∆ and ε′ ◦ f = ε,

that is, for all c ∈ C,∑
f(c1)⊗ f(c2) =

∑
f(c)1 ⊗ f(c)2, and ε′(f(c)) = ε(c).

Notice that for a coring morphism f : C → C ′ that is bijective, the inverse
map f−1 : C ′ → C is again a coring morphism (see Exercise 2.15(2)).

As shown in 17.8, the contravariant functors HomA(−, A) and AHom(−,A)
turn corings into rings. They also turn coring morphisms into ring morphisms.

17.13. Duals of coring morphisms. Let f : C → C′ be an A-coring
morphism. Then the following maps are ring morphisms:

HomA(f, A) : C ′∗ → C∗,
AHom(f, A) :

∗C ′ → ∗C, g �→ g ◦ f,
AHomA(f, A) :

∗C ′∗ → ∗C∗.

Proof. For g, h ∈ C∗ and c ∈ C,

(g ∗r h) ◦ f(c) =
∑
h(g(f(c1))f(c2))

=
∑
h ◦ f(g ◦ f(c1)c2) = (g ◦ f) ∗r (h ◦ f)(c),

where we used the fact that f is an (A,A)-bimodule map to derive the second
equality. The other assertions are shown by similar computations. �

Coideals of an A-coring C are defined as the kernels of surjective A-coring
morphisms C → C ′.

17.14. Coideals. For an (A,A)-sub-bimodule K ⊂ C and the canonical
projection p : C → C/K, the following are equivalent:
(a) K is a coideal;

(b) C/K has a coring structure such that p is a coring morphism;

(c) ∆(K) ⊂ Ke (p⊗ p) and ε(K) = 0.
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If K ⊂ C is left and right C-pure as an A-module, then (c) is equivalent to:
(d) ∆(K) ⊂ C ⊗A K +K ⊗A C and ε(K) = 0.

Proof. In the proof of 2.4, the commutativity of the base ring is of no
relevance, and hence this proof can be transferred to AMA. �

17.15. Factorisation theorem. Let f : C → C ′ be a morphism of A-corings.
If K ⊂ C is a coideal and K ⊂ Ke f , then there is a commutative diagram of
coring morphisms

C
p ��

f 		















C/K

f̄

��
C ′ .

To show this we refer the reader to the proof of 2.5, and for our next
observation the proof of 2.6 applies.

17.16. The counit as coring morphism. For any A-coring C,
(1) ε is a coring morphism.

(2) If ε is surjective, then Ke ε is a coideal.

17.17. Subcorings. We call an (A,A)-sub-bimodule D ⊂ C a subcoring,
provided D has a coring structure such that the inclusion map is a coring
morphism. The image of any A-coring map f : C → C ′ is a subcoring of C ′.
To characterise sub-bimodules as subcorings, purity conditions on both sides
are needed.

An (A,A)-sub-bimodule D ⊂ C that is pure both as a left and as a right
A-module is a subcoring provided that ∆D(D) ⊂ D ⊗A D ⊂ C ⊗A C and
ε|D : D → A is a counit for D.

Since the coproduct of bimodules is also based on the coproduct of Abelian
groups, it is straightforward to obtain the

17.18. Coproduct of corings. For a family {Cλ}Λ of A-corings, consider
C =

⊕
Λ Cλ, iλ : Cλ → C the canonical inclusions and the (A,A)-bilinear maps

∆λ : Cλ −→ Cλ ⊗ Cλ ⊂ C ⊗ C, ελ : Cλ → A.

By properties of coproducts of (A,A)-bimodules there exist unique (A,A)-
bilinear maps

∆ : C → C ⊗A C with ∆ ◦ iλ = ∆λ, ε : C → A with ε ◦ iλ = ελ.

(C,∆, ε) is the coproduct of the corings Cλ in the category of A-corings.
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Similarly, the direct limit of A-corings can be obtained by the correspond-
ing construction for (A,A)-bimodules (compare 2.11).

Remarks. The notion of a coring was introduced by Sweedler in [193] but
can be traced back to the work of Jonah [22] on the cohomology of coalgebras.

The coring associated to a finitely generated projective module as in 17.6
was introduced by El Kaoutit and Gómez-Torrecillas in [111] and was termed
comatrix coring there.

The construction in 17.11 was first considered by Sweedler in [193].

References. Brzeziński [73]; El Kaoutit and Gómez-Torrecillas [111];
Guzman [126]; Sweedler [193]; Wisbauer [212].
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18 Comodules over corings

Following the pattern for comodules over R-coalgebras C, we introduce and
study right (left) comodules over any A-coring C. The structure of the cate-
gory of right (left) C-comodules is very similar to the structure of comodules
over an R-coalgebra C; in particular, it depends on the A-module properties
of C in a significant way. Thus the discussion of this dependence in the case
of R-coalgebras presented in Section 3 comes in very handy here. Similarly
as for comodules of coalgebras, it will turn out in Section 19 that comodules
of corings C are closely related to modules over the dual algebras. In the case
of corings there are two dual algebras (cf. 17.8), ∗C and C∗, and the right
C-comodules are left modules of the former while the left comodules are right
modules of the latter.

Throughout, (C,∆, ε) denotes an A-coring.

18.1. Right C-comodules. Let M be a right A-module. An A-linear map
�M : M → M ⊗A C is called a right coaction of C on M and is said to be
coassociative and counital, provided the diagrams

M
�M ��

�M

��

M ⊗A C
IM⊗∆

��
M ⊗A C

�M⊗IC��M ⊗A C ⊗A C

M
�M ��

=
����

���
���

��
M ⊗A C

IM⊗ε
��
M

are commutative. Adopting the notation from comodules over coalgebras (see
3.1) we write, for all m ∈M , �M(m) =

∑
m0⊗m1. Then the commutativity

of the above diagrams means explicitly∑
�M(m0)⊗m1 =

∑
m0 ⊗∆(m1) =

∑
m0 ⊗m1 ⊗m2,

where the last expression is a notation and m =
∑
m0ε(m1). An A-module

with a coassociative counital right coaction is called a right C-comodule.

18.2. Comodule morphisms. A comodule morphism f : M → N between
right C-comodules is an A-linear map f inducing a commutative diagram

M
f ��

�M

��

N

�N

��
M ⊗A C

f⊗IC �� N ⊗A C,

which means �N ◦ f = (f ⊗ IC) ◦ �M and, for any m ∈M (as in 3.3),∑
f(m)0 ⊗ f(m)1 =

∑
f(m0)⊗m1.
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Instead of comodule morphism we will also say C-morphism or (C-)colinear
map. The set HomC(M,N) of C-morphisms fromM to N is an Abelian group,
and it follows from the definition that it is determined by the exact sequence
in MR,

0→ HomC(M,N)→ HomA(M,N)
γ−→ HomA(M,N ⊗A C),

where γ(f) = �N ◦f− (f⊗IC)◦�M , or, equivalently, by the pullback diagram

HomC(M,N) ��

��

HomA(M,N)

�N◦−
��

HomA(M,N)
(−⊗IC)◦�M �� HomA(M,N ⊗A C) .

The category of right C-comodules and comodule morphisms is denoted by
MC. Since HomC(M,N) is an Abelian group for any right comodules M,N ,
MC is a preadditive category.

18.3. Left C-comodules. Symmetrically, a left C-comodule is defined as a
left A-module M , with a coassociative and counital left C-coaction, that is,
an A-linear map M� :M → C ⊗AM for which

(∆⊗ IM) ◦ M� = (IC ⊗ M�) ◦ M�, (ε⊗ IM) ◦ M� = IM .

For m ∈ M we write M�(m) =
∑
m−1 ⊗ m0, and the above conditions are

expressed by m =
∑
ε(m−1)m0 and∑

m−1 ⊗ M�(m0) =
∑

∆(m−1)⊗m0 =
∑

m−2 ⊗m−1 ⊗m0 .

C-morphisms between left C-comodules M,N are defined in an obvious way,
and the R-module of all such C-morphisms is denoted by CHom (M,N). Left
C-comodules and their morphisms again form a preadditive category that is
denoted by CM.

18.4. (C, C)-bicomodules. An (A,A)-bimodule M that is a right C-como-
dule and left C-comodule by �M : M → M ⊗A C and M� : M → C ⊗A M ,
respectively, is called a (C, C)-bicomodule provided it satifies the compatibility
condition

(IC ⊗ �M) ◦ M� = (M�⊗ IC) ◦ �M .
Morphisms f :M → N of bicomodules are maps that are both left and right
C-colinear, and the R-module of all these maps is denoted by CHomC(M,N).
With these morphisms the (C, C)-bimodules form a preadditive category that
we denote by CMC.
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Clearly C itself is a (C, C)-bicomodule by the structure map ∆. More
generally, bicomodules over different corings are considered in Section 22.

18.5. Comodules of a trivial coring. View A as a trivial A-coring
as in 17.3. Let M be a right A-module. By the canonical isomorphism
M ⊗A A � M , right A-coactions in M are identified with right A-module
endomorphisms of M . Any such endomorphism �M ∈ EndA(M) is coassocia-
tive, while the counit property requires that �M = IM . Thus the category of
right A-comodules MA is the same as the category of right A-modules MA.
Similarly, the category of left A-comodules can be identified with AM and
the category of (A,A)-bicomodules is just AMA.

As for corings, several constructions for C-comodules are built upon the
corresponding constructions for A-modules. Recalling the diagrams in 3.5 we
obtain

18.6. Kernels and cokernels in MC. For any f :M → N inMC, the factor
module N/Im f in MA has a comodule structure such that the projection
g : N → N/Im f is a cokernel of f inMC. This means thatMC has cokernels.

A similar construction yields kernels for morphisms f : M → N in MC

provided that f is C-pure as a right A-morphism. This shows in particular
that MC is an Abelian (in fact, Grothendieck) category provided C is flat as
a left A-module.

18.7. C-subcomodules. Let M be a right C-comodule. An A-submodule
K ⊂M is called a C-subcomodule of M provided that K has a right comodule
structure such that the inclusion is a comodule morphism. A C-pure A-
submodule K ⊂ M is a subcomodule of M provided �K(K) ⊂ K ⊗A C ⊂
N⊗AC. Notice that the kernel K inMA of a comodule morphism f :M → N
need not be a subcomodule ofM unless it is a C-pure A-submodule (compare
the discussion in 3.6).

The coproduct of A-modules also provides the coproduct for C-comodules
(compare 3.7).

18.8. Coproducts in MC. Let {Mλ}Λ be a family of C-comodules. For
M =

⊕
ΛMλ in MA, the canonical maps

�Mλ :Mλ −→Mλ ⊗A C ⊂M ⊗A C

yield a unique right A-module morphism �M :M →M ⊗A C which makes M
a right C-comodule such that the inclusions Mλ →M are C-morphisms. This
is obviously the coproduct of {Mλ}Λ in MC.

As for comodules over coalgebras, an important class of C-comodules is
obtained by tensoring A-modules with C. More precisely, the arguments from
3.8 yield the following.
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18.9. Comodules and tensor products. Let M ∈MC and f : X → X ′ in
MA. Then:

(1) X ⊗A C is a right C-comodule by

IX ⊗∆ : X ⊗A C −→ X ⊗A C ⊗A C ,

and the map f ⊗ IC : X ⊗A C → X ′ ⊗A C is a C-morphism.
(2) For any index set Λ, A(Λ) ⊗A C � C(Λ), and there exists a surjective

C-morphism
C(Λ′) →M ⊗A C, for some Λ′.

(3) The structure map �M : M → M ⊗A C is a comodule morphism, and
hence M is a subcomodule of a C-generated comodule.

(4) Let B be an R-algebra such that M is a (B,A)-bimodule and �M is
(B,A)-linear. Then, for any Y ∈MB, the right A-module Y ⊗B M is
a right C-comodule by

IY ⊗ �M : Y ⊗B M → Y ⊗B M ⊗A C.

As for coalgebras, relations between the Hom and tensor functors are of
fundamental importance for corings.

18.10. Hom-tensor relations for right C-comodules. Let A,B be R-
algebras, M,N ∈MC, and X ∈MA.

(1) There is a bijective R-linear map

ϕ : HomC(M,X ⊗A C)→ HomA(M,X), f �→ (IX ⊗ ε) ◦ f,

with inverse map h �→ (h⊗ IC) ◦ �M .
(2) Suppose that M is a (B,A)-bimodule such that �M is also B-linear, and

view HomC(M,N) as a right B-module via (hb)(m) = h(bm). Then, for
any Y ∈MB, there is a bijective R-linear map

ψ : HomC(Y ⊗BM,N)→ HomB(Y,Hom
C(M,N)), g �→ [y �→ g(y⊗−)],

with inverse map h �→ [y ⊗m �→ h(y)(m)].

Proof. (1) The proof of 3.9(1) can be transferred to noncommutative
base rings.

(2) By the Hom-tensor relations for modules, there is an isomorphism of
R-modules

ψ : HomA(Y ⊗B M,N)→ HomB(Y,HomA(M,N)), g �→ [y �→ g(y ⊗−)].
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For all y ∈ Y , the commutativity of the diagram

M
y⊗− ��

�M

��

Y ⊗B M
IY ⊗�M
��

m � ��
	

��

y ⊗m
	

��
M ⊗A C

(y⊗−)⊗IC �� Y ⊗B M ⊗A C �M(m) � �� y ⊗ �M(m)

implies that the map y⊗− is a C-morphism. So, for g ∈ HomC(Y ⊗BM,N),
the composition g ◦ (y ⊗−) is a C-morphism, too.

On the other hand, for any h ∈ HomB(Y,HomC(M,N)) there is the com-
mutative diagram

Y ⊗B M ��

IY ⊗�M
��

N

�N

��
Y ⊗B M ⊗A C �� N ⊗A C

y ⊗m � ��
	

��

h(y)(m)
	

��
y ⊗ �M(m) � �� (h(y)⊗ IC) ◦ �M(m) .

This shows that ψ−1(h) lies in HomC(Y ⊗BM,N) and implies that ψ induces
a bijection HomC(Y ⊗B M,N)→ HomB(Y,Hom

C(M,N)), as required. �
We also state the left-hand version of these relations for completeness.

18.11. Hom-tensor relations for left C-comodules. Let A,B be R-
algebras, M,N ∈ CM, and X ∈ AM.

(1) There is an R-isomorphism

ϕ′ : CHom (M, C ⊗A X)→ AHom(M,X), f �→ (ε⊗ IX) ◦ f ,

with inverse map h �→ (IC ⊗A h) ◦ M�.
(2) Suppose that M is an (A,B)-bimodule such that M� is also B-linear.

Then, for any Y ∈ BM, there is an R-isomorphism

ψ′ : CHom(M⊗BY,N)→ BHom(Y,
CHom(M,N)), g �→ [x �→ g(−⊗x)],

with inverse map h �→ [m⊗ x �→ h(x)(m)].

Putting X = A and M = C in 18.10 or 18.11, the isomorphisms ϕ and ϕ′

describe comodule endomorphisms of C.

18.12. Comodule endomorphisms of C.
(1) There is an algebra anti-isomorphism ϕ : EndC(C) → C∗, f �→ ε ◦ f,

with inverse map h �→ (h⊗ IC) ◦∆.
(2) There is an algebra isomorphism ϕ′ : CEnd(C) → ∗C, f �→ ε ◦ f, with

inverse map h �→ (IC ⊗ h) ◦∆.
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(3) ϕ and ϕ′ are homeomorphism with respect to the finite topologies.

Proof. (1) Definition and bijectivity of the maps follow by 18.10.
Let f , g ∈ EndC(C). Recall that (f ⊗ IC) ◦ ∆ = ∆ ◦ f and consider the

product, for c ∈ C,

(ε ◦ f) ∗r (ε ◦ g)(c) =
∑
ε ◦ g(ε ◦ f(c1)c2)

= ε ◦ g [(ε⊗ IC) ◦ (f ⊗ IC) ◦∆(c)]
= ε ◦ g [(ε⊗ IC) ◦∆ ◦ f(c)]
= ε ◦ (g ◦ f)(c) .

Clearly the unit of EndC(C) is mapped to the unit of C∗, and this shows that
ϕ is an algebra anti-isomorphism.

Part (2) is symmetric to (1), and for (3) adapt the proof of 3.12(3). �
Notice that in 18.12 the morphisms are written on the left side of the

argument. Writing morphisms of right comodules on the right side yields an
isomorphism between C∗ and EndC(C). We summarise the preceding obser-
vations on the category of comodules.

18.13. The category MC.

(1) The categoryMC has direct sums and cokernels, and C is a subgenerator.
MC has kernels provided C is a flat left A-module.

(2) The functor −⊗A C :MA →MC is right adjoint to the forgetful functor
(−)A :MC →MA.

(3) For any monomorphism f : K → L in MA,

f ⊗ IC : K ⊗A C → L⊗A C

is a monomorphism in MC.

(4) For any family {Mλ}Λ of right A-modules, (
∏

ΛMλ)⊗A C is the product
of the Mλ ⊗A C in MC.

Proof. In view of the preceding observations on C-comodules, the proof
of 3.13 can be suitably modified. �

As indicated in 18.13(1), the category of right C-comodules has particu-
larly nice properties when C is a flat left A-module.

18.14. C as a flat A-module. The following are equivalent:
(a) C is flat as a left A-module;
(b) every monomorphism in MC is injective;

(c) every monomorphism U → C in MC is injective;
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(d) the forgetful functor (−)A :MC →MA respects monomorphisms.

If these conditions hold, then MC is a Grothendieck category.

Proof. As shown in 18.13(3), the functor − ⊗A C preserves monomor-
phisms. Now the proof of 3.14 can be transferred. �

18.15. −⊗A C as left adjoint functor. If the functor −⊗A C :MA →MC

is left adjoint to the forgetful functor (−)A : MC → MA, then C is finitely
generated and projective as a left A-module.

Proof. By 18.13 and 18.14, the proof for coalgebras 3.15 applies. �
The proof of 3.16 can be repeated to give the following finiteness property.

18.16. Finiteness Theorem (1). Assume the coring C to be flat as a left
A-module and let M ∈MC. Then every finite subset of M is contained in a
subcomodule of M , which is contained in a finitely generated A-submodule.

If AC is flat, we can work with short exact sequences inMC. Referring to
the characterising sequence of the morphisms in 18.2, we obtain

18.17. Exactness of the HomC-functor. Let AC be flat and M ∈ MC.
Then:

(1) HomC(−,M) :MC →MR is a left exact functor.

(2) HomC(M,−) :MC →MR is a left exact functor.

Proof. The diagrams in the proof of 3.19 can be constructed in this
more general situation and the same arguments apply. �

As for coalgebras, a comodule M ∈MC is termed an A-relative injective
comodule or a (C, A)-injective comodule provided that, for every C-comodule
map i : N → L that is a coretraction in MA, every diagram

N
i ��

f ���
��

��
��

� L

M

in MC can be completed commutatively by some g : L→M in MC.

18.18. (C, A)-injectivity.
(1) For any M ∈MC, the following are equivalent:

(a) M is (C, A)-injective;
(b) any C-comodule map i : M → L that is a coretraction in MA is

also a coretraction in MC;
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(c) �M :M →M ⊗A C is a coretraction in MC.

(2) For any X ∈MA, X ⊗A C is (C, A)-injective.
(3) If M ∈ MC is (C, A)-injective, then, for any L ∈ MC, the canonical

sequence (see 18.2)

0 �� HomC(L,M) i �� HomA(L,M)
γ �� HomA(L,M ⊗A C)

splits in MB, where B = End
C(L) and γ(f) = �M ◦ f − (f ⊗ IC) ◦ �L.

Proof. In the proof of 3.18, R can be readily replaced by A. �
Let AC be flat. Then a short exact sequence in MC is called (C, A)-exact

provided it splits in MA. A functor on MC is said to be left (right) (C, A)-
exact if it is left (right) exact on short (C, A)-exact sequences. It is obvious
that a comodule M is (C, A)-injective if and only if the functor HomC(−,M)
is (C, A)-exact.

An object Q ∈MC is injective in MC if, for any monomorphism f :M →
N inMC, the canonical map HomC(N,Q)→ HomC(M,Q) is surjective. If AC
is flat, injectives Q ∈MC are characterised by the exactness of HomC(−, Q).

18.19. Injectives in MC. Assume AC to be flat.
(1) If X is injective in MA, then X ⊗A C is injective in MC.

(2) If M is (C, A)-injective and injective inMA, then M is injective inMC.

(3) If A is injective in MA, then C is injective in MC.

Proof. (1) This follows from the isomorphism in 18.10(1).
(2) Let M be injective in MA. Then, by (1), M ⊗A C is injective in MC,

and, by 18.18, M is a direct summand of M ⊗A C as a comodule and hence
it is also injective in MC.

(3) This is a special case of (1). �
An object P ∈ MC is projective in MC if, for any epimorphism M → N

in MC , the canonical map HomC(P,M)→ HomC(P,N) is surjective.

18.20. Projectives in MC. Consider any P ∈MC.

(1) If P is projective in MC, then P is projective in MA.

(2) If AC is flat, the following are equivalent:
(a) P is projective in MC;

(b) HomC(P,−) :MC →MR is exact.

Proof. (1) Recalling the functorial isomorphism in 18.10(1) and taking
care of sides, we can follow the same steps as in the proof of 3.22.
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(2) By 18.17, the functor HomC(P,−) is left exact. Hence it is exact if
and only if it preserves epimorphisms (surjective morphisms). �

Although MC need not be a full subcategory of some module category,
the Hom and tensor functors have essentially the same properties.

18.21. Hom and tensor functors. For any M ∈MC and S = EndC(M),
writing morphisms on the left side, there is an adjoint pair of functors

−⊗S M :MS →MC, HomC(M,−) :MC →MS,

that is, there are canonical isomorphisms, for N ∈MC and X ∈MS,

HomC(X ⊗S M,N)→ HomS(X,Hom
C(M,N)), δ �→ [x �→ δ(x⊗−)] ,

with inverse map ϕ �→ [x⊗m �→ ϕ(x)(m)].
Explicitly, the counit and unit of adjunction are

µN : Hom
C(M,N)⊗S M → N, f ⊗m �→ f(m),

νX : X → HomC(M,X ⊗S M), x �→ [m �→ x⊗m].

Proof. In the standard Hom-tensor relation (see 43.9) is it easy to verify
that restriction to colinear maps yields the given mapping. �

The classes of modules for which the unit and counit of adjunction in
18.21 are isomorphisms are of particular interest.

18.22. Static and adstatic comodules. Given a right C-comodule M , let
S = EndC(M). A right C-comodule N is said to beM-static if µN (in 18.21) is
an isomorphism. The class of all M -static comodules is denoted by Stat(M).
A right S-module X is called M-adstatic if νX (in 18.21) is an isomorphism.

It is easy to see that, for every M -static comodule N , HomC(M,N) is
M -adstatic, and for each M -adstatic module XS, X ⊗S M is M -static.

18.23. Generators in MC. Let AC be flat, M ∈MC, and S = EndC(M).
The following are equivalent:

(a) M is a generator in MC;

(b) the functor HomC(M,−) :MC →MS is faithful;

(c) M generates every subcomodule of C(N);

(d) for every subcomodule K ⊂ C(N), µK (see 18.21) is surjective;

(e) SM is flat and every (finitely) C-generated comodule is M-static;

(f) SM is flat and every injective comodule in MC is M-static;

(g) Stat(M) =MC.
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Proof. (a) ⇔ (b) holds in any category, and (b) ⇔ (c) ⇔ (d) is clear
because the subcomodules of C(N) form a set of generators in MC.

(a)⇔ (g) The proof of 43.12, (a)⇔ (h), can be applied.
(e)⇔ (f)⇔ (g) The proof of [46, 15.9] shows that any generator inMC is

flat over its endomorphism ring. Now the corresponding proofs of 43.12 hold.
�

In case monomorphisms are injective in MC , the properties of projective
generators can be transferred from module theory and 43.13 leads to the
following characterisations.

18.24. Projective generators in MC. Assume AC to be flat. Let M ∈MC

with MA finitely generated and S = End
C(M). The following are equivalent:

(a) M is a projective generator in MC;

(b) M is a generator in MC and SM is faithfully flat;

(c) HomC(M,−) :MC →MS induces an equivalence of categories.

In the situation described in 18.23, in particular the coalgebra C itself is
M -static. This property is of more general interest and leads to the following
definition.

18.25. Galois comodules. Let M be a right C-comodule, and let S =
EndC(M). M is termed a Galois comodule if MA is finitely generated and
projective, and the evaluation map

HomC(M, C)⊗S M → C, f ⊗m �→ f(m),

is an isomorphism of right C-comodules.

For any finitely generated projective P ∈MA and S = EndA(P ), P
∗⊗S P

has a coring structure (see 17.6), and, by the isomorphism

HomP
∗⊗SP (P, P ∗ ⊗S P )⊗S P � HomA(P,A)⊗S P = P ∗ ⊗S P,

P is a Galois comodule for P ∗ ⊗S P .
Notice that, by the identification P ∗ ⊗S P ⊗A P ∗ ⊗S P � P ∗ ⊗S S ⊗S

P � P ∗ ⊗S P , this coring structure is very close to the trivial coproduct
∆′(f ⊗S p) = f ⊗S p. It follows from the next theorem that this is the
prototype of corings that have Galois comodules.

18.26. Characterisation of Galois comodules. Let M ∈ MC with MA

finitely generated and projective and S = EndC(M). Consider M∗ ⊗S M as
an A-coring (via 17.6). Then the following are equivalent:

(a) M is a Galois comodule;
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(b) there is a (coring) isomorphism

canM :M∗ ⊗S M → C, ξ ⊗m �→
∑

ξ(m0)m1;

(c) for every (C, A)-injective comodule N ∈MC, the evaluation

ϕN : Hom
C(M,N)⊗S M → N, f ⊗m �→ f(m),

is a (comodule) isomorphism;

(d) for every right A-module X, the map

ϕN : HomA(M,X)⊗S M → X ⊗A C, g ⊗m �→
∑

g(m0)⊗m1,

is a (comodule) isomorphism.

Proof. By the Hom-tensor relations 18.10, for any X ∈ MA and M ∈
MC, there is a commutative diagram of right C-comodule maps (⊗ is ⊗A),

HomC(M,X ⊗ C)⊗S M ��

�
��

X ⊗ C
=

��
HomA(M,X)⊗SM �� X⊗C

f⊗m � ��
	

��

f(m)
	

=

��
(I⊗ε)◦f⊗m � ��

∑
(I⊗ε)(f(m0))⊗m1.

Since X⊗A C is a (C, A)-injective comodule (cf. 18.18(2)), the above diagram
implies that (c) ⇒ (d). The equivalence of (a) and (b) follows from the
diagram by putting X = A. Since C is (C, A)-injective, the implication (c)⇒
(a) is trivial.

To prove that canM is a coring map, we first need to show the commuta-
tivity of the diagram (⊗ is ⊗A)

M∗ ⊗S M
∆M∗⊗SM

��

δ �� C
∆C
��

(M∗ ⊗S M)⊗(M∗ ⊗S M)
δ⊗δ �� C⊗C

ξ⊗m � ��
	

��

∑
ξ(m0)m1	

��∑
i ξ⊗pi⊗πi⊗m

� ��
∑
ξ(m0)m1⊗m2,

where δ = canM , and πi ∈M∗, pi ∈M denote a dual basis for MA. Take any
m ∈M , ξ ∈M∗ and compute∑

i ξ(pi0)pi1 ⊗ πi(m0)m1 = (ξ ⊗ IP ⊗ IC)(
∑
i �
M(piπi(m0))⊗m1)

= (ξ ⊗ IP ⊗ IC)(
∑
�M(m0)⊗m1)

=
∑
ξ(m0)m1 ⊗m2.

Furthermore,

εC ◦ canM(ξ ⊗m) = ξ(m) = εM∗⊗SM(ξ ⊗m).
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This completes the proof that canM is a coring morphism.
(b) ⇒ (d) Consider any X ∈ MA. Since MA is finitely generated and

projective and canM is bijective, there are isomorphisms

HomA(M,X)⊗S M � X ⊗AM∗ ⊗S M � X ⊗A C.

(d) ⇒ (c) Assume that N ∈ MC is (C, A)-injective. Then, by 18.18, the
canonical sequence

0 �� HomC(M,N)
i �� HomA(M,N)

γ �� HomA(M,N ⊗A C)

is (split and hence) pure inMS, where γ(f) = �N ◦ f − (f ⊗ IC) ◦ �M . Hence
tensoring with SM yields the commutative diagram with exact rows (⊗ is
⊗S):

0 �� HomC(M,N)⊗M ��

ϕN

��

HomA(M,N)⊗M ��

�
��

HomA(M,N⊗AC)⊗M
�
��

0 �� N �� N ⊗A C �� N ⊗A C ⊗A C ,

where (d) yields the vertical isomorphisms. From this the bijectivity of ϕN
follows. �

The next theorem shows which additional condition on a Galois comodule
M is sufficient to make it a (projective) generator in MC.

18.27. The Galois comodule structure theorem. Let M ∈MC such that
MA is finitely generated and projective, and put S = End

C(M).

(1) The following are equivalent:

(a) M is a Galois comodule and SM is flat;

(b) AC is flat and M is a generator in MC.

(2) The following are equivalent:

(a) M is a Galois comodule and SM is faithfully flat;

(b) AC is flat and M is a projective generator in MC;

(c) AC is flat and HomC(M,−) : MC → MS is an equivalence with
the inverse −⊗S M :MS →MC.

Proof. (1) (a)⇒ (b) Assume M to be a Galois comodule. Then, in the
diagram of the proof 18.26, (b) ⇒ (c), the top row is exact by the flatness
of SM without any condition on N ∈ MC. So HomC(M,N) ⊗S M → N is
surjective (bijective), showing that M is a generator. Since M∗ is projective
in AM, the isomorphism −⊗A C � −⊗A (M∗ ⊗S M) implies that AC is flat.
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(b)⇒ (a) If AC is flat, it follows from 18.23 that the generator M in MC

is flat over its endomorphism ring S, and HomC(M,N) ⊗S M � N , for all
N ∈MC.

(2) This is clear by 18.24. �
Notice that any A-coring C with CA finitely generated and projective is

a Galois comodule in MC (by the isomorphism (C∗)op ⊗(C∗)op C � C), which
need not be flat over its endomorphism ring C∗.

At the end of this section we relate the category of comodules with more
general constructions from category theory. The composite of the functor
−⊗A C :MA →MC with the forgetful functorMC →MA provides one with
the category theory or universal (co)algebra interpretation of corings. We
refer to 38.26 and 38.29 for the discussion of comonads and their coalgebras.

18.28. Corings as comonads. Let C be an (A,A)-bimodule.
(1) The following are equivalent:

(a) C is an A-coring;
(b) the functor F = −⊗A C :MA →MA is a comonad;

(c) the functor F̄ = C ⊗A − : AM→ AM is a comonad.

(2) If C is an A-coring, then the category of coalgebras of the comonad F
(resp. F̄ ) is isomorphic to the category of right (resp. left) C-comodules.

Proof. (1) (a)⇒ (b) If C is a coring, then, by 18.13, F is a composite of
a pair of adjoint functors and thus it is a comonad by 38.29. Note that, for all
M ∈MA, the coproduct is given by δM = IM ⊗∆ :M ⊗A C →M ⊗A C ⊗A C,
and the counit is ψM = IM ⊗ ε :M ⊗A C →M .

(b)⇒ (a) Now suppose that F = −⊗A C :MA →MA is a comonad with
coproduct δ and counit ψ. Define ∆ = δA : C → C ⊗A C and ε = ψA : C → A.
To any element a in A associate a morphism in MA, Oa : A → A, a′ �→ aa′.
Since δ is a natural map, we have δA◦(Oa⊗IC) = (Oa⊗IC⊗IC)◦δA. Evaluating
this equality at 1A ⊗ c for all c ∈ C, we obtain ∆(ac) = a∆(c), that is, ∆
is a left A-linear map. Since δA is a morphism in MA, ∆ is also a right A-
module map, and we conclude that it is an (A,A)-bimodule map. Similarly,
the naturality of ψ evaluated at Oa implies that ε is a left A-module map and
thus an (A,A)-bimodule morphism. The coassociativity of ∆ and the counit
property of ε follow then from the axioms of a comonad. More precisely,
first note that F (δA) = δA ⊗ IC. Next, for all c ∈ C consider a morphism
Oc : A → C in MA, given by O

c : a �→ ca. Since the coproduct δ is a natural
transformation, δC ◦ (Oc⊗ IC) = (Oc⊗ IC ⊗ IC) ◦ δA. Evaluating this equality at
1A⊗c′, with c′ ∈ C, we thus obtain δC(c⊗c′) = c⊗δA(c′), that is, δC = IC⊗δA.
Thus

δF (A) = δA⊗AC = δC = IC ⊗ δA.
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The fact that δ is a coproduct for a comonad F implies that

(IC ⊗ δA) ◦ δA = (δA ⊗ IC) ◦ δA,

so that ∆ = δA is a coassociative coproduct for C. Similarly, note that
F (ψA) = ψA ⊗ IC and ψF (A) = IC ⊗ ψA. Whence the fact that ψ is a counit
for a comonad F means in particular that

(ψA ⊗ IC) ◦ δA = (IC ⊗ ψA) ◦ δA = IC,

so that ε = ψA is a counit for the coproduct ∆ = δA.
(a)⇔ (c) This is proven along the same lines as the equivalence (a)⇔ (b).
(2) Note that, for all M ∈ MA, F (M) = M ⊗A C; hence the structure

map of a coalgebra (M,�M) of the comonad F = (F, IMA
⊗∆, IMA

⊗ε) comes
out as �M : M → M ⊗A C. The diagrams defining an F-coalgebra with the
underlying object M and the structure map �M are precisely the same as
the diagrams required for M to be a right C-comodule with coaction �M . A
symmetric argument shows the second isomorphism of categories. �

In addition to the forgetful functor (−)A, one can also study the forgetful
functor (−)R :MC →MR, which turns out to provide a categorical interpre-
tation of dual rings defined in 17.8.

18.29. Dual rings as natural endomorphism rings.

(1) The ring Nat((−)R, (−)R) of natural endomorphisms of the forgetful
functor (−)R : MC → MR, with the product given by φφ

′ = φ ◦ φ′, is
isomorphic to the ring ∗C = AHom(C, A) with product ∗l.

(2) The ring Nat(R(−), R(−)) of natural endomorphisms of the forgetful
functor R(−) : CM → RM is isomorphic to the ring C∗ = HomA(C, A)
with product ∗r.

Proof. We only prove (1), since (2) will follow by the left-right symmetry.
If φ is an endomorphism of F = (−)R and f : M → N a morphism in MC,
then F (f)◦φM = φN ◦F (f). For any V ∈MA and v ∈ V , define a morphism
in MC, fv : C → V ⊗A C, by c→ v ⊗ c. Then, for all v ∈ V , c ∈ C,

φV⊗AC(v ⊗ c) = v ⊗ φC(c), thatis, φV⊗AC = IV ⊗ φC. (∗)

Similarly, since �M :M →M ⊗A C is a morphism in MC,

φM⊗AC ◦ �M = �M ◦ φM . (∗∗)

Applying (∗) to V = A and identifying A⊗A C with C, one obtains that φC is
left A-linear. Since ε is an (A,A)-bimodule map, the composite ε ◦ φC is an
element of ∗C = AHom(C, A), and thus there is a map

Π : Nat(F, F )→ AHom(C, A), φ �→ ε ◦ φC.
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Conversely, for any ξ ∈ ∗C and M ∈MC, define

Π̃(ξ)M = (IM ⊗ ξ) ◦ �M :M →M, m �→
∑

m0 ξ(m1).

For any f ∈ HomC(M,N), ξ ∈ ∗C, and m ∈M ,

Π̃(ξ)N(f(m)) =
∑

f(m)0 ξ(f(m)1) =
∑

f(m0)ξ(m1) = f(Π̃(ξ)M(m)),

where we used the fact that f is a morphism of right C-comodules. This
proves that Π̃(ξ)M is natural in M , and hence is an endomorphism of the
forgetful functor F inducing a map

Π̃ : ∗C → Nat(F, F ), ξ �→ Π̃(ξ).

Notice that Π̃ is a ring map, since for any ξ, ξ′ ∈ ∗C, M ∈MC, m ∈M ,

(Π̃(ξ) ◦ Π̃(ξ′))M(m) =
∑

Π̃(ξ)M(m0ξ
′(m1)) =

∑
m0ξ(m1ξ

′(m2))

=
∑

m0(ξ ∗l ξ′)(m1) = Π̃(ξ ∗l ξ′)M(m).

It remains to prove that Π̃ is the inverse of Π. First take any ξ ∈ ∗C and
compute

Π(Π̃(ξ)) = ε ◦ Π̃(ξ)C = ε ◦ (IC ⊗ ξ) ◦∆ = ξ,

by definition of ε. Conversely, for an endomorphism φ of F , and any right
C-comodule M ,

Π̃(Π(φ))M = (IM ⊗ Π(φ)) ◦ �M = (IM ⊗ ε) ◦ (IM ⊗ φC) ◦ �M

= (IM ⊗ ε) ◦ φM⊗AC ◦ �M

= (IM ⊗ ε) ◦ �M ◦ φM = φM ,

where equation (∗) was used in the derivation of the third equality, while the
fourth equality follows from equation (∗∗). This completes the proof of the
theorem. �

References. Brzeziński [73]; El Kaoutit and Gómez-Torrecillas [111];
Guzman [126]; Sweedler [193]; Wisbauer [212].
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19 C-comodules and C∗-modules
Again C denotes an A-coring. As noticed in 17.8, a left dual ring ∗C (and
a right dual ring C∗) is associated to C. This section starts with the key
observation in 19.1 that any right C-comodule is also a left ∗C-module, and
hence there is a faithful functor from MC to ∗CM. One then would like to
determine whenMC is a full subcategory of ∗CM or when these two categories
are isomorphic to each other. These are the topics covered in the present
section, which brings the corresponding problems for coalgebras considered in
Section 4 to a more general, less symmetric level. In particular, we introduce
the α-condition for corings and prove an important Finiteness Theorem.

19.1. C-comodules and ∗C-modules. Any M ∈MC is a left ∗C-module by

⇀ : ∗C ⊗RM →M, f ⊗m �→ (IM ⊗ f) ◦ �M(m).

Any morphism h :M → N in MC is a left ∗C-module morphism, so

HomC(M,N) ⊂ ∗CHom (M,N)

and there is a faithful functor MC → σ[∗CC] ⊂ ∗CM.

Proof. By definition, for f, g ∈ ∗C and m ∈ M , the actions f⇀(g⇀m)
and (f ∗l g)⇀m are the compositions of the upper and lower maps in the
diagram

M ⊗A C
�M⊗IC

����
���

���
���

�

M

�M
������������

�M ����
���

���
��

M ⊗A C ⊗A C
IM⊗IC⊗g ��M ⊗A C

IM⊗f ��M .

M ⊗A C
IM⊗∆

��������������

Clearly ε⇀m = m for any m ∈ M , and so M is a left ∗C-module. For the
remaining assertions the proofs of 4.1 apply. �

To assure that MC is a full subcategory of ∗CM we need

19.2. The left α-condition. C is said to satisfy the left α-condition if the
map

αN : N ⊗A C → HomA(
∗C, N), n⊗ c �→ [f �→ nf(c)],

is injective, for every N ∈MA. By 42.10, the following are equivalent:

(a) C satisfies the left α-condition;
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(b) for N ∈MA and u ∈ N ⊗A C, (IN ⊗ f)(u) = 0 for all f ∈ ∗C, implies
u = 0;

(c) C is locally projective as a left A-module.

The left α-condition enforces C to be flat and cogenerated by A as a left
A-module. Symmetrically, the right α-condition for C is defined and induces
corresponding (left-right symmetric) properties.

19.3. MC as full subcategory of ∗CM. For C the following are equivalent:
(a) MC = σ[∗CC];
(b) MC is a full subcategory of ∗CM;

(c) for all M,N ∈MC, HomC(M,N) = ∗CHom(M,N);

(d) C satisfies the left α-condition;
(e) every left ∗C-submodule of Cn, n ∈ N, is a subcomodule of Cn.
If these conditions are satisfied, the inclusion functor MC → ∗CM has a

right adjoint, and for any family {Mλ}Λ of A-modules,

(
∏

Λ
Mλ)⊗A C �

∏C
Λ
(Mλ ⊗A C) ⊂

∏
Λ
(Mλ ⊗A C),

where
∏C denotes the product in MC.

Proof. The proof of 4.3 is based on 42.10, which holds for general
noncommutative rings, and hence most of it can be transferred easily to the
present situation. Notice that C∗ in 4.3 has to be replaced by ∗C here. �

19.4. Coaction and ∗C-modules. Let C satisfy the left α-condition. For
an M ∈ MA, consider any A-linear map ρ : M → M ⊗A C. Define a left
∗C-action on M by

⇀ : ∗C ⊗RM →M, f ⊗m �→ (IM ⊗ f) ◦ ρ(m).

Then the following are equivalent:

(a) ρ is coassociative and counital;

(b) M is a (unital) ∗C-module by ⇀.

Proof. (a)⇒ (b) is shown in 19.2.

(b)⇒ (a) With obvious modifications the proof of 4.4 applies. �

By symmetry we have the corresponding relationships between left C-
comodules and right C∗-modules, which we formulate for completeness.
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19.5. Left C-comodules and right C∗-modules.

(1) Any M ∈ CM is a right C∗-module by

↼ :M ⊗R C∗ →M, m⊗ f �→ (f ⊗ IM) ◦ M�(m).

(2) Any morphism h :M → N in CM is a right C∗-module morphism, so

CHom (M,N) ⊂ HomC∗(M,N)

and there is a faithful functor CM→ σ[CC∗ ].

(3) C satisfies the right α-condition if and only if CM = σ[CC∗ ].

The answer to the question when all ∗C-modules are C-comodules is similar
to the coalgebra case.

19.6. When is MC = ∗CM? For C the following are equivalent:
(a) MC = ∗CM;

(b) the functor −⊗A C :MA → ∗CM has a left adjoint;

(c) AC is finitely generated and projective;
(d) AC is locally projective and C is finitely generated as a right C∗-module.

Proof. (a)⇒ (b) By 18.13, the forgetful functor is left adjoint to −⊗AC.
(b)⇒ (c) The condition implies that the functor −⊗A C commutes with

products and hence AC is finitely generated and projective.
(c) ⇒ (d) Since there is a ring anti-morphism A → C∗ (see 17.8), (c)

implies that C is finitely generated as a right C∗-module.
(d) ⇒ (a) Since C satisfies the α-condition, C∗ is the endomorphism ring

of the faithful left ∗C-module C. So ∗CC is a faithful module that is finitely
generated as a module over its endomorphism ring, and, by 41.7(3), this
implies MC = σ[∗CC] = ∗CM. �

Notice how both left and right duals of C are used in 19.6. This is an
important difference between the coring and coalgebra cases.

19.7. The category MP ∗⊗BP . For R-algebras A,B, let P ∈ BMA be such
that PA is finitely generated and projective with dual basis p1, . . . , pn ∈ P
and π1, . . . , πn ∈ P ∗ = HomA(P,A). Consider P ∗ ⊗B P as an A-coring as in
17.6. Recall that ∗(P ∗ ⊗B P ) � BEnd(P ) (cf. 17.9). It is straightforward to
verify (compare 4.9) that P is a right P ∗ ⊗B P -comodule by

�P : P → P ⊗A P ∗ ⊗B P, p �→
∑
i pi ⊗ πi ⊗ p,

and P generates P ∗ ⊗B P as a right comodule. So, by 19.1 and 17.9, P is
a right module over BEnd(P ) (with product φ

′φ = φ ◦ φ′, in which case the
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isomorphism discussed in 17.9 is an anti-algebra map) and there is a faithful
functor MP ∗⊗BP → σ[P

BEnd(P )]. Properties of the right comodule category
depend on properties of the left A-module P ∗⊗BP which in general is neither
projective nor finitely generated. These properties depend on the B-module
structure of P . More precisely:

(1) If BP is flat, then MP ∗⊗BP is an Abelian category.

(2) If BP is locally projective, then MP ∗⊗BP = σ[P
BEnd(P )].

(3) If BP is finitely generated and projective, then MP ∗⊗BP =M
BEnd(P ).

Proof. (1) Since AP
∗ is projective, the flatness of BP implies the flatness

of P ∗ ⊗B P as a left A-module. Now the assertion follows by 18.14.
(2) It is enough to show that, for all N ∈MA, the canonical map

α : N ⊗A (P ∗ ⊗B P )→ HomA(
∗(P ∗ ⊗B P ), N)

(see 42.9) is injective. With the canonical map

δ : ∗P ⊗B P → BEnd(P ), h⊗ p �→ [q �→ h(q)p],

and the isomorphism ∗(P ∗ ⊗B P ) � BEnd(P ), we obtain the commutative
diagram

N ⊗A (P ∗ ⊗B P ) α ��

�
��

HomA(
∗(P ∗ ⊗B P ), N) � �� HomA(BEnd(P ), N)

Hom(δ,N)

��
HomA(P,N)⊗B P �� HomB(

∗P ,HomA(P,N))
� �� HomA(

∗P ⊗B P,N),

where the first bottom map is injective by the local projectivity of BP .
This implies that α is injective, hence P ∗ ⊗B P is locally projective as a
left A-module. By 19.3, this means that MP ∗⊗BP is a full subcategory of
M

BEnd(P ), and, since P is a subgenerator in MP ∗⊗BP , this category is equal
to σ[P

BEnd(P )].
(3) If BP is finitely generated and projective, then ∗P ⊗B P � BEnd(P ),

and hence MP ∗⊗BP =M
BEnd(P ). �

Under the α-condition, projectives and injectives inMC have similar char-
acterisations as for comodules over coalgebras. Again, both types of duals
of C play an important role. Since we can identify MC with σ[∗CC], we may
formulate 41.4 in the following way.

19.8. Injectives in MC. Let C satisfy the left α-condition. For Q ∈MC the
following are equivalent:

(a) Q is injective in MC;

(b) the functor HomC(−, Q) :MC →MR is exact;
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(c) Q is C-injective (as left C∗-module);

(d) Q is N-injective for every (finitely generated) subcomodule N ⊂ C;
(e) every exact sequence 0→ Q→ N → L→ 0 in MC splits.

Moreover, injectives inMC are C-generated and every comodule has an injec-
tive hull in MC.

As for injectives, we also derive characterisations for projective comodules
from the module case (see 41.6):

19.9. Projectives in MC. Let C satisfy the left α-condition. For P ∈ MC

the following are equivalent:

(a) P is projective in MC;

(b) the functor HomC(P,−) :MC →MR is exact;

(c) P is C(Λ)-projective, for any set Λ;

(d) every exact sequence 0→ K → N → P → 0 in MC splits.

If P is finitely generated in ∗CM (or MA), then (a)–(d) are equivalent to:

(e) P is C-projective as ∗C-module;
(f) every exact sequence 0→ K ′ → N → P → 0 inMC with K ′ ⊂ C splits.

Notice that projectives need not exist in MC. It is shown in 18.20 that
projective objects in MC are also projective in MA.

C is a left and right comodule; thus we can consider

19.10. C as (∗C, C∗)-bimodule. C is a (∗C, C∗)-bimodule by

⇀ : ∗C ⊗R C → C, f ⊗ c �→ f⇀c = (IC ⊗ f) ◦∆(c) =
∑
c1f(c2),

↼ : C ⊗R C∗ → C, c⊗ g �→ c↼g = (g ⊗ IC) ◦∆(c) =
∑
g(c1)c2 .

(1) For any f ∈ ∗C, g ∈ C∗, and c ∈ C,

(f⇀c)↼g = f⇀(c↼g), and g(f⇀c) = f(c↼g).

(2) C is faithful as a left ∗C- and as a right C∗-module.

(3) If C is cogenerated by A as a left A-module, then, for all f ∈ Z(∗C),
c ∈ C, f⇀c = c↼f , and Z(∗C) ⊂ Z(C∗).

(4) If C is cogenerated by A as an (A,A)-bimodule, then, for all f ∈ Z(∗C∗),
c ∈ C, f⇀c = c↼f , and Z(∗C) = Z(∗C∗) = Z(C∗).

(5) If C satisfies the left and right α-condition, then C is a balanced (∗C, C∗)-
bimodule, that is,

∗CEnd(C) = EndC(C) � C∗, EndC∗(C) = CEnd(C) � ∗C, and
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∗CEndC∗(C) = CEndC(C) � Z(C∗) = Z(∗C),

where morphisms are written opposite to scalars. In this case a left and
right pure (A,A)-sub-bimodule D ⊂ C is a subcoring if and only if D is
a (∗C, C∗)-sub-bimodule.

Proof. (1) These identities are easily verified.
(2) Assume f⇀c = 0 for all c ∈ C. Then 0 = ε(f⇀c) = f(c↼ε) = f(c),

and hence f is the zero map.
(3) Let f ∈ Z(∗C). By 17.8(4), f ∈ ∗C∗ and, for any g ∈ ∗C and c ∈ C,

g(f⇀c) =
∑
g(c1f(c2)) = g ∗l f(c) = f ∗l g(c)

=
∑
g(f(c1)c2) = g(c↼f) ,

and the cogenerating condition implies f⇀c = c↼f . Now, for any h ∈ C∗,

h ∗r f(c) =
∑
f(h(c1)c2) =

∑
h(c1)f(c2) = h(f⇀c)

= h(c↼f) =
∑
h(f(c1)c2) = f ∗r h(c) ,

showing f ∈ Z(C∗) and hence Z(∗C) ⊂ Z(C∗).
(4) By 17.8(4), Z(∗C) ⊂ Z(∗C∗). Conversely, for f ∈ Z(∗C∗), c ∈ C, and

all g ∈ ∗C∗, the equalities in (1) imply

g(c↼f) = f ∗ g(c) = g ∗ f(c) = g(f⇀c).

If C is cogenerated by A as an (A,A)-bimodule, we conclude that c↼f = f⇀c.
As shown in the proof of (3), this implies f ∈ Z(∗C) and so Z(∗C∗) ⊂ Z(∗C).
We derive Z(∗C∗) ⊂ Z(C∗), similarly.

(5) Notice that the left (right) α-condition implies that C is cogenerated
by A as a left (right) A-module. Hence (3) applies on the left and the right
side. The isomorphisms follow from 18.12 and 19.3.

Let D ⊂ C be a left and right pure (A,A)-sub-bimodule. If D is a subcor-
ing, then it is a right and left subcomodule and hence a (∗C, C∗)-sub-bimodule.
Conversely, assume that D is a (∗C, C∗)-sub-bimodule. Then the restriction
of ∆ yields a left and right C-coaction on D and, by 40.16,

∆(D) ⊂ D ⊗A C ∩ C ⊗A D = D ⊗A D ,

proving that D is a subcoring. �

19.11. Factor corings. Let C be cogenerated by A as a left A-module. Then,
for any idempotent e ∈ Z(∗C), e⇀C is an A-coring and both e⇀ : C → e⇀C
and the inclusion e⇀C → C are coring morphisms.
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Proof. As shown in 19.10, e is also in Z(C∗) and e⇀C↼e = C↼e = e⇀C.
For all c ∈ C, a coaction on e⇀C is defined by

e⇀c �→
∑
c1 ⊗ e⇀c2 =

∑
e⇀c1 ⊗ c2.

It is routine to verify coassociativity, and e is the counit since

(e⊗ IC)(
∑
c1 ⊗ e⇀c2) =

∑
e(c1)e⇀c2 =

∑
e(c1)c2e(c3)

= e⇀(c↼e) = e⇀(e⇀c) = e⇀c ,

where we used 19.10(3) to derive the penultimate equality. A similar compu-
tation applies for IC ⊗ e. �

Even if C is not finitely generated as an A-module, it is (C∗, A)-finite as
defined in 41.22 provided it satisfies the α-condition.

19.12. Finiteness Theorem (2).

(1) Let C satisfy the left α-condition and M ∈MC. Then every finite subset
of M is contained in a subcomodule of M that is finitely generated as
a right A-module. In particular, minimal ∗C-submodules are finitely
generated as right A-modules.

(2) Let C satisfy the left and right α-condition. Then any finite subset of C
is contained in a (∗C, C∗)-sub-bimodule that is finitely generated as an
(A,A)-bimodule. In particular, minimal (∗C, C∗)-sub-bimodules of C are
finitely generated as (A,A)-bimodules.

Proof. (1) The proof from 4.12 applies: we show that, for each m ∈M ,
the sucobmodule ∗C⇀m is finitely generated as an A-module. Write �M(m) =∑k
i=1mi ⊗ ci, where mi ∈ ∗C⇀m, ci ∈ C. Then, for any f ∈ ∗C,

f⇀m = (IM ⊗ f) ◦ �M(m) =
k∑
i=1

mi f(ci) .

So, as a right A-module, ∗C⇀m is (finitely) generated by m1, . . . ,mk.
(2) It is enough to prove the assertion for single elements c ∈ C. By (1),

∗C⇀c is generated as a right A-module by some c1, . . . , ck ∈ C. By symmetry,
each ci↼C∗ is a finitely generated left A-module. Hence ∗C⇀c↼C∗ is a finitely
generated (A,A)-bimodule. �

By the definitions in 38.9, a right C-comodule N is semisimple (inMC) if
every C-monomorphism U → N is a coretraction, and N is simple if all these
monomorphisms are isomorphisms. The semisimplicity of N is equivalent
to the fact that every right C-comodule is N -injective. (Semi)simple left C-
comodules and (C, C)-bicomodules are defined similarly. A coring C is said
to be left (right) semisimple if it is semisimple as a left (right) comodule. C
is called a simple coring if it is simple as a (C, C)-bicomodule.
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19.13. Semisimple comodules. Let C be flat as a left A-module.
(1) Any N ∈MC is simple if and only if N has no nontrivial subcomodules.

(2) For N ∈MC the following are equivalent:

(a) N is semisimple (in MC, as defined above);

(b) every subcomodule of N is a direct summand;

(c) N is a sum of simple subcomodules;

(d) N is a direct sum of simple subcomodules.

Proof. By 18.14, all monomorphisms in MC are injective maps and the
intersection of any two subcomodules is again a subcomodule. Hence the
proof of 4.13 can be followed. �

We are now able to characterise an important class of corings.

19.14. Right semisimple corings. For C the following are equivalent:
(a) C is a semisimple right C-comodule;
(b) AC is flat and every right subcomodule of C is a direct summand;
(c) AC is flat and C is a (direct) sum of simple right comodules;

(d) AC is flat and every comodule in MC is semisimple;

(e) AC is flat and every short exact sequence in MC splits;

(f) AC is flat and every comodule in MC is projective;

(g) AC is projective and C is a semisimple left ∗C-module;
(h) every comodule in MC is (C-)injective;
(i) C is a direct sum of simple corings that are right (left) semisimple;

(j) CA is projective and C is a semisimple right C∗-module;

(k) C is a semisimple left C-comodule.

Proof. (a)⇒ (b)⇒ (c)⇒ (d)⇒ (e)⇒ (f) If C is right semisimple, then
every monomorphism U → C inMC is a coretraction and hence injective. By
18.14, this implies that C is flat in AM. Now we can apply the arguments
used in the proof of 4.14.

(a) ⇔ (h) This follows from 38.13. Notice that (as a consequence of (g))
a right comodule is C-injective if and only if it is injective in MC.

(f) ⇒ (j) In particular, C is projective in MC, and hence, by 18.20, it
is projective in MA. By a slight refinement of the proof of 41.8 we show
that C is a semisimple right module over C∗ = EndC(C): let K ⊂ C be a
simple right subcomodule. We show that, for any k ∈ K, k↼C∗ ⊂ C is
a simple C∗-submodule: for any t ∈ C∗ with k↼t �= 0, K � K↼t. Since
these are direct summands in C, there exists some f ∈ C∗ with the property
k↼t↼f = k and hence k↼C∗ = k↼t↼C∗, implying that k↼C∗ has no nontrivial
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C∗-submodules. Notice that the right subcomodule K is a left ∗C-module and
hence ∗C⇀K = K.

As a right semisimple comodule, C =
∑

ΛKλ, where the Kλ are simple
right subcomodules. Now, C = ∗C⇀(

∑
ΛKλ↼C∗), showing that C is a sum of

simple right C∗-modules f⇀kλ↼C∗, where f ∈ ∗C and kλ ∈ Kλ.
(j)⇒ (k) Since CA is projective, CM = σ[CC∗ ] and the assertion is obvious.
(k)⇒ (g) By symmetry this can be shown with the proof (a)⇒ (j).
(g)⇒ (a) This is clear since AC projective implies MC = σ[C∗C].
(k)⇒ (i) From what we have shown so far, (k) implies that C is projective

in AM and MA. Hence, by 19.10(5), the direct summands as (
∗C, C∗)-sub-

bimodules are subcorings, and the decomposition is a particular case of the
fully invariant decomposition of the semisimple left ∗C-module C (see 41.8).

(i)⇒ (g) We know that the simple semisimple subcorings of C are projec-
tive as left (and right) A-modules. From this the assertion is clear. �

The above observations also imply characterisations of simple corings:

19.15. Simple corings. For C the following are equivalent:
(a) C is a simple coring that is right semisimple;
(b) C is projective in AM and is a simple (∗C, C∗)-bimodule with a minimal

right C∗-submodule;

(c) C is right semisimple and all simple comodules are isomorphic;
(d) C is a simple coring that is left semisimple;
(e) there is a Galois comodule M ∈ MC such that EndC(M) is a division

algebra;

(f) there is a division R-algebra T and a (T,A)-bimodule P such that PA
is finitely generated and P ∗ ⊗T P � C as corings.

Proof. (a)⇔ (b) This follows by 19.14.
(b)⇔ (c) Obviously all simple subcomodules of C are isomorphic, and all

simple comodules are isomorphic to subcomodules of C.
(a)⇔ (d) The left-right symmetry is shown in 19.14.
(a)⇒ (e) LetM be any simple left subcomodule of C. ThenM is a finitely

generated projective generator inMC, and, by Schur’s Lemma, EndC(M) is a
division algebra. Furthermore, by 19.12 and 18.20, MA is finitely generated
and projective, and so M is Galois comodule by 28.19.

(e) ⇒ (f) For the Galois module M and S = EndC(M) there is a coring
isomorphism M∗ ⊗S M � C (see 18.26). Putting P = MA and S = T , the
(T,A)-bimodule P has the properties required.

(f) ⇒ (c) Under the given conditions P ∗ ⊗T P is a coring, the dual al-
gebra ∗(P ∗ ⊗T P ) is isomorphic to TEnd(P ), and M

P ∗⊗TP is equivalent to
σ[P

TEnd(P )] (see 19.7). Since P is a simple module over TEnd(P ), all modules
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in σ[P
TEnd(P )] are semisimple and it contains only one type of simple modules.

Hence all comodules in MP ∗⊗TP are semisimple and there is only one simple
comodule (up to isomorphisms). �

By the Finiteness Theorem 19.12 and the Hom relations 18.10, properties
of the base ring A have a strong influence on the comodule properties of C.

19.16. Corings over special rings. Let C satisfy the left α-condition.
(1) If A is right Noetherian, then C is a locally Noetherian right comodule,

and direct sums of injectives in MC are injective.

(2) If A is left perfect, then every module in MC satisfies the descending
chain condition on finitely generated subcomodules.

(3) If A is right Artinian, then every finitely generated module in MC has
finite length.

Proof. (1) Let A be right Noetherian and N ⊂ C a finitely generated
left ∗C-submodule. Then N is finitely generated – and hence Noetherian – as
a right A-module. This obviously implies the ascending chain condition for
subcomodules in N , and so C is locally Noetherian.

(2) For a left perfect ring A, any finitely generated right A-module sat-
isfies the descending chain condition on cyclic (and finitely generated) A-
submodules (cf. 41.17). By 19.12, this implies the descending chain condition
for finitely generated subcomodules for any M ∈MC.

(3) Over a right Artinian ring A, finitely generated right A-modules have
finite length. This implies finite length for finitely generated comodules. �

Recall that, over left Artinian (left perfect) rings A, the left α-condition
on C is equivalent to AC being projective (see 42.11). QF rings A are Artinian
and are injective and cogenerators in AM and MA (see 43.6).

19.17. Corings over QF rings. Let AC be projective and A a QF ring.

(1) C is a (big) injective cogenerator in MC.

(2) Every comodule in MC is a subcomodule of some direct sum C(Λ).

(3) C∗ is an f-semiperfect ring.

(4) K := Soc∗CC ✂ C and Jac(C∗) = HomC(C/K, C) � HomA(C/K,A).

Proof. (1),(2) Over a QF ring A, every right A-module is contained in
a free A-module A(Λ). This implies for any right C-comodule M the injection

M
�M−→M ⊗A C ⊂ A(Λ) ⊗A C � C(Λ) .

(3) By 41.19, the endomorphism ring EndC(C) � C∗ of the self-injective
module ∗CC is f-semiperfect.
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(4) It follows from 19.16(3) that ∗CC has an essential socle, and hence the
assertion follows by 41.19. �

Notice that – in contrast to the situation for coalgebras considered in 9.1 –
we do not have a left-right symmetry here since AC projective need not imply
that CA is also projective.

Writing morphisms of right comodules on the right side, the image of the
functor HomC(−, C) lies in the category of right modules over EndC(C) �
HomA(C, A) = C∗. This induces a connection between MC and MC∗ .

19.18. The functors HomC(−, C) and HomC(C,−).
(1) For any M ∈MC the R-module isomorphism (see 18.10)

ϕ : HomC(M, C)→ HomA(M,A) =M∗

induces a right C∗-module structure on M∗,

M∗ ⊗R C∗ →M∗, g ⊗ f �→ [m �→
∑

f(g(m0)m1)] ,

and so ϕ is a morphism in MC∗ and the contravariant functor

HomC(−, C) � HomA(−, A) :MC →MC∗

is left exact provided that AC is flat.
(2) The covariant functor HomC(C,−) : MC → C∗M is left exact provided

that AC is flat.

Proof. We get the right action by f ∈ C∗ on g ∈M∗ for m ∈M by

g · f(m) = ϕ(ϕ−1(g)(m)↼f) =
∑

ϕ(g(m0)m1↼f)

=
∑

f(g(m0)m1)ε(m2) =
∑

f(g(m0)m1).

The remaining assertions are clear from module theory and 18.17. �
Under certain finiteness conditions we can pass from left to right C-

comodules. This works in particular over QF rings. Recall from 40.12 that,
for a finitely presented right A-module M and a flat right A-module C, there
is an isomorphism

νM : C ⊗A HomA(M,A)→ HomA(M, C), c⊗ h �→ c⊗ h(−) .

19.19. Comodules finitely presented as A-modules. Let M ∈MC and
assume that MA is finitely generated and projective, or that CA is flat and MA

is finitely presented.
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(1) M∗ = HomA(M,A) is a left C-comodule by the structure map

�̄ :M∗ → HomA(M, C) � C ⊗AM∗, g �→ (g ⊗ IC) ◦ �M .

The resulting right C∗-module structure on M∗ is the map from 19.18,

M∗ ⊗R C∗ →M∗, g ⊗ f �→ [m �→
∑

f(g(m0)m1)] .

(2) Assume also that AC is flat. If M is injective as a right C-comodule and
is contained in a free A-module, then M∗ is projective in MC∗.

Proof. (1) The coassociativity of �̄ is shown with an obviously modified
diagram from the proof of 3.11. Let β : An →M be an epimorphism inMA.
Consider the commutative diagram

M∗

�̄
��

0 �� HomA(M, C) Hom(β,C) ��

ν−1
M

��

HomA(A
n, C)

ν−1
An

��
0 �� C ⊗AM∗ IC⊗β∗ �� C ⊗A (An)∗,

where, for a dual basis {ei, ei | i = 1, . . . , n} of An,

ν−1
An : HomA(A

n, C)→ C ⊗A (An)∗, ϕ �→
∑

i
ϕ(ei)⊗ ei.

For g ∈M∗ we obtain

ν−1
M ((g ⊗ IC) ◦ �M) = ν−1

An((g ⊗ IC) ◦ �M ◦ β) =
∑

i
(g ⊗ IC) ◦ �M ◦ β(ei)⊗ ei.

The canonical right action of C∗ on the left C-comodule M∗ is defined by the
composition of the structure map M∗ → C ⊗AM∗ and

C ⊗AM∗ ⊗R C∗ →M∗, c⊗ g ⊗ f �→ f(c)g.

So we obtain

g ⊗ f �→
∑

i
f((g ⊗ IC) ◦ �M ◦ β(ei))⊗ ei,

and for m ∈M and a ∈ An with β(a) = m, the right-hand side maps a to∑
i
f((g⊗IC)◦�M ◦β(ei))⊗ei(a) = f((g⊗IC)◦�M ◦β(a)) =

∑
f(g(m0)m1).

(2) A monomorphism M → An in MA induces a monomorphism

M →M ⊗A C → An ⊗A C � Cn
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in MC that splits by assumption. This yields a commutative diagram

HomC(Cn, C) ��

�
��

HomC(M, C)
�
��

�� 0

HomA(Cn, A) �� HomA(M,A) �� 0

in which the upper – and hence the lower – row splits in MC∗ , and so M∗ is
a direct summand of C∗n. �

With the module structures just described, the functors onMC considered
in 19.18 can be extended to functors on ∗CM.

Let M[f ]C denote the full subcategory of MC whose objects are finitely
presented as right A-modules. This is clearly an Abelian category provided
that A is right Noetherian. A similar notation is used for left comodules.

19.20. The functors Hom (−, C). Suppose that C satisfies the left and right
α-conditions. Then the (∗C, C∗)-bimodule C defines the right adjoint pair of
contravariant functors

∗CHom(−, C) : ∗CM→MC∗ , M �→ ∗CHom(M, C),
HomC∗(−, C) :MC∗ → ∗CM, X �→ HomC∗(X, C).

Restricted to the subcategory MC, ∗CHom(−, C) � HomC(−, C).
If A is Noetherian, then there is a left exact functor

HomC(−, C) :M[f ]C → CM[f ], M �→ HomC(M, C),

which induces a duality provided that A is a QF ring.

Proof. The first assertions follow from general module theory (see 40.23).
As shown in 19.19, for any N ∈MC that is finitely presented as an A-module,
HomC(N, C) is a left C-comodule that is finitely generated as a left A-module.
If A is QF, then both N and HomC(N, C) are C-reflexive. �

19.21. The functor ∗CHom (C,−). Let C satisfy the left α-condition. The
(∗C, C∗)-bimodule C defines an adjoint pair of covariant functors

C ⊗C∗ − : C∗M→MC, ∗CHom(C,−) :MC → C∗M.

For X ∈ C∗M, the right A-module structure of C ⊗C∗ X is derived from the
left ∗C-module structure of C via the ring anti-morphism iL : A → ∗C (cf.
17.8(2)). C ⊗C∗ X is a left ∗C-module and, in fact, a right C-comodule by

C ⊗C∗ X → (C ⊗C∗ X)⊗A C, c⊗ x �→
∑

c1 ⊗ x⊗ c2.
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Proof. Again the first assertions follow from module theory (43.9). To
show that the coaction is well defined we have to verify that, for any f ∈ C∗,
c ∈ C, and x ∈ X, the images of c⊗f ·x and (f ⊗ IC)◦∆(c)⊗x are the same.
This follows from the equality∑

c1 ⊗ f · x⊗ c2 =
∑

f(c1)c2 ⊗ x⊗ c3.

Furthermore, for any a ∈ A, (c⊗x)a = iL(a)c⊗x =
∑
c1ε(c2a)⊗x = ca⊗x,

and this is mapped to∑
c1 ⊗ x⊗ c2ε(c3a) =

∑
c1 ⊗ x⊗ c2a,

showing that the coaction is A-linear. �
Over QF rings, for some modules injectivity and projectivity inMC extend

to injectivity, resp. projectivity, in C∗M.

19.22. Injectives – projectives. Let AC be projective, A a QF ring, and
M ∈MC.

(1) If M is projective in MC, then M∗ is C-injective as a right C∗-module
and CRat(M∗) is injective in CM.

(2) If M is finitely presented as a left A-module, then:

(i) M is injective in MC if and only if M is injective in ∗CM.

(ii) M is projective in MC if and only if M is projective in ∗CM.

Proof. (1) We slightly modify the proof of 9.5. Consider any diagram
with exact row in CM,

0 �� K ��

f
��

N

M∗,

where N is finitely generated as a left A-module (right C∗-module). Denoting
∗(−) = AHom(−, A) and (−)∗ = HomA(−, A), we obtain – with the canonical
map ΦM :M → ∗(M∗) – the diagram in ∗CM

M
ΦM �� ∗(M∗)

∗f
��∗N �� ∗K �� 0 ,

where the bottom row is in MC (by 19.19) and hence can be extended com-
mutatively by some right comodule morphism g : M → ∗N . Again applying

(−)∗ – and recalling that the composition M∗ ΦM∗−→ (∗(M∗))∗
(ΦM )∗−→ M∗ yields
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the identity (by 40.23) – we see that g∗ extends f to N . This proves that
M∗ is N -injective for all comodules N ∈ CM that are finitely presented as A-
modules and hence is C-injective. A standard argument shows that CRat(M∗)
is injective in CM.

(2) Since 3.11 was extended to corings in 19.19, we can follow the proof
of 9.5(2). �

19.23. Cogenerator properties of C. Let C satisfy the α-condition and
assume C to cogenerate all finitely C-generated comodules. Then the following
are equivalent:

(a) ∗CC is linearly compact;
(b) CC∗ is C∗-injective.

If A is right perfect, (a),(b) are equivalent to:

(c) ∗CC is Artinian.

Proof. The equivalence of (a) and (b) follows by 43.2(4). If A is left
perfect, then C is right semi-Artinian by 19.16, and hence, by 41.13, (a)
implies that ∗CC is Artinian. �

Over a (left and right) Noetherian ring A, C is left and right locally Noethe-
rian as a C∗-module (by 19.16), and therefore we can apply 43.4 to obtain:

19.24. C as injective cogenerator in MC. Let A be Noetherian and let C
satisfy the left and right α-conditions. Then the following are equivalent:

(a) C is an injective cogenerator in MC;

(b) C is an injective cogenerator in CM;

(c) C is a cogenerator both in MC and CM.

Restricting to Artinian rings, we have interesting characterisations of C as
an injective cogenerator not only in MC but also in MC∗ .

19.25. C as injective cogenerator in MC∗. Let A be Artinian and AC and
CA projective. The following are equivalent:
(a) C is an injective cogenerator in MC∗;

(b) ∗CC is Artinian and an injective cogenerator in MC;

(c) ∗CC is an injective cogenerator in MC and C∗ is right Noetherian.

If these conditions hold, then C∗ is a semiperfect ring and every right
C∗-module that is finitely generated as an A-module belongs to CM.

Proof. Since A is Artinian, C has locally finite length as a left ∗C- and
right C∗-module.
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(a) ⇒ (b) Assume C to be an injective cogenerator in MC∗ . Then, by
19.24, C is an injective cogenerator in MC. Now 43.8 implies that ∗CC is
Artinian.

(b)⇒ (a) and (b)⇔ (c) also follow from 43.8.
Assume the conditions hold. Then C∗ is f-semiperfect (as the endomor-

phism ring of a self-injective module; cf. 41.19). So C∗/Jac(C∗) is von Neu-
mann regular and right Noetherian, and hence right (and left) semisimple.
This implies that C∗ is semiperfect.

Let L ∈ MC∗ be finitely generated as an A-module. Then L is finitely
cogenerated as a C∗-module, and hence it is finitely cogenerated by C. This
implies L ∈ CM. �

Since over a QF ring any coring is an injective cogenerator for its comod-
ules, the results from 19.25 simplify to the

19.26. Corollary. If A is QF and AC and CA are projective, the following
are equivalent:

(a) C is injective in MC∗;

(b) C is an injective cogenerator in MC∗;

(c) ∗CC is Artinian;
(d) C∗ is a right Noetherian ring.

Proof. Since A is QF, C is an injective cogenerator in MC and CM
(by 19.17). So the equivalence of (b), (c) and (d) follows from 19.25, and
(a)⇒ (c) is a consequence of 19.23. �

Now we interpret the topological observations about modules in 42.3 in
the case of corings.

19.27. The C-adic topology in ∗C. Let C satisfy the left α-condition. Then
the finite topology in AEnd(C) induces the C-adic topology on ∗C and the open
left ideals determine the right C-comodules.
Open left ideals. A filter basis for the open left ideals of ∗C is given by

BC = {An∗C(E) | E a finite subset of C},

where An∗C(E) = {f ∈ ∗C | f⇀E = 0}, and the filter of all open left ideals is

FC = {I ⊂ ∗C | I is a left ideal and ∗C/I ∈MC}.

Thus a generator in MC is given by

G =
⊕

{∗C/I | I ∈ BC} .

Closed left ideals. For a left ideal I ⊂ ∗C, the following are equivalent:
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(a) I is closed in the C-adic topology;
(b) I = An∗C(W ) for some W ∈MC;

(c) ∗C/I is cogenerated (in ∗CM) by some (minimal) cogenerator of MC;

(d) I =
⋂

Λ Iλ, where
∗C/Iλ ∈MC and is finitely cogenerated (cocyclic).

Over QF rings. Let A be a QF ring and AC and CA projective.
(1) Any finitely generated right ideal in C∗ (left ideal in ∗C) is closed in the

C-adic topology.
(2) A left ideal I ⊂ ∗C is open if and only if it is closed and ∗C/I is finitely

A-generated (finitely A-cogenerated).

Proof. Since A is a QF ring, C is injective inMC and CM (by 19.17), and
hence finitely generated left, resp. right, ideals in the endomorphism rings are
closed in the C-adic topology (see 42.3). �

References. Brzeziński [73]; Cuadra and Gómez-Torrecillas [102]; El
Kaoutit, Gómez-Torrecillas and Lobillo [112]; El Kaoutit and Gómez-Torre-
cillas [111]; Guzman [126, 127]; Wisbauer [210, 212].
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20 The rational functor for corings

In Section 19 we revealed a relationship between comodules of an A-coring
C and modules of a dual algebra. The main idea of this section is to use
this relationship more fully, and to derive properties of comodules from the
properties of corresponding ∗C-modules. Although every right C-comodule
is a left ∗C-module, not every left ∗C-module is a right C-comodule. In this
section we study a functor that carves out the part of a left ∗C-module on
which a right C-coaction can be defined. Similarly as for coalgebras, this
functor is known as the rational functor.

To realise the program outlined above, one first needs to restrict oneself
to the case when MC is a full subcategory of left ∗C-modules. Thus, for the
whole of the section we assume that C is an A-coring that is locally projective
as a left A-module, that is, it satisfies the left α-condition 19.2. Then the
inclusion ofMC = σ[∗CC] into ∗CM has a right adjoint (see 41.1), namely, the

20.1. Rational functor. For any left ∗C-module M , the rational submodule
is defined by

RatC(M) =
∑

{Im f | f ∈ ∗CHom(U,M), U ∈MC}.

Thus RatC(M) is the largest submodule of M that is subgenerated by C, and
hence it is a right C-comodule. The induced functor, a subfunctor of the
identity, is called the rational functor:

RatC : ∗CM→MC, M �→ RatC(M),
f :M → N �→ f |RatC(M) : Rat

C(M)→ RatC(N).

As in the case of coalgebras, RatC(M) = M for M ∈ ∗CM if and only if
M ∈MC. The equality RatC(M) =M holds for all left ∗C-modules M if and
only if C is finitely generated as a left A-module (see 19.6 and 42.11(3)).

Let M be a left ∗C-module. Any k ∈ M is called a rational element if
there exists an element

∑
imi ⊗ ci ∈M ⊗R C, such that (see 19.2)

fk =
∑

i
mif(ci), for all f ∈ ∗C.

Since αM : M ⊗A C → HomA(
∗C,M) in 19.2 is assumed to be injective, such

an element
∑
imi ⊗ ci is uniquely determined.

20.2. Rational submodule. Let M be a left ∗C-module.
(1) An element k ∈ M is rational if and only if ∗C k is a right C-comodule

with fk = f⇀k, for all f ∈ ∗C.
(2) RatC(M) = {k ∈M | k is rational}.
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Proof. Replace C∗ by ∗C in the proof of 7.3. �
The rational submodule RatC(∗C) is a two-sided ideal in ∗C and is called

a left trace ideal. Clearly RatC(∗C) = ∗C if and only if AC is finitely generated
(and hence projective by 42.11(3)).

Symmetrically, if C satifies the right α-condition, right rational C∗-modules
are defined, yielding the right trace ideal CRat(C∗).

Although some properties survive the generalisation from coalgebras to
corings, not all characterisations of the trace ideal are preserved.

20.3. Properties of the left trace ideal. Let T = RatC(∗C).
(1) Let f ∈ ∗C and assume that f⇀C is a finitely presented left A-module.

Then f ∈ T .

(2) For any f ∈ T , the right comodule ∗C ∗l f is finitely generated as an
A-module.

Proof. (1) Assume the rational right C∗-module f⇀C to be a finitely
presented left A-module. Then, by 19.19, ∗(f⇀C) is a rational left ∗C-module.
Since ε(f⇀c) = f(c) for all c ∈ C, f ∈ ∗(f⇀C) ⊂ ∗C and hence f ∈ T .

(2) This follows from the Finiteness Theorem 19.12. �

20.4. MC closed under extensions. For C the following are equivalent:
(a) MC is closed under extensions in ∗CM;

(b) for every X ∈ ∗CM, RatC(X/RatC(X)) = 0;

(c) there exists a ∗C-injective Q ∈ ∗CM such that

MC = {N ∈ ∗CM | ∗CHom(N,Q) = 0}.

Proof. The assertions follow from general module theory (see 42.14). �

20.5. MC closed under essential extensions. For C the following asser-
tions are equivalent:

(a) MC is closed under essential extensions in ∗CM;

(b) MC is closed under injective hulls in ∗CM;

(c) every C-injective module in MC is ∗C-injective;
(d) for every injective ∗C-module Q, RatC(Q) is a direct summand in Q;
(e) for every injective ∗C-module Q, RatC(Q) is ∗C-injective.
If MC is closed under essential extensions, then RatC is exact.

Proof. This is an application of 42.20. �
For the next two propositions the α-condition on C is not required a priori.
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20.6. Density in ∗C. For a right A-submodule U ⊂ ∗C, the following state-
ments are equivalent:

(a) U is dense in ∗C in the finite topology (of AC);

(b) U is a C-dense subset of ∗C (in the finite topology of EndR(C)).
If AC is cogenerated by A, then (a), (b) imply:
(c) KeU = {x ∈ C |u(x) = 0 for all u ∈ U} = 0.

If A is a cogenerator in AM and MA, then (c)⇒ (b).

Proof. (a)⇔ (b) By 18.12, the finite topologies in ∗C and CEnd(C) can
be identified.

(a)⇔ (c) In view of the properties of ∗C-actions on C shown in 19.10(1),
the proof of 7.9 can be adopted. �

20.7. Dense subalgebras of ∗C. For a subring T ⊂ ∗C, the following are
equivalent:

(a) T is dense in ∗C and C satisfies the left α-condition;
(b) MC = σ[TC].

If T is an ideal in ∗C, then (a) and (b) are equivalent to:
(c) C is an s-unital T -module and C satisfies the α-condition.

Proof. (a) ⇔ (b) The inclusions MC ⊂ σ[∗CC] ⊂ σ[TC] always hold.
MC = σ[∗CC] is equivalent to the α-condition (by 19.3), while σ[∗CC] = σ[TC]
corresponds to the density property (see 42.2).

(a)⇔ (c) By 42.6, for an ideal T ⊂ ∗C the density property is equivalent
to the s-unitality of the T -module C (see 42.2). �

Now again the α-condition is assumed for C. The properties of the trace
functor observed in 42.16 imply:

20.8. The rational functor exact. Let T = RatC(∗C). The following are
equivalent for C:
(a) the functor RatC : ∗CM→MC is exact;

(b) the categoryMC is closed under extensions in ∗CM and the (torsionfree)
class {X ∈ ∗CM | RatC(X) = 0} is closed under factor modules;

(c) for every N ∈MC (with N ⊂ C), TN = N ;

(d) for every N ∈MC, the canonical map T⊗∗CN → N is an isomorphism;

(e) C is an s-unital left T -module;
(f) T 2 = T and T is a generator in MC;

(g) TC = C and ∗C/T is flat as a right ∗C-module;
(h) T is a C-dense subring of ∗C.
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Notice some consequences of the exactness of the Rat-functor from 42.17:

20.9. Corollary. Assume RatC to be exact and P ∈MC. Then:

(1) MC is closed under small epimorphisms in ∗CM.

(2) If P is finitely presented in MC, then P is finitely presented in ∗CM.

(3) If P is projective in MC, then P is projective in ∗CM.

20.10. Enough projectives in MC. Let A be right Noetherian and assume
∗C to be f-semiperfect. Then the following are equivalent:
(a) the functor RatC is exact;

(b) MC has a generator that is (locally) projective in ∗CM;

(c) there are idempotents {eλ}Λ in ∗C such that the ∗C ∗l eλ are in MC and
form a generating set of MC.

Proof. (Compare 42.19) (a)⇒ (c) LetM ∈MC be any simple comodule.
M is finitely presented in MA and hence in M

C. By 20.9(1), M is finitely
presented in ∗CM and – since ∗C is f-semiperfect – it has a projective cover
P in ∗CM (see 41.18). By 20.9(1), P ∈MC and clearly P � ∗C ∗l e for some
idempotent e ∈ ∗C. Now a representing set of simple comodules yields the
family of idempotents required.

(c)⇒ (b) is obvious, and (b)⇒ (a) follows from 42.18. �

Notice that, by 19.17, over a QF ring A, for any A-coring C with AC and
CA projective, the dual rings C∗ and ∗C are f-semiperfect. Hence combining
20.8 and 20.10, we obtain

20.11. Corollary. Let AC and CA be projective and assume A to be a QF
ring. Then the following are equivalent:

(a) the functor RatC is exact;

(b) the left trace ideal RatC(∗C) is dense in ∗C;
(c) every simple comodule has a projective cover in MC;

(d) MC has a generating set of finitely generated projectives.

20.12. Trace ideal and decompositions. Let C satisfy the left and right
α-conditions and put T = RatC(∗C). If C is a direct sum of finitely gener-
ated right C∗-modules (left C-comodules), then there exists a set of orthogonal
idempotents {eλ}Λ in T such that

C =
⊕

Λ
eλ⇀C.

In this case T is C-dense in ∗C.
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Proof. Any finitely generated direct summand U ⊂ C is equal to e⇀C as
a left comodule, for some idempotent e in CEnd(C) = ∗C. From 20.3 we deduce
that e ∈ T . Now the assertion follows by the usual module decomposition of
C as a C∗-module.

Any d ∈ C is contained in a finite partial sum U of the decomposition,
and U is finitely generated as a left A-module. Hence there exists some
idempotent e ∈ T with e⇀d = d, showing that C is an s-unital T -module and
hence 20.8 applies. �

20.13. Two-sided decompositions. Assume C to satisfy the left and right
α-conditions and put T = RatC(∗C).

If C is a direct sum of (∗C, C∗)-bimodules (subcorings) that are finitely
generated as left A-modules, then

C =
⊕

Λ
eλ⇀C,

where {eλ}Λ is a family of orthogonal central idempotents in T .

Proof. By 19.10, the given (∗C, C∗)-bimodule decomposition of C can
be described by central idempotents eλ ∈ ∗C and the eλ⇀C are subcorings
(see 19.11). Moreover, the eλ⇀C are finitely generated and projective left
A-modules, and hence eλ ∈ T by 20.3. �

References. Cuadra and Gómez-Torrecillas [102]; Gómez-Torrecillas and
Nǎstǎsescu [123]; Wisbauer [210].
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21 Cotensor product over corings

In this section the cotensor product for comodules over coalgebras is extended
to the cotensor product of comodules over corings. The corresponding prop-
erties related to this cotensor product of corings, such as the tensor-cotensor
relations, coflatness, purity, and so on, are studied. It turns out that the
cotensor product can be used to describe equivalences between comodule cat-
egories over corings, and thus we are led to the Morita-Takeuchi theory for
corings in Section 23. The techniques are very similar to the coalgebra case
but, obviously, some left-right symmetry is lost. Throughout, C denotes a
coring over an R-algebra A.

21.1. Cotensor product of comodules. For M ∈ MC and N ∈ CM, the
cotensor product M✷CN is defined as the equaliser in MR,

M✷CN ��M ⊗A N
�M⊗IN ��

IM⊗N�
��M ⊗A C ⊗R N ,

or, equivalently, by the following exact sequence of R-modules:

0 ��M✷CN ��M ⊗A N
ωM,N ��M ⊗A C ⊗A N,

where ωM,N = �M⊗IN−IM⊗N�. It can also be characterised by the pullback
diagram

M✷CN ��

��

M ⊗A N
�M⊗IN
��

M ⊗A N
IM⊗N��� M ⊗A C ⊗A N .

In particular, for the comodule C, there are A-module isomorphisms
M✷CC = �M(M) �M, C✷CN = N�(N) � N.

Proof. Apply the arguments of the proof of 10.1. It will be shown in
22.4 that these are in fact isomorphisms of comodules. �

The proof of 10.2 also yields the cotensor product of morphisms.

21.2. Cotensor product of comodule morphisms. Consider morphisms
f : M → M ′ in MC and g : N → N ′ in CM. There exists a unique R-linear
map

f✷g : M✷CN −→M ′✷CN ′,

yielding a commutative diagram (ω as in 21.1)

0 ��M✷CN ��

f✷g
��

M ⊗A N
ωM,N ��

f⊗g
��

M ⊗A C ⊗A N
f⊗IC⊗g
��

0 ��M ′✷CN ′ ��M ′ ⊗A N ′ ωM′,N′
��M ′ ⊗A C ⊗A N ′ .



218 Chapter 3. Corings and comodules

As for coalgebras, the cotensor product over corings induces functors be-
tween comodule categories and MR. Thus, similarly to 10.3, 10.4 and 10.5,
one can consider

21.3. The cotensor functor. Any M ∈MC induces a covariant functor

M✷C− : CM→MR, N �→ M✷CN,
f : N → N ′ �→ IM✷f :M✷CN →M✷CN ′.

(1) Let AC be flat, let 0 −→ N ′ f−→ N
g−→ N ′′ be an exact sequence in CM,

and assume

(i) M is flat as an A-module, or

(ii) the sequence is M-pure (in AM), or

(iii) the sequence is (C, A)-exact.
Then cotensoring with M yields an exact sequence of R-modules

0→M✷CN ′ IM✷f−→ M✷CN
IM✷g−→ M✷CN ′′.

(2) The cotensor functor M✷C− : CM→ RM is left (C, A)-exact, and it is
left exact provided that M is flat as a right A-module.

(3) For any direct family {Nλ}Λ in CM,

lim−→(M✷CNλ) �M✷C lim−→Nλ.

As for coalgebras, associativity properties between tensor and cotensor
products are of fundamental importance. Here we have to distinguish between
properties of left and right A-modules.

21.4. Tensor-cotensor relations. Let A, S, T be R-algebras.

(1) Let M ∈ SM
C, that is, M is an (S,A)-bimodule and the coaction �M :

M →M⊗AC is S-linear, and let N ∈ CM. For any W ∈MS, W⊗SM
has a canonical right C-comodule structure (see 18.9(4)) and there exists
a canonical R-linear map

τW : W ⊗S (M✷CN)→ (W ⊗S M)✷CN.

The following are equivalent:

(a) ωM,N :M⊗AN →M⊗AC⊗AN (as in 21.1) is W -pure (in SM);

(b) τW is an isomorphism.
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(2) Let M ∈MC and N ∈ CMT , that is, N is an (A, T )-bimodule and the
left coaction N� : N → C ⊗A N is right T -linear. For any V ∈ TM,
there exists a canonical R-linear map

τ ′V : (M✷CN)⊗T V →M✷C(N ⊗T V ).

The following are equivalent:

(a) ωM,N :M ⊗AN →M ⊗A C ⊗AN (as in 21.1) is V -pure (inMT );

(b) τ ′V is an isomorphism.

Proof. (1) With obvious maps there is the commutative diagram

0 ��W⊗S (M✷CN) ��

τW
��

W⊗S (M ⊗A N)
IW⊗ωM,N��

�
��

W⊗S (M⊗AC⊗AN)
�
��

0 �� (W⊗SM)✷CN �� (W⊗SM)⊗AN
ωW⊗M,N�� (W⊗SM)⊗AC⊗AN ,

where the bottom row is exact (by definition). If ωM,N is aW -pure morphism,
then the top row is exact, implying that τW is an isomorphism. On the other
hand, if τW is an isomorphism, then the exactness of the bottom row implies
the exactness of the top row, showing that ωM,N is a W -pure morphism.

(2) The arguments used in (1) also apply to τ ′V . �

We consider cases where the conditions in 21.4 are satisfied.

21.5. Purity conditions over corings. Let A, S, T be R-algebras.

(1) Let M ∈MC and N ∈ CMT . If the functor M✷C− is right exact, then
ωM,N is a pure morphism in MT .

(2) Let M ∈ SM
C and N ∈ CM. If the functor −✷CN is right exact, then

ωM,N is a pure morphism in SM.

(3) If M ∈MC is (C, A)-injective and N ∈ CMT , then the exact sequence

0 ��M✷CN ��M ⊗A N
ωM,N ��M ⊗A C ⊗A N

splits in MT (and hence is pure).

(4) If N ∈ CM is (C, A)-injective and M ∈ SM
C, then the exact sequence

0 ��M✷CN ��M ⊗A N
ωM,N ��M ⊗A C ⊗A N

splits in SM (and hence is pure).
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Proof. (1) Let M✷C− : CM →MR be right exact and V ∈ TM. From
an exact sequence F2 → F1 → V → 0 with free left T -modules F1, F2, we
obtain a commutative diagram

(M✷CN)⊗T F2
��

�
��

(M✷CN)⊗T F1
��

�
��

(M✷CN)⊗T V
τ ′V
��

�� 0

M✷C(N ⊗T F2) ��M✷C(N ⊗T F1) ��M✷C(N ⊗T V ) �� 0 ,

where both sequences are exact. The first two vertical maps are isomorphisms
since tensor and cotensor functors commute with direct sums. This implies
that τ ′V is an isomorphism and the assertion follows by 21.4.

(2) A similar proof applies for the case in which −C✷N is right exact.
(3) The proof is similar to the proof of (4) below.
(4) If N is (C, A)-injective, the structure map N� : N → C ⊗A N is split

by a left C-comodule morphism λ : C ⊗A N → N . Then – as in the proof of
10.7(2) – we see that the map

β = (IM ⊗ λ) ◦ (�M ⊗ IN) :M ⊗A N →M✷CN

is a retraction. Since M ∈ SM
C, obviously β is S-linear and hence M✷CN is

an S-direct summand of M ⊗A N . For the remaining assertions we can also
follow the proof of 10.7(2). �

21.6. Coflat comodules over corings. Let AC be flat. A comodule M ∈
MC is said to be coflat if the functor M✷C− : CM → MR is exact. As in
10.8, it is easy to see that, for any coflat M ∈MC, M is flat as an A-module
and that direct sums and direct limits of coflat C-comodules are again coflat.

M is said to be faithfully coflat provided the functor M✷C− : CM→MR

is exact and faithful. Faithfulness is equivalent to the requirement that the
canonical map

CHom(L,N)→ HomR(M✷CL,M✷CN)

is injective, for any L,N ∈ CM. The same arguments as in the proof of 10.9
can be used to derive the properties of

21.7. Faithfully coflat comodules over corings. Let C be an A-coring
with AC flat. Then, for M ∈MC the following are equivalent:

(a) M is faithfully coflat;

(b) M✷C− : CM → MR is exact and reflects exact sequences (zero mor-
phisms);

(c) M is coflat and M✷CN �= 0, for any nonzero N ∈ CM.
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Recall from 19.19 that, for CA flat and any N ∈ MC that is finitely pre-
sented as an A-module, N∗ = HomA(N,A) is a left C-comodule. Then an
adaption of the proof of 10.11 yields

21.8. Hom-cotensor relation over corings. Let CA be flat andM,L ∈MC,
such thatMA is flat and LA is finitely presented. Then there exists a functorial
isomorphism (natural in L)

M✷CL∗ �−→ HomC(L,M).

As for coalgebras, there is an interesting connection between

21.9. Coflatness and injectivity over corings. For an A-coring C, let
M ∈MC and assume that both M and C are flat as right A-modules.
(1) Let 0 → L1 → L2 → L3 → 0 be an exact sequence in MC, where each

of the Li is finitely presented in MA. If A is right injective, or the
sequence is (C, A)-exact, there is a commutative diagram

0 ��M✷CL∗
3

��

�
��

M✷CL∗
2

��

�
��

M✷CL∗
1

��

�
��

0

0 �� HomC(L3,M) �� HomC(L2,M) �� HomC(L1,M) �� 0.

So the upper sequence is exact if and only if the lower sequence is exact.

(2) Let A be a QF ring. Then

(i) M is coflat if and only if M is C-injective;
(ii) M is faithfully coflat if and only if M is an injective cogenerator

in MC.

Proof. Since the Li are finitely A-presented, the isomorphisms are pro-
vided by 21.8. Now, the proof of 10.12, slightly modified, can be used. �

21.10. Exercises

(1) Consider a two-sided version of the canonical map in 19.2 as follows. For any
M ∈ AMA, K ∈ MA, and N ∈ MA, define an R-linear map

αN,M,K : N⊗AM⊗AK → HomR(∗M∗,N⊗AK), n⊗m⊗k �→ [f �→ nf(m)⊗k].

Prove:

(i) αN,M,K is injective if and only if for any u ∈ N⊗AM⊗AK, the property
(IN ⊗ f ⊗ IK)(u) = 0 for all f ∈ ∗M∗, implies u = 0.

(ii) Assume thatM ∈ AMA is a direct summand of some A(Λ) as an (A,A)-
bimodule. Then αN,M,K is injective, for any N ∈ MA and K ∈ AM.
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(2) Let C be an A-coring such that ACA is a direct summand of some A(Λ) as an
(A,A)-bimodule. For any M ∈ MC and N ∈ CM, consider M ⊗A N as a
(∗C∗, ∗C∗)-bimodule. Prove that

M✷CN � ∗C∗Hom∗C∗(∗C∗,M ⊗A N).

References. Al-Takhman [51]; Guzman [126, 127].
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22 Bicomodules over corings

Similarly to coalgebras (cf. 11.1), given two A-corings one can study their
bicomodules, that is, left comodules of one of the corings that are also right
comodules of the other. In the case of corings, however, one allows for more
freedom, by considering corings over different algebras.

Let A and B be R-algebras, C an A-coring, and D a B-coring.

22.1. Bicomodules. A (B,A)-bimodule M is called a (D, C)-bicomodule if
M is a right C-comodule and left D-comodule with coactions

�M : M →M ⊗A C, M� : M → D ⊗B M,

such that the diagram

M
�M ��

M�
��

M ⊗A C
M�⊗IC
��

D ⊗B M
ID⊗�M�� D ⊗B M ⊗A C

is commutative, that is, �M is a left D-comodule morphism or, equivalently,
M� is a right C-comodule morphism.

A morphism between two (D, C)-bicomodules f : M → N is an R-linear
map that is both left D-colinear and right C-colinear. The category of (D, C)-
bicomodules is denoted by DMC.

22.2. Bicomodules and tensor products. For an R-algebra S, let SM
C

denote the category whose objects are those right C-comodules that are (S,A)-
bimodules such that the coaction is an (S,A)-bimodule map. Morphisms are
left S-linear right C-comodule maps (see 39.2). Similarly, the category DMS

consists of those left D-comodules that are (B, S)-bimodules such that the
coaction is a (B, S)-bimodule map. Morphisms are right S-linear left D-
comodule maps. One easily proves the following extension of 18.9.

Propostion. For any M ∈ DMS and N ∈ SM
C, M ⊗S N is a (D, C)-

bicomodule with left coaction M�⊗ IN and right coaction IM ⊗ �N .

Taking in turn S = A and S = B, one concludes, in particular, that for
all M ∈ DMA and N ∈ BM

C, M ⊗A C and D ⊗B N are (D, C)-bicomodules.
In this context the morphisms between (D, C)-bicomodules can be viewed as
defined by either of the exact sequences

0 �� DHomC(L,M) i ��
BHom

C(L,M)
γL ��

BHom
C(L,D ⊗B M),

where γL(f) =
M� ◦ f − (ID ⊗ f) ◦ L�, or

0 �� DHomC(L,M) i �� DHomA(L,M)
γR �� DHomA(L,M ⊗A C) ,

where γR(g) = �M ◦ g − (g ⊗ IC) ◦ �L (cf. 18.2).
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We know that right C-comodules are left ∗C = AHom(C, A)-modules, and
left D-comodules are right D∗ = HomB(D, B)-modules canonically. Hence
any (D, C)-bicomodule M is a left ∗C-module and a right D∗-module, and the
compatibility condition for bicomodules implies that M is in fact a (∗C,D∗)-
bimodule (cf. 11.1). Therefore there is a faithful functor DMC → ∗CMD∗ .

In general, for M ∈MC and N ∈ CM, M✷CN is just an R-module. If M
is a (D, C)-bicomodule, the map

ωM,N : �
M ⊗ IN − IM ⊗ N� :M ⊗A N →M ⊗A C ⊗A N

is obviously a left D-comodule morphism, and hence its kernel M✷CN is a
D-subcomodule ofM⊗AN , provided ωM,N is a D-pure morphism in BM (see
18.7, 40.13, 40.14). This implies:

22.3. Cotensor product of bicomodules over corings. Let M be a
(D, C)-bicomodule, L ∈MD, and N ∈ CM.

(1) M✷CN is a left D-comodule, provided that ωM,N is D-pure in BM.

(2) L✷DM is a right C-comodule, provided that ωL,M is C-pure in MA.

(3) If N is a (C,D′)-bicomodule for a B′-coring D′, then M✷CN is a
(D,D′)-bicomodule, provided that ωM,N is D-pure in BM and D′-pure
in MB′.

Notice that these conditions are in particular satisfied when AC, DB and
B′D′ are flat modules. Since C is (C, A)-injective, the purity conditions are
always satisfied for the (C, C)-bicomodule C (see 21.5), thus yielding the fol-
lowing corollary of 22.3.

22.4. Cotensor product with C. For any M ∈ MC and N ∈ CM, there
are C-comodule isomorphisms

M �M✷CC, N � C✷CN .

22.5. Associativity of the cotensor product over corings. Consider
M ∈ DMC, L ∈ MD, and N ∈ CM such that the canonical maps yield the
isomorphisms

(L✷DM)⊗A N ′ � L✷D(M ⊗A N ′) , for N ′ = N, C, and C ⊗A N ,

L′ ⊗B (M✷CN) � (L′ ⊗B M)✷CN , for L′ = L,D, and L⊗B D .

Then L✷DM ∈MC, M✷CN ∈ DM and

(L✷DM)✷CN � L✷D(M✷CN).
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Proof. By 22.3, the conditions required imply that L✷DM and M✷CN
are comodules. In the commutative diagram

0 �� (L✷DM)✷CN ��

ψ1

��

(L⊗B M)✷CN ��

ψ2

��

(L⊗B D ⊗B M)✷CN

ψ3

��
0 �� L✷D(M✷CN) �� L⊗B (M✷CN) �� L⊗B D ⊗B (M✷CN) ,

the top row is exact since ωL,M is N -, C-, and C ⊗A N -pure (see 21.4), and
the bottom row is exact by definition of the cotensor product. The L- and
L⊗B D-purity of ωM,N imply that ψ2 and ψ3 are isomorphisms, and so ψ1 is
an isomorphism. �

22.6. Proposition. In the setup of 22.5, the canonical maps are isomor-
phisms provided that

(i) LB, DB, AN and AC are flat modules; or
(ii) L is coflat in MD and DB is flat; or

(iii) N is coflat in CM and AC is flat; or
(iv) L is (D, B)-injective and N is (C, A)-injective.

Proof. It follows from 21.4 and 21.5 that each of the given sets of
conditions implies the necessary isomorphisms. �

22.7. Cotensor product of coflat comodules. Let AC, DB be flat, L ∈MD

and M be a (D, C)-bicomodule. If L is D-coflat and M is C-coflat, then
L✷DM is a coflat right C-comodule.

Proof. By the flatness conditions, L✷DM is a right C-comodule and
M✷CK is a left D-comodule, for any K ∈ CM (see 22.3). Now, in view of
22.5, the proof of 11.7 can be used. �

For (D, C)-bicomodules one can study their properties relative to cate-
gories BM

C and DMA (cf. 22.2), which are of significance for the cohomology
of corings (cf. 30.3). In particular, a (D, C)-bicomodule M is called a (B, C)-
relative injective bicomodule (resp. (D, A)-relative injective bicomodule) if,
for every (D, C)-bicomodule map i : N → L that is a coretraction in BM

C

(resp. in DMA), every diagram

N
i ��

f ���
��

��
��

� L

M

in DMC can be completed commutatively by some g : L→M in DMC.
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22.8. Relative injective bicomodules. Take any M,L ∈ DMC and let
S = DEndC(L).

(1) The following are equivalent:

(a) M is a (B, C)-relative injective bicomodule;
(b) any morphism i : M → L in DMC that is a coretraction in BM

C

is also a coretraction in DMC;

(c) M� :M → D ⊗B M is a coretraction in DMC.

If this holds, then the canonical sequence (cf. 22.2)

0 �� DHomC(L,M) i ��
BHom

C(L,M)
γL ��

BHom
C(L,D ⊗B M),

splits in MS.

(2) The following are equivalent:

(a) M is a (D, A)-relative injective bicomodule;
(b) any morphism i : M → L in DMC that is a coretraction in DMA

is also a coretraction in DMC;

(c) �M :M →M ⊗A C is a coretraction in DMC.

If this holds, then the canonical sequence (cf. 22.2)

0 �� DHomC(L,M) i �� DHomA(L,M)
γR �� DHomA(L,M ⊗A C)),

splits in MS.

(3) For any X ∈ BM
C and Y ∈ DMA, D⊗BX is a (B, C)-relative injective

bicomodule and Y ⊗A C is a (D, A)-relative injective bicomodule.

Proof. This is proven by the same techniques as in 18.18 (cf. 3.18). More
precisely, in the proof of the left (resp. right) comodule version of 18.18, all
A-module maps can be replaced by morphisms in BM

C (resp. in DMA). �
For the remainder of this section let both C and D be A-corings. Take

any M ∈ DMC, N ∈ MC and consider the R-module HomC(N,M). In
case M is finitely A-presented, there is a Hom-cotensor relation M✷CN∗ �
HomC(N,M) (see 21.8) and the left side is a left D-comodule provided DA is
flat (see 22.3).

22.9. Comodule structure on HomC(M,N). For A-corings C, D, let CA
be flat, M ∈ DMC and N ∈ MC such that MA is flat and NA is finitely
presented.

If M is (C, A)-injective, or if M is coflat in MC, or if DA is flat, then

M✷CN∗ � HomC(N,M) in DM.
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Proof. As shown in 40.12, there are isomorphisms

HomA(N,M) �M ⊗A N∗ and HomA(N,M ⊗A C) �M ⊗A C ⊗A N∗,

where both modules are left D-comodules (induced by M). With the help of
21.8 one can construct a commutative exact diagram as in the proof of 11.13
and, by 21.5, follow the arguments there. �

Special classes of bicomodules are derived from coring morphisms. We
first consider the case of corings over the same algebra A. The general case,
that is, that of corings over different algebras, is described in Section 24.

22.10. A-coring morphisms and comodules. Let γ : C → D be a mor-
phism of A-corings, that is, there are commutative diagrams

C
γ ��

∆C
��

D
∆D
��

C
γ ��

εC �� 
  

  
  

 D

εD��




C ⊗A C
γ⊗γ �� D ⊗A D, A.

Every right C-comodule N is a right D-comodule by

�Nγ = (IN ⊗ γ) ◦ �N : N → N ⊗A C → N ⊗A D,

and morphisms of right C-comodules f : N → M are clearly morphisms of
the induced D-comodules. By symmetry, every left C-comodule has a left
D-comodule structure, and C itself is a left and right D-comodule and γ is a
left and right D-comodule morphism.

As in 11.8, we obtain that the composition of D-colinear maps

N
�N �� N✷DC

IN✷γ �� N✷DD � N

is the identity, and hence N is a direct summand of N✷DC as a D-comodule.

Coring morphisms induce functors between the comodule categories.

22.11. Coinduction and corestriction. Let γ : C → D be an A-coring
morphism. The corestriction functor is defined by

( )γ :M
C →MD, (M,�M) �→ (M, (IM ⊗ γ) ◦ �M)

(usually written as (M)γ = M). Considering C as a (C,D)-bicomodule (as
above), M✷CC is a right D-comodule for any M ∈ MC (see 22.3) and the
corestriction functor is isomorphic to −✷CC :MC →MD. So it is left exact
provided AC is flat.
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Symmetrically C is a (D, C)-bicomodule and for any N ∈MD we can form
N✷DC. This is a right C-comodule provided some pureness conditions hold
(see 22.3). In this case there is a coinduction functor

−✷DC :MD →MC, N �→ N✷DC,

where N✷DC is said to be induced by N . This functor is right exact provided
C is coflat as a left D-comodule.

The pureness conditions required are satified if, for example, AC is flat. In
this case the proof of 11.10 for coalgebras yields the adjointness of corestric-
tion and coinduction.

22.12. Hom-cotensor relation for corings. Let γ : C → D be an A-coring
morphism and assume AC to be flat. Then, for all N ∈MC and L ∈ DM, the
map

HomC(N,L✷DC)→ HomD(N,L), f �→ (IL✷γ) ◦ f,

is a functorial R-module isomorphism with inverse map g �→ (g ⊗ IC) ◦ �N .

This is a special case of more general purity conditions to be considered
in 24.8 and of an extended version of the adjointness isomorphism in 24.11.

Given a morphism of A-corings γ : C → D, a short exact sequence in MC

is called (C,D)-exact if it is splitting inMD. A right C-comodule N is called
(C,D)-injective (resp. (C,D)-projective) if HomC(−, N) (resp. HomC(N,−))
is exact with respect to (C,D)-exact sequences.

Notice that ε : C → A is an A-coring morphism, provided A is viewed
as a trivial A-coring as in 17.3. Since the category of right A-comodules is
isomorphic to MA (cf. 18.5), the above definitions in particular yield (C, A)-
exact sequences and (C, A)-injective comodules as considered in 18.18. The
properties given there can be generalised by applying the isomorphism in the
Hom-cotensor relation 22.12.

22.13. (C,D)-injectivity. Let AC be flat, N ∈ MC, and γ : C → D an
A-coring morphism.

(1) If N is injective in MD, then N✷DC is injective in MC.

(2) The following are equivalent:

(a) N is (C,D)-injective;
(b) every (C,D)-exact sequence splits in MC;

(c) the map N
�N→ N✷DC splits in MC.

(3) If N is injective inMD and (C,D)-injective, then N is injective inMC.
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Proof. With the formalism in 22.10, the proof of 3.18 can be followed.
�

(C,D)-injectivity plays an important role in the description of coseparable
corings. This is discussed in more detail in Section 26.

References. Gómez-Torrecillas [122]; Guzman [126, 127].
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23 Functors between comodule categories

Given two corings over two different rings, it is natural to study relationships
between the corresponding categories of comodules. For example, one would
like to know when such categories are equivalent to each other, and what
properties of corings can be derived from the equivalence of categories of
their comodules. This leads, in particular, to the Morita-Takeuchi theory for
corings.

For R-algebras A, B, let C be an A-coring and D a B-coring.

23.1. Functors between comodule categories over corings. Consider
an additive functor F :MC →MD that preserves colimits. Let BM

C denote
the category of (B,A)-bimodules that are also right C-comodules such that the
coaction is left B-linear.

(1) F (C) is a (C,D)-bicomodule and there exists a functorial isomorphism
ν : −✷CF (C)→ F .

(2) For any W ∈MB and N ∈ BM
C,

W ⊗B (N✷CF (C)) � (W ⊗B N)✷CF (C).

(3) Let AC and AD be flat and assume F to preserve kernels. Then F (C)
is coflat as a left C-comodule, and for all W ∈MD and N ∈ DMC,

W✷D(N✷CF (C)) � (W✷DN)✷CF (C).

Proof. (1) By 39.3, there is a functorial isomorphism

Ψ : −⊗B F (−)→ F (−⊗B −) of functors MB × BM
C →MD.

Moreover, by 39.7, for the (C, C)-bicomodule C, F (C) is a left C-comodule by
the coaction

F (C)� : F (C)
F (∆C) �� F (C ⊗A C)

Ψ−1
C,C �� C ⊗A F (C) .

For any M ∈ MC, the defining equalisers for the cotensor product give the
following commutative diagram:

M✷CF (C) ��M ⊗A F (C)
ΨM,C
��

�M⊗IF (C) ��

IM⊗F (C)�

��M ⊗A C ⊗A F (C)
ΨM⊗C,C
��

F (M) �� F (M ⊗A C)
F (�M⊗IC) ��
F (IM⊗∆)

�� F (M ⊗A C ⊗A C) ,
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where the top sequence is an equaliser by the definition of a cotensor product,
and the bottom sequence is an equaliser since F preserves kernels. From this
we derive the functorial isomorphism νM :M✷CF (C)→ F (M).

(2) This follows from the isomorphisms (tensors over B)

(W⊗M)✷CF (C)
νW⊗M �� F (W⊗M)

Ψ−1
W,M ��W⊗F (M)

I⊗ν−1
M ��W⊗(M✷CF (C)) .

(3) Both −⊗A C and F are left exact functors, and thus so is their com-
position F (−⊗A C) � −⊗A F (C), that is, F (C) is a flat left A-module. Since
F preserves epimorphisms, so does −✷CF (C), and hence F (C) is coflat as a
left C-comodule and associativity of the cotensor products follows from 22.5

�

23.2. Adjoint functors between comodule categories. Let AC and BD
be flat. Let (F,G) be an adjoint pair of additive functors, F :MC →MD and
G :MD →MC, with unit η : IMC → GF and counit ψ : FG→ IMD . Suppose
that F preserves kernels and G preserves colimits. Then:

(1) F (C) is a (C,D)-bicomodule and there exists a functorial isomorphism
ν : −✷CF (C)→ F .

(2) G(D) is a (D, C)-bicomodule and there exists a functorial isomorphism
µ : −✷DG(D)→ G.

(3) For any M ∈MC and N ∈MD,

(M✷CF (C))✷DG(D) �M✷C(F (C)✷DG(D)) and
(N✷DG(D))✷CF (C)) � N✷D(G(D)✷CF (C)).

(4) There exist (C, C)-, resp. (D,D)-, bicomodule morphisms

ηC : C → F (C)✷DG(D), ψD : G(D)✷CF (C)→ D,

such that the following compositions yield identities:

F (C) � C✷CF (C)
ηC✷I−→ F (C)✷DG(D)✷CF (C)

ψF (C)−→ F (C),
G(D)

ηG(D)−→ G(D)✷CF (C)✷DG(D)
ψD✷I−→ D✷DG(D) � G(D) .

(5) There is an adjoint pair of functors (G′, F ′) with

G′ = G(D)✷C− : CM→ DM and F ′ = F (C)✷D− : DM→ CM .

Proof. (1),(2) Under the given conditions both F and G preserve kernels
and colimits, and hence the assertions follow from 23.1.

(3) The two isomorphisms follow from 23.1.



232 Chapter 3. Corings and comodules

(4) Notice that C is a (C, C)-bicomodule and GF preserves colimits. Un-
der these conditions, 39.7 implies that ηC is a (C, C)-bicomodule morphism.
Similar arguments apply to D and ψD. The properties of the compositions
are given in 38.21.

(5) This follows from the isomorphisms in (4). �
Notice that the conditions on the pair of functors (F,G) in 23.2 hold in

particular when they form a Frobenius pair or if they induce an equivalence.

23.3. Equivalence between comodule categories over corings (1). If

AC and BD are flat, the following are equivalent:

(a) there are functors F :MC →MD and G :MD →MC that establish an
equivalence;

(b) there exist a (C,D)-bicomodule X, a (D, C)-bicomodule Y , and bicomod-
ule isomorphisms γ : D → Y✷CX and δ : C → X✷DY , such that

(IY✷Cδ) ◦ �Y = (γ✷DIY ) ◦ Y�, (δ✷DIX) ◦ X� = (IX✷Dγ) ◦ �X ,

and (i) X is a coflat left C-comodule, and Y is a coflat left D-comodule,
or (ii) AX and BY are flat modules, and the following pairs of mor-
phisms are pure in BM and AM, respectively,

Y ⊗AX
�Y ⊗IX ��

IY ⊗X�
�� Y ⊗AC⊗AX, X⊗BY

�X⊗IY ��

IX⊗Y�
�� X⊗BD⊗BY.

Proof. (a) ⇒ (b) By 23.1 and 23.2, the comodules X = F (C) and
Y = G(D) have the properties required, and hence maps with the desired
properties exist.

(b)⇒ (a) The given conditions imply that Y✷CX is a (C,D)-bicomodule
and X✷DY is a (D, C)-bicomodule, and so there are functors (see 22.3)

−✷CX :MC →MD, and − ✷DY :MD →MC.

Furthermore, for any M ∈MC, N ∈MD, there are associativity relations

(M✷CX)✷DY �M✷C(X✷DY ), (N✷DY )✷CX � N✷D(Y✷CX),

which imply functorial isomorphisms,

M✷CX✷DY �M✷CC �M and N✷DY✷CX � N✷DD � N,

thus proving that X and Y induce an equivalence. �
From 23.3 we know that functors describing equivalences between comod-

ule categories are essentially cotensor functors, and we would like to know
which properties of the comodules involved characterise equivalences.
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23.4. Quasi-finite comodules. For an R-algebra B, let BM
C denote the

category of (B,A)-bimodules that are also right C-comodules such that the
coaction is left B-linear. A comodule Y ∈ BM

C is called (B, C)-quasi-finite
if the tensor functor − ⊗B Y : MB → MC has a left adjoint. This left
adjoint is called the Cohom functor and is denoted by hC(Y,−) :MC →MB.
Explicitly, this means that, for all M ∈ MC and W ∈ MB, there exists a
functorial isomorphism

ΦM,W : HomB(hC(Y,M),W )→ HomC(M,W ⊗B Y ) .

If AC is flat, then any quasi-finite comodule Y ∈ BM
C is flat as a left

B-module (right adjoints respect monomorphisms). Since hC(Y,−) is a left
adjoint functor, it respects colimits (see 38.21), and, by 39.3, this implies a
functorial isomorphism,

ΨW,M : W ⊗B hC(Y,M) � hC(Y,W ⊗B M) .

Moreover, if M is a (D, C)-bicomodule, then hC(Y,M) has a left D-comodule
structure,

hC(Y,M)� = hC(Y,M�) : hC(Y,M)→ hC(Y,D ⊗B M) � D ⊗B hC(Y,M),

such that the unit of the adjunction ηM : M → hC(Y,M) ⊗B Y is a (D, C)-
bicomodule morphism (see 39.7).

By the Hom-tensor relations 18.10, − ⊗A C : MA → MC is the right
adjoint to the forgetful functor MC → MA, and hence C is an (A, C)-quasi-
finite comodule and hC(C,−) is simply the forgetful functor. For any (B, C)-
quasi-finite comodule Y and n ∈ N, an isomorphism HomB(hC(Y,−),−) →
HomC(−,−⊗B Y ) implies an isomorphism,

HomR(hC(Y n,−),−)→ HomC(−,−⊗B Y n) ,

showing that Y n is again a quasi-finite C-comodule. Similarly it can be shown
that (B, C)-direct summands of Y are again (B, C)-quasi-finite.

23.5. Quasi-finite bicomodules. Let Y ∈ DMC be (B, C)-quasi-finite and
denote by η : IMB

→ hC(Y,−)⊗B Y the unit of the adjunction. There exists
a unique D-comodule structure map �hC(Y,M) : hC(Y,M) → hC(Y,M) ⊗B D,
with (IhC(Y,M) ⊗ Y�) ◦ ηM = (�hC(Y,M) ⊗ IY ) ◦ ηM and Im ηM ⊂ hC(Y,M)✷DY .
This yields a functor,

hC(Y,−) :MC −→MD .

Proof. To shorten notation write Ih for IhC(Y,M). For the C-colinear map

(Ih ⊗ Y�) ◦ ηM :M −→ hC(Y,M)⊗B D ⊗B Y,
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there exists a unique right B-linear map �hC(Y,M) : hC(Y,M)→ hC(Y,M)⊗BD
such that (Ih ⊗ Y�) ◦ ηM = (�hC(Y,M) ⊗ IY ) ◦ ηM (preimage of the given map
under Φ). It is straightforward to prove that this coaction makes hC(Y,M) a
right D-comodule. The last equality means that Im ηM lies in the equaliser

hC(Y,M)⊗B Y
�hC(Y,M)⊗IY ��

Ih⊗Y�
�� hC(Y,M)⊗B D ⊗B Y,

that is, Im ηM ⊂ hC(Y,M)✷DY . As in the proof of 12.6, assign to any
morphism f : M → M ′ in MC a D-colinear map hC(Y, f) : hC(Y,M) →
hC(Y,M ′) to obtain the required functor. �

23.6. Cotensors with left adjoints. Let AC be flat. Then, for Y ∈ DMC,
the following are equivalent:

(a) −⊗B Y :MB →MC has a left adjoint (that is, Y is quasi-finite);

(b) −✷DY :MD →MC has a left adjoint.

Proof. (b) ⇒ (a) By the isomorphism − ⊗B Y � (− ⊗B D)✷DY ,
the functor − ⊗B Y is composed by the functors − ⊗B D : MB → MD and
−✷DY :MD →MC. We know that−⊗BD always has a left adjoint (forgetful
functor). Hence our assertion follows from the fact that the composition of
functors with left adjoints also has a left adjoint.

(a) ⇒ (b) Let Y be (B, C)-quasi-finite with left adjoint hC(Y,−) and
denote by η : IMB

→ hC(Y,−) ⊗B Y the unit of the adjunction. By 23.5,
there is a functor hC(Y,−) : MC → MD, and, for any M ∈ MC, Im ηM ⊂
hC(Y,M)✷DY . Similarly as in the proof of 12.7, we can see that this functor
is left adjoint to −✷DY . �

23.7. Exactness of the Cohom functor. Let AC and BD be flat, and
consider some Y ∈ DMC that is (B, C)-quasi-finite.
(1) The following are equivalent:

(a) hC(Y,−) :MC →MB is exact;

(b) W ⊗B Y is injective inMC, for every injective right B-module W ;

(c) hC(Y,−) :MC →MD is exact;

(d) N✷DY is injective inMC, for every injective comodule N ∈MD.

If this holds, then hC(Y,−) � −✷ChC(Y,C) as functors MC →MB (or
MC →MD) and hence hC(Y,C) is a coflat left C-comodule.

(2) If hC(Y,−) is exact, the following are equivalent:
(a) hC(Y,−) is faithful;
(b) hC(Y, C) is a faithfully coflat left C-comodule.
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Proof. (1) (a)⇒ (b) and (c)⇒ (d) follow from the adjointness isomor-
phisms

HomB(hC(Y,−),W ) � HomC(−,W ⊗B Y ),
HomD(hC(Y,−), N) � HomC(−, N✷DY ),

since the exactness of hC(Y,−) and HomB(−,W ) (resp. HomD(−, N)) implies
the exactness of their composition, which means the injectivity of W ⊗B Y
(resp. N✷DY ) in MC.

(a) ⇔ (c) Any sequence of morphisms in MD is exact if and only if it is
exact in MB.

(b) ⇒ (a), (d) ⇒ (c) We can transfer the corresponding proofs of 12.8
from MR to MB.

(2) This is clear by the isomorphism hC(Y,M) � M✷ChC(Y, C), for any
M ∈MC. �
Definition. A comodule Y ∈ BM

C is called a (B, C)-injector provided that
the functor − ⊗B Y : MB → MC respects injective objects. Left comodule
injectors are defined similarly. We know from the Hom-tensor relations 18.10
that a coring C is both an (A, C)-injector and a (C, A)-injector.

Similar to the situation for coalgebras, one can prove that, for any Y ∈
BM

C that is (B, C)-quasi-finite, there is a B-coring D (the dual of the algebra
of C-colinear endomorphisms of Y ) that makes Y a (D, C)-comodule.

Set eC(Y ) = hC(Y, Y ). The unit of adjunction induces a morphism inMC,

(IeC(Y ) ⊗ ηY ) ◦ ηY : Y −→ eC(Y )⊗B eC(Y )⊗B Y .

By the adjunction isomorphism

HomB(eC(Y ), eC(Y )⊗B eC(Y )) �−→ HomC(Y, eC(Y )⊗B eC(Y )⊗B Y ),

there exists a unique (B,B)-bilinear map ∆e : eC(Y ) → eC(Y ) ⊗B eC(Y ),
such that (IeC(Y ) ⊗ ηY ) ◦ ηY = (∆e ⊗ I) ◦ ηY . Moreover, by the isomorphism
ΦY,B : HomB(eC(Y ), B) � HomC(Y, Y ), there exists a unique (B,B)-linear
map εe : eC(Y )→ B, such that (εe ⊗ IY ) ◦ ηY = IY .

23.8. Coendomorphism coring. Let Y ∈ BM
C be (B, C)-quasi-finite and

eC(Y ) = hC(Y, Y ). Then the (B,B)-bilinear maps

∆e : eC(Y )→ eC(Y )⊗B eC(Y ) and εe : eC(Y )→ B ,

defined above, make eC(Y ) a B-coring. Furthermore, Y is an (eC(Y ), C)-
bicomodule by ηY : Y → eC(Y )⊗B Y , and there is a ring anti-isomorphism

eC(Y )∗ = HomB(eC(Y ), B)
ΦY,B−→ EndC(Y ).
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Proof. Write E for eC(Y ) to shorten the notation. To show that εe is a
counit for ∆e, consider

ΦE,E((IE ⊗ εe) ◦∆e) = ((IE ⊗ εe) ◦∆e ⊗ IY ) ◦ ηY
= (IE ⊗ εe ⊗ IY ) ◦ (∆e ⊗ IY ) ◦ ηY
= (IE ⊗ εe ⊗ IY ) ◦ (IE ⊗ ηY ) ◦ ηY = ηY ,

ΦE,E((εe ⊗ I) ◦∆e) = ((εe ⊗ I) ◦∆e ⊗ IY ) ◦ ηY
= (εe ⊗ IE ⊗ IY ) ◦ (∆e ⊗ IY ) ◦ ηY
= (εe ⊗ IE ⊗ IY ) ◦ (IE ⊗ ηY ) ◦ ηY = ηY , and

ΦE,E(IE) = ηY .

Now the injectivity of Φ implies (I ⊗ εe) ◦∆e = IE = (εe ⊗ I) ◦∆e .
To prove the coassociativity of ∆e, we compute

((∆e ⊗ IE) ◦∆e ⊗ IY ) ◦ ηY = (∆e ⊗ IE ⊗ IY ) ◦ (∆e ⊗ IY ) ◦ ηY
= (∆e ⊗ IE ⊗ IY ) ◦ (IE ⊗ ηY ) ◦ ηY = (IE ⊗ IE ⊗ ηY ) ◦ (∆e ⊗ IY ) ◦ ηY
= (IE ⊗ IE ⊗ ηY ) ◦ (IE ⊗ ηY ) ◦ ηY = (IE ⊗ (IE ⊗ ηY ) ◦ ηY ) ◦ ηY
= (IE ⊗ (∆e ⊗ IY ) ◦ ηY ) ◦ ηY = (IE ⊗∆e ⊗ IY ) ◦ (IE ⊗ ηY ) ◦ ηY
= (IE ⊗∆e ⊗ IY ) ◦ (∆e ⊗ IY ) ◦ ηY = ((IE ⊗∆e) ◦∆e ⊗ IY ) ◦ ηY ,

and the adjointness isomorphism implies (∆e ⊗ IE) ◦∆e = (IE ⊗∆e) ◦∆e.
By the definition of ∆e there is a commutative diagram,

Y
ηY ��

ηY
��

E ⊗B Y
∆⊗IY
��

E ⊗B Y
IE⊗ηY�� E ⊗B E ⊗B Y ,

and the definition of εe shows that ηY is a counital coaction. Since ηY is
C-colinear, Y is an (E, C)-bicomodule. �

As an example we consider functors related to algebra extensions.

23.9. Functors induced by a base ring extension. Given an R-algebra
morphism φ : A→ B, an A-coring C induces a B-coring BCB = B⊗AC⊗AB
(see 17.2). For any M ∈M, M ⊗A B is a BCB-comodule by

�M⊗AB :M ⊗A B →M ⊗A B ⊗B BCB, m⊗ b �→
∑

m0 ⊗ 1B ⊗m1 ⊗ b.

In particular, C ⊗A B is a (C, BCB)-bicomodule, and, by symmetry, B ⊗A C
is a (BCB, C)-bicomodule. Let AC be flat. Then – since C ⊗A B is left
(C, A)-injective (see 18.18) – the purity conditions are satisfied (see 21.5),
thus yielding the functors (by 22.3)

−✷C(C ⊗A B) :MC →MBCB, −✷BCB(B ⊗A C) :MBCB →MC.
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The bicomodule maps

γ : (B ⊗A C)✷C(C ⊗A B) �−→ B ⊗A C ⊗A B,
δ : C → (C ⊗A B)✷BCB(B ⊗A C), c �→

∑
c1 ⊗ 1B ⊗ 1B ⊗ c2,

induce the adjointness isomorphism (⊗ means ⊗A)

HomBCB(L✷C(C⊗B), N)→ HomC(L,N✷BCB(B⊗C)), g �→ (g✷IBC)◦(IL✷δ),

with the inverse map h �→ (IN✷γ) ◦ (h✷ICB). The coendomorphism coring
of the quasi-finite C-comodule B ⊗A C is then simply BCB.

We note that the isomorphism considered above is a special case of a more
general adjointness theorem in 24.11.

23.10. Equivalence with comodules over eC(Y ). Let AC be flat and let
Y ∈ BM

C be (B, C)-quasi-finite, faithfully coflat, and a (B, C)-injector inMC.
Denote by eC(Y ) the coendomorphism coring of Y . Then the functors

−✷eC(Y )Y :M
eC(Y ) →MC, hC(Y,−) :MC →MeC(Y ),

where hC(Y,−) is the left adjoint to −⊗B Y , are (inverse) equivalences.
Proof. We prove that the conditions of 23.3(b) are satisfied. By 23.8,

Y is an (eC(Y ), C)-bicomodule and the image of hC(Y,−) :MC →MB lies in
MeC(Y ) (see 23.5). Since Y is a (B, C)-injector, the functor hC(Y,−) is exact
(by 23.7), and hence hC(Y,−) � −✷ChC(Y, C) (by 23.2) and so hC(Y, C) is
coflat as a left C-comodule.

Take any M ∈MC and consider the morphism

IM✷CηC :M �M✷CC →M✷C(hC(Y, C)⊗B Y ) � (M✷ChC(Y, C))⊗B Y,

where the last identification follows from the fact that BY is flat. There exists
a unique right eC(Y )-colinear morphism δM : hC(Y,M)→M✷ChC(Y, C) such
that (δM✷eC(Y )I) ◦ ηM = I✷CηC. Note that δM is an isomorphism since
hC(Y,−) is exact (see 23.7). In particular, since Y is a left eC(Y )-comodule,
the isomorphism

δY : eC(Y )→ Y✷ChC(Y,C)

is in fact (eC(Y ), eC(Y ))-bicolinear by 39.7. Furthermore, Y is a faithfully
coflat C-comodule, and hence the bijectivity of IY✷CηC implies that the map
ηC : C → hC(Y,C)✷eC(Y )Y is an isomorphism inM

C. Since C is a bicomodule,
this is a (C, C)-bicomodule morphism by 39.7.

To verify the purity conditions stated in 23.3(b) we have to show that the
canonical maps

W ⊗B (hC(Y, C)✷eC(Y )Y ) → (W ⊗B hC(Y, C))✷eC(Y )Y and

W ⊗B (Y✷ChC(Y, C)) → (W ⊗B Y )✷ChC(Y, C)
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are isomorphisms for any W ∈MB (see 21.4). By 21.5, this follows from the
coflatness of Y as a left eC(Y )-comodule and the coflatness of hC(Y,C) as a
left C-comodule, respectively. �

Now we are in a position to describe equivalences between arbitrary co-
module categories.

23.11. Equivalences and coendomorphism coring. Let AC and BD be
flat, and let F : MC → MD be an equivalence with inverse G : MD → MC.
Then:

(1) G(D) is (B, C)-quasi-finite, a (B, C)-injector, and faithfully coflat as a
left D-comodule.

(2) F (C) is (A,D)-quasi-finite, an (A,D)-injector, and faithfully coflat as
a left C-comodule.

(3) There are coring isomorphisms

eC(G(D)) � D � eC(F (C)) and eD(G(D)) � C � eD(F (C)).

Proof. (1) The proof is similar to the proof of (2).
(2) Since F � −✷CF (C) is an equivalence, it has a left adjoint and is

exact and faithful. Hence F (C) is (A,D)-quasi-finite and faithfully flat as a
left C-comodule. For any injective W ∈MA, W ⊗A C is injective in MC, by
18.10, and by properties of equivalences,W⊗AF (C) � F (W⊗AC) is injective
in MD, that is, F (C) is an (A,D)-injector.

(3) Since G � −✷DG(D) is left adjoint to F � −✷CF (C),

eD(F (C)) � F (C)✷DG(D) � GF (C) � C.

The other isomorphisms are obtained similarly. �

As for coalgebras (cf. Morita-Takeuchi Theorem 12.4) equivalences be-
tween comodule categories over corings can be described by the properties of
a single bicomodule.

23.12. Equivalences between comodule categories over corings (2).
If AC and BD are flat, the following are equivalent:

(a) the categories MC and MD are equivalent;

(b) there exists a (D, C)-bicomodule Y that is (B, C)-quasi-finite, a (B, C)-
injector, and faithfully coflat as a right C-comodule, and eC(Y ) � D as
corings;

(c) there is a (C,D)-bicomodule X that is (A,D)-quasi-finite, an (A,D)-
injector, and faithfully coflat as a right D-comodule, and eD(X) � C as
corings.
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Proof. (a) ⇒ (b) Given an equivalence F : MC → MD with inverse
G :MD →MC, it was shown in 23.11 that Y = G(D) satisfies the conditions
stated.

(b)⇒ (a) This follows from 23.10.
(a)⇔ (c) The proof for this is symmetric to the proof (a)⇔ (b). �

23.13. Exercises
For an A-coring C, let P ∈ MC be such that PA is finitely generated and

projective. Put T = EndC(P ), P ∗ = HomA(P,A), and consider T -modules as
T -comodules canonically, that is, MT = MT . Prove ([111]):
(i) There is an adjoint pair of functors

−⊗T P : MT → MA, −⊗A P ∗ : MA → MT .

(ii) P ∗ is a left C-comodule and the functor −✷CP ∗ : MC → MT has a left
adjoint.

(iii) The coendomorphism coring of P ∗ is isomorphic to P ∗⊗A P (with the struc-
ture from 17.6).

(iv) −✷CP ∗ induces an equivalence provided that PA is a generator in MA.

References. Al-Takhman [51]; Gómez-Torrecillas [122]; El Kaoutit and
Gómez-Torrecillas [111]; Guzman [126, 127].
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24 The category of corings

To treat corings over different rings on the same footing, and thus to study
relations between corings over different rings or dynamical properties of cor-
ings such as the change of the base ring, and so on, one needs to introduce
the category of corings. In this section, in addition to the introduction of
the category of corings, we also introduce the category of representations of
corings. Such a category is defined for any pair of corings, and objects are
morphisms between these corings. The fact that such a category can be de-
fined is an intrinsic feature of the notion of a coring. We also study induction
and coinduction functors, derive the general Hom-tensor relations, and as-
sociate an algebra to a pair of coring morphisms. This, in particular, gives
an interpretation of a dual algebra of a coring. The category of corings also
provides one with a nice setup for and the unification of the properties of
corings discussed in the preceding sections.

24.1. Category of corings. Objects in the category Crg of corings are
corings understood as pairs (C : A), where A is an R-algebra and C is an
A-coring. A morphism between corings (C : A) and (D : B) is a pair of
mappings (γ : α) : (C : A)→ (D : B) satisfying the following conditions:

(1) α : A → B is an algebra map. Thus one can view D as an (A,A)-
bimodule via α. Explicitly, ada′ = α(a)dα(a′) for all a, a′ ∈ A and
d ∈ D.

(2) γ : C → D is an (A,A)-bimodule map such that

χ ◦ (γ ⊗A γ) ◦∆C = ∆D ◦ γ, εD ◦ γ = α ◦ εC,

where χ : D ⊗A D → D ⊗B D is the canonical morphism of (A,A)-
bimodules induced by α. Equivalently, we require that the induced
map

IB ⊗ γ ⊗ IB : B ⊗A C ⊗A B → D
be a morphism of B-corings, where B ⊗A C ⊗A B is the base ring ex-
tension of C (see 17.2).

Since any algebra A can be viewed as a trivial A-coring, the category Crg
contains the category of R-algebras.
Crg is a monoidal category with the tensor product (C : A)⊗ (D : B) =

(C ⊗R D : A⊗R B). Here A⊗R B has the tensor product ring structure, the
actions of A⊗RB on C ⊗RD are given by (a⊗ b)(c⊗ d)(a′⊗ b′) = aca′⊗ bdb′,
and the coproduct and counit are

∆C⊗RD(c⊗ d) =
∑
(c1 ⊗ d1)⊗A⊗RB (c2 ⊗ d2), εC⊗RD = εC ⊗ εD.

The ring R viewed as a trivial R-coring is an identity object.
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24.2. Examples of morphisms of corings. Any morphism between A-
corings is a morphism in Crg (with α = IA). Of particular interest are the
identity morphism, (IC : IA) : (C : A) → (C : A), and the forgetful or counit
morphism, (ε : IA) : (C : A) → (A : A). In the latter case, A is viewed as
a trivial A-coring. Note that the counit morphism satisfies the conditions in
24.1, since ε is the counit in C and so, for all c ∈ C,

∑
ε(c1)⊗ ε(c2) = ε(c).

24.3. The category of representations of corings. To any pair of corings
(C : A) and (D : B) one can associate a category Rep(C : A | D : B)
of representations of a coring (C : A) in a coring (D : B). The objects of
Rep(C : A | D : B) are coring morphisms (γ : α) : (C : A) → (D : B). For
any pair of objects (γ1, α1) and (γ2, α2) in Rep(C : A | D : B), a morphism
is an R-module map f : C → B such that, for all c ∈ C and a ∈ A,

f(ca) = f(c)α2(a), f(ac) = α1(a)f(c),
∑

f(c1)γ2(c2) =
∑

γ1(c1)f(c2).

Composition of morphisms f : (γ1, α1) → (γ2, α2), g : (γ2, α2) → (γ3, α3)
is defined by the convolution product, that is, for all c ∈ C, f ∗ g(c) =∑
f(c1)g(c2). Note that f ∗ g is well defined since, for all a ∈ A and c, c′ ∈ C,

f(ca)g(c′) = f(c)α2(a)g(c
′) = f(c)g(ac′).

One easily verifies that f ∗g is a morphism (γ1, α1)→ (γ3, α3) in the category
Rep(C : A | D : B). Indeed, take any c ∈ C and a ∈ A and compute

(f ∗ g)(ca) =
∑
f(c1)g(c2a) =

∑
f(c1)g(c2)α3(a) = (f ∗ g)(c)α3(a),

(f ∗ g)(ac) =
∑
f(ac1)g(c2) =

∑
α1(a)f(c1)g(c2) = α1(a)(f ∗ g)(c),∑

(f ∗ g)(c1)γ3(c2) =
∑
f(c1)g(c2)γ3(c3) =

∑
f(c1)γ2(c2)g(c3)

=
∑
γ1(c1)f(c2)g(c3) =

∑
γ1(c1)(f ∗ g)(c2),

where, at various places, the definitions of morphisms and the A-linearity of
the coproduct in C were used.

24.4. Representations of a coring in an algebra. Let C be an A-coring
and view B as a trivial B-coring. Then objects in Rep(C : A | B : B) are
R-algebra maps A → B. A morphism f : α1 → α2 in Rep(C : A | B : B) is
an (A,A)-bimodule map f : C → B, where B is viewed as a left A-module via
the map α1 and as a right A-module via the map α2.

The category Rep(C : A | B : B) is known as the category of representa-
tion of a coring in an algebra.

Proof. In this case any morphism of corings (γ : α) : (C : A)→ (B : B)
is fully determined by the algebra map α : A → B. Indeed, the condition
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εB ◦γ = α◦εC implies that γ = α◦εC, for εB is the identity map on B. There
are no further restrictions on α (or γ).

Clearly, a morphism f : α1 → α2 inRep(C : A | B : B) must be an (A,A)-
bimodule map, as stated. There are no further restrictions on f , since, for
all c ∈ C,

∑
f(c1)γ2(c2) =

∑
f(c1)α2(εC(c2)) = f(c) and

∑
γ1(c1)f(c2) =∑

α1(εC(c1))f(c2) = f(c), and thus the relevant condition
∑
f(c1)γ2(c2) =∑

γ1(c1)f(c2) is satisfied automatically. �
Dually, one can consider representations of a coalgebra in a coring.

24.5. Representations of a coalgebra in a coring. For an R-coalgebra
C and an A-coring C, the objects in Rep(C : R | C : A) are R-bilinear maps
γ : C → C that satisfy the following properties, for all c ∈ C:

εC(γ(c)) = εC(c)1A,
∑

γ(c1)⊗A γ(c2) = ∆C(γ(c)).

Morphisms γ1 → γ2 are R-linear maps f : C → A such that, for all c ∈ C,∑
γ1(c1)f(c2) =

∑
f(c1)γ2(c2).

Proof. In this case there is only one possible algebra map, R → A (the
unit map), thus all objects in Rep(C : R | C : A) are completely specified by
maps γ : C → C. One easily checks that such maps, as well as morphisms
between them, must satisfy the specified conditions. �

24.6. The induction functor. Take any (C : A), (D : B) ∈ Crg. Given a
morphism in Crg, (γ : α) : (C : A)→ (D : B), define an induction functor

F :MC →MD, M �→M ⊗A B, f �→ f ⊗ IB.

Here F (M) is a right B-module via (m⊗ b)b′ = m⊗ bb′, for all m ∈ M and
b, b′ ∈ B. The right D-coaction is given by

�F (M) :M ⊗A B →M ⊗A B ⊗B D �M ⊗A D, m⊗ b �→
∑

m0 ⊗ γ(m1)b,

where
∑
m0 ⊗m1 = �M(m). Clearly �F (M) is a right B-module map. It is a

coaction, because, using the facts that �M is a coaction and that γ commutes
with the coproduct, we can compute

(�F (M) ⊗B ID) ◦ �F (M)(m⊗A b) =
∑
�F (M)(m0 ⊗A 1B)⊗B γ(m1)b

=
∑
m0 ⊗A γ(m1)⊗B γ(m2)b

=
∑
m0 ⊗A γ(m1)1 ⊗B γ(m1)2b

= (ID ⊗B ∆D) ◦ �F (M)(m⊗A b),
as required.

The induction functor associated to the identity morphism of (C : A),
(IC : IA) : (C : A) → (C : A), turns out to be the identity functor in MC.
Also, the forgetful functorMC →MA can be viewed as an induction functor
associated to the counit morphism (εC : IA) : (C : A)→ (A : A).
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Thus to any morphism of corings (γ : α) : (C : A) → (D : B) one can
associate a functor between the categories of comodules MC → MD. It can
be viewed as a composite of functors

−✷C(C ⊗A B) :MC →MBCB, ( )γ̃ :M
BCB →MD,

where the first one is induced by the base ring extension α : A → B (see
23.9) and the second one is the corestriction functor derived from the B-
coring morphism γ̃ : BCB → D (see 22.11). In certain circumstances one
can also construct a functor in the opposite direction, MD → MC. This
construction is slightly more involved, and we explain it in a number of steps.

24.7. The coinduced module G(N). For any morphism in the category
Crg, (γ : α) : (C : A) → (D : B), view the left B-module B ⊗A C as a left
D-comodule via the coaction

B⊗AC� : B ⊗A C → D ⊗B B ⊗A C � D ⊗A C, b⊗ c �→
∑

bγ(c1)⊗ c2.

This is simply a left-handed version of the induction functor F considered in
24.6. Take any right D-comodule N and consider a right A-module defined
by the cotensor product

G(N) = N✷D(B ⊗A C).

Recall from 21.1 that this means that G(N) is an equaliser of right A-modules

G(N) ��N ⊗A C
tN ��

bN
��N ⊗B D ⊗A C,

where tN = �N ⊗ IC and bN = (χ ⊗ IC) ◦ (IN ⊗ γ ⊗ IC) ◦ (IN ⊗ ∆C), with
χ : N⊗AD → N⊗BD the canonical map associated to α : A→ B. Explicitly,

G(N) = {
∑
i

ni⊗ ci ∈ N ⊗A C |
∑
i

ni⊗B γ(ci1)⊗ ci2 =
∑
i

ni0⊗B ni1⊗ ci}.

24.8. Pure morphism of corings. A morphism (γ : α) : (C : A)→ (D : B)
of corings is said to be pure if, for every right D-comodule N , the right A-
module morphism ωN,B⊗AC = tN − bN is C-pure (see 40.13 for the definition
of a C-pure morphism). Note that (γ : α) is a pure morphism of corings if
and only if, for every D-comodule N , G(N)⊗A C is equal to the equaliser of
tN ⊗ IC and bN ⊗ IC, that is, G(N) is a C-pure equaliser inMA (cf. 40.14). In
particular, if C is a flat left A-module, then every morphism (C : A)→ (D : B)
is a pure morphism of corings.
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As an example of a pure morphism of corings, take the counit morphism
(ε : IA) : (C : A)→ (A : A) (cf. 24.2). In this case MD =MA =MA, and for
all M ∈MA, ωM,C is a zero map m⊗ c �→ 0. Thus ωM,C is C-pure. Note that
in this case G(M) = kerωM,C =M ⊗A C.

24.9. The coinduction functor. Let (γ : α) : (C : A)→ (D : B) be a pure
morphism of corings. Then, for all N ∈ MD, G(N) is a right C-comodule
with the coaction

�G(N) : G(N)→ G(N)⊗A C,
∑

i
ni ⊗ ci �→

∑
i
ni ⊗B ci1 ⊗A ci2,

provided G(N) is viewed as a right A-module via (
∑
i n
i ⊗ ci) a =

∑
i n
i⊗cia.

Furthermore, for any morphism f : N → N ′ in MD,

G(f) : G(N)→ G(N ′),
∑

i
ni ⊗ ci �→

∑
i
f(ni)⊗ ci,

is a morphism in MC.
Thus G :MD →MC is a covariant functor called a coinduction functor.

Proof. The fact that G(N) is a right C-comodule follows from 22.3(2).
The definition of G(f) makes sense because f is a morphism of right B-
modules and hence of right A-modules (the A-action on N is given via α :
A→ B). Second, the image of G(f) is in G(N ′) since f is a right D-comodule
map. Explicitly,∑

i
f(ni)0⊗Bf(ni)1⊗Aci =

∑
i
f(ni0)⊗Bni1⊗Aci =

∑
i
f(ni)⊗Bγ(ci1)⊗Aci2.

Since G(f) acts as identity on the part of G(N) in C, it is clear that G(f) is a
right C-comodule map. Thus, with the above definitions, and provided that
(γ : α) is a pure morphism of corings, G is a covariant functor, as required.

�
To gain a better understanding of the functor G we compute it in a

very simple, but important and general situation (cf. tensor-cotensor rela-
tions 21.4).

24.10. Action of the coinduction functor on induced comodules. Let
(γ : α) : (C : A) → (D : B) be a pure morphism of corings and take any
right B-module N . View N ⊗B D as a right D-comodule via the natural right
B-action and the coaction IN ⊗B ∆D (cf. 18.9). Then G(N ⊗B D) � N ⊗A C
in MC.

Proof. The isomorphism reads

θ : G(N ⊗B D)→ N ⊗A C,
∑

i
ni ⊗B di ⊗A ci �→

∑
i
niεD(d

i)⊗A ci,
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and its inverse is θ−1 : n⊗A c �→
∑
n⊗B γ(c1)⊗A c2. One easily checks that

Im (θ−1) ⊆ G(N ⊗B D) and that θ−1 is the inverse of θ. Clearly, both θ and
θ−1 are right C-comodule maps, as required. �

24.11. Hom-tensor relations. Let (γ : α) : (C : A) → (D : B) be a
pure morphism of corings, and let F and G be the induction and coinduction
functors defined above. Then F is left adjoint to G. Consequently, for any
pair of comodules M ∈MC, N ∈MD, there is an isomorphism of R-modules,

HomC(M,G(N)) � HomD(M ⊗A B,N),

that is natural in M and N .

Proof. First we construct the unit of the adjunction. For any M ∈MC,
consider an R-module map

ηM :M → G(F (M)), m �→
∑

m0 ⊗ 1B ⊗m1.

The map ηM is well defined since, for all m ∈M , c ∈ C and a ∈ A,

ma⊗ 1B ⊗ c = m⊗ α(a)⊗ c = m⊗ 1B ⊗ ac.

Furthermore,

tF (M) ◦ ηM(m) = tF (M)(
∑
m0 ⊗ 1B ⊗m1)

=
∑
(m0 ⊗ 1B)0 ⊗B (m0 ⊗ 1B)1 ⊗A m1

=
∑
m0 ⊗ γ(m1)⊗m2, and

bF (M) ◦ ηM(m) = bF (M)(
∑
m0 ⊗ 1B ⊗m1)

=
∑
m0 ⊗ 1B ⊗B γ(m1)⊗m2

=
∑
m0 ⊗ γ(m1)⊗m2.

Thus we conclude that the image of ηM is in the required equaliser. The way
in which the definition of the map ηM depends upon the coaction �M ensures
that ηM is a right A-module map (since �M is such a map). One easily checks
that ηM is also a morphism in MC. Next, take any f : M → M ′ in MC and
compute for any m ∈M ,

ηM ′(f(m)) =
∑
f(m)0 ⊗ 1B ⊗ f(m)1

=
∑
f(m0)⊗ 1B ⊗m1 = GF (f)(ηM(m)).

The second equality follows since f is a morphism of right C-comodules. Thus
we have constructed a natural map η : IMC → GF that will be shown to be
the unit of the adjunction.
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Now, for any N ∈MD, consider a right B-module map

ψN : FG(N)→ N,
∑
in
i ⊗A ci ⊗A b �→

∑
i(n

iα(εC(c
i))b.

The map ψN is a morphism in the category of right D-comodules since, for
all n =

∑
i n
i ⊗A ci ⊗A b ∈ FG(N),∑

ψN(n0)⊗B n1 =
∑
iψN(n

i ⊗A ci1 ⊗A 1B)⊗B γ(ci2)b =
∑
in
i ⊗A γ(ci)b.

Since
∑
i n
i ⊗A ci ∈ G(N),

∑
in
i
0 ⊗B ni1 ⊗A ci =

∑ini ⊗B γ(ci1) ⊗A ci2,
and thus the application of IN ⊗B ID ⊗A εC yields

∑
i n
i
0 ⊗B ni1α(εC(ci)) =∑

i n
i ⊗B γ(ci). Therefore we conclude∑
ψN(n0)⊗B n1 =

∑
in
i
0 ⊗B ni1α(εC(ci))b =

∑
ψN(n)0 ⊗B ψN(n)1,

as required for a morphism inMD. Thus for any right D-comodule N we have
constructed a morphism ψN inM

D. We need to show that the corresponding
map ψ : FG→ IMD is a morphism of functors. Take any f : N → N ′ inMD

and
∑
i n
i ⊗ ci ⊗ b ∈ FG(N). Then, on the one hand,

f ◦ ψN(
∑
i n
i ⊗ ci ⊗ b) =

∑
i f(n

iα(εC(c
i)b))) =

∑
i f(n

i)α(εC(c
i))b,

since f is right B-linear. On the other hand,

ψN ′ ◦ FG(f)(
∑
i n
i⊗ci⊗b) = ψN ′(

∑
i f(n

i)⊗ci⊗b) =
∑
i f(n

i)α(εC(c
i))b,

as required.
Finally, the fact that η and ψ are the unit and counit, respectively, can

be verified by a simple calculation that uses the properties of the counit εC.
�

Observe that if we take the counit morphism of corings 24.2, which is
pure as explained in 24.8, then F is a forgetful functor by 24.6, while G is
the induction functor G = − ⊗A C of 18.9. The corresponding Hom-tensor
relation is simply the Hom-tensor relation 18.10. Furthermore, if we take a
morphism of A-corings (that is, the case B = A, α = IA) and assume that C
is flat as a left A-module, then 24.11 reduces to 22.12. As yet another special
case of the Hom-tensor relation described in 24.11, one obtains

24.12. Hom-tensor relation for a special comodule. For a pure mor-
phism of corings (γ : α) : (C : A)→ (D : B) and a comodule M ∈MC, there
is an isomorphism of R-modules (natural in M)

HomC(M,B ⊗A C)) � HomD(M ⊗A B,D).

Proof. Take N = D in 24.11 and apply 24.10. �
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24.13. An algebra associated to a morphism of corings. For a coring
morphism (γ, α) : (C : A)→ (D : B), consider the R-module

A(α, γ) = {a ∈ AHomA(C, B) | ∀ c ∈ C,
∑
γ(c1)a(c2) =

∑
a(c1)γ(c2)}.

Then A(α, γ) is an R-algebra with product (a ∗ a′)(c) =
∑
a(c1)a

′(c2) (convo-
lution product) and unit 1A(α,γ) = α ◦ εC.

Proof. First note that the product is well defined since elements of
A(α, γ) are (A,A)-bimodule maps. Furthermore, for all c ∈ C,∑

γ(c1)(a ∗ a′)(c2) =
∑
γ(c1)a(c2)a

′(c3) =
∑
a(c1)γ(c2)a

′(c3)

=
∑
a(c1)a

′(c2)γ(c3) = (a ∗ a′)(c1)γ(c2),

that is, a∗a′ ∈ A(α, γ). The coassociativity of ∆C implies that the product in
A(α, γ) is associative. Since the product in A(α, γ) is simply the convolution
product, α ◦ εC is the unit. Thus we need only to verify that 1A(α,γ) is in
A(α, γ). For any c ∈ C, by the axioms of the counit and the fact that γ is
(A,A)-bilinear,∑

γ(c1)1A(α,γ)(c2) =
∑
γ(c1)α(εC(c2)) =

∑
γ(c1εC(c2)) = γ(c), and∑

1A(α,γ)(c1)γ(c2) =
∑
α(εC(c1))γ(c2) =

∑
γ(α(εC(c1)c2) = γ(c).

This shows that 1A(α,γ) ∈ A(α, γ) and hence A(α, γ) is a unital, associative
algebra as claimed. �

24.14. The endomorphism ring of an induction functor. Given a
morphism (γ : α) : (C : A)→ (D : B) in Crg, let F = −⊗AB :MC →MD be
the corresponding induction functor. Then the algebra A(α, γ) is isomorphic
to the R-algebra Nat(F, F ) of natural transformations F → F (with respect
to composition).

Proof. Given a natural transformation φ : F → F , the corresponding
morphism φM : M ⊗A B → M ⊗A B in MD is right B-linear and thus can
be identified with a map φ̃M :M →M ⊗A B via φ̃M(m) = φM(m⊗ 1B) and
φM(m⊗ b) = φ̃M(m)b. The definition of φ̃M immediately implies that for any
other natural endomorphism φ′ : F → F , and the corresponding morphism

φ′
M :M⊗AB →M⊗AB, ˜(φ ◦ φ′)M = φM ◦ φ̃′

M . Take any right A-moduleM ,
and for any m ∈M consider a C-comodule map fm : C →M⊗AC, c �→ m⊗c.
The naturality of φ then implies that

(fm ⊗ IB) ◦ φC = φM⊗AC ◦ (fm ⊗ IB).

This is equivalent to the following property of φ̃ :

φ̃M⊗AC(m⊗ c) = m⊗ φ̃C(c), (∗)
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for any m ∈ M and c ∈ C. On the other hand, for any M ∈ MC, take
f = �M :M →M ⊗A C. This is a morphism inMC, and hence the naturality
of φ implies that (�M ⊗ IB) ◦ φM = φM⊗AC ◦ (�M ⊗ IB), or equivalently for φ̃,

φ̃M⊗AC ◦ �M = (�M ⊗ IB) ◦ φ̃M . (∗∗)

Taking M = A in equation (∗), one immediately concludes that φ̃C is left A-
linear, and hence it is (A,A)-bilinear. Thus we can define an (A,A)-bimodule
map, aφ : C → B, aφ = (εC ⊗ IB) ◦ φ̃C. Combining equations (∗) and (∗∗) for
an arbitrary M ∈MC, one can obtain an explicit expression for φ̃M in terms
of aφ. More precisely, equations (∗) and (∗∗) imply that, for all m ∈ M ,∑
m0 ⊗ φ̃C(m1) = (�M ⊗ IB) ◦ φ̃M(m). Thus, applying IM ⊗ εC ⊗ IB, one

obtains that φ̃M(m) =
∑
m0 ⊗ aφ(m1).

Since for any M ∈ MC, φM is a morphism in MD, one easily finds that∑
φ̃M(m0)⊗B γ(m1) =

∑
φ̃M(m)0⊗B φ̃M(m)1. Thus in terms of the map aφ

we obtain ∑
m0 ⊗ aφ(m1)γ(m2) =

∑
m0 ⊗ γ(m1)aφ(m2).

In particular, if we takeM = C and apply εC⊗ID, we obtain
∑
aφ(c1)γ(c2) =∑

γ(c1)aφ(c2), that is, aφ ∈ A(α, γ). Thus the assignment φ �→ aφ defines
an R-linear map Nat(F, F )→ A(α, γ). To show that this is an algebra map,
take any φ, φ′ ∈ Nat(F, F ), c ∈ C, and compute

aφ◦φ′(c) = (εC ⊗ IB) ◦ ˜(φ ◦ φ′)C(c) = (εC ⊗ IB)(φC(φ̃′
C(c)))

=
∑
(εC ⊗ IB)(φC(c1 ⊗ aφ′(c2)))

=
∑
(εC ⊗ IB)(φC(c1)aφ′(c2)) =

∑
aφ(c1)aφ′(c2).

Conversely, take any a ∈ A(α, γ) and, for any M ∈ MC, define a right
B-bimodule map

φa,M :M ⊗A B →M ⊗A B, m⊗ b �→
∑

m0 ⊗ a(m1)b.

Using the fact that a ∈ A(α, γ), one easily finds that φa,M is a right D-
comodule map. Next take any morphism f : M → N in MC. Then, for any
m ∈M and b ∈ B, F (f) ◦ φa,M(m⊗ b) =

∑
f(m0)⊗ a(m1)b, while

φa,N ◦ F (f)(m⊗ b) =
∑

f(m)0 ⊗ a(f(m)1)b =
∑

f(m0)⊗ a(m1)b.

Thus we conclude that the assignment a �→ φa defines a mapping A(α, γ)→
Nat(F, F ). It remains to show that this mapping is the inverse of the algebra
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map Nat(F, F ) → A(α, γ), φ �→ aφ, constructed previously. First take any
M ∈MC, m ∈M , and b ∈ B and compute

φaφ,M(m⊗ b) =
∑

m0 ⊗ aφ(m1)b = φ̃M(m)b = φM(m⊗ b).

Second, for any c ∈ C,

aφa(c) = (εC ⊗ IB) ◦ φ̃a,C(c) =
∑

εC(c1)⊗ a(c2) = a(c).

This completes the proof of the theorem. �

24.15. The endomorphism ring of the coinduction functor. Assume
(γ : α) : (C : A) → (D : B) to be a pure morphism of corings, and let G be
the associated coinduction functor. Then there is an R-algebra isomorphism

Nat(G,G) � A(α, γ)op.

Proof. This follows immediately from 24.14, since the endomorphism
ring of a functor is isomorphic to the opposite endomorphism ring of its left
or right adjoint functor (cf. [38, Section 2.1, Corollary 1]). Explicitly, the
required isomorphisms Nat(G,G) � A(α, γ)op are given as follows:

Nat(G,G)→ A(α, γ)op, φ �→ (εD ⊗ εC) ◦ φ̃D ◦ (γ ⊗ IC) ◦∆C,

where φ̃D is as in the proof of 24.14. In the converse direction, given a ∈
A(α, γ)op, one defines a natural endomorphism φa via

φa,N : G(N)→ G(N),
∑

i
ni ⊗ ci �→

∑
i
nia(ci1)⊗ ci2,

for all N ∈MD. �

24.16. The endomorphism ring of the forgetful functor. Consider the
counit morphism of corings (ε : IA) : (C : A)→ (A : A). Then

A(IA, ε) = {a ∈ AHomA(C, A) | ∀ c ∈ C,
∑
a(c1)ε(c2) =

∑
ε(c1)a(c2)}

= AHomA(C, A) = ∗C∗.

Since in this case F is the forgetful functor MC → MA, we obtain an inter-
pretation of the dual algebra ∗C∗ in 17.8(3) as an endomorphism ring of the
forgetful functor MC →MA. This may be compared with the interpretation
of the left-dual ring ∗C as the endomorphism ring of the forgetful functor
MC →MR in 18.29.

The endomorphism rings of general induction and coinduction functors
between categoriesMC andMD have a natural interpretation in terms of the
category Rep(C : A | D : B) of representations of a coring in a coring.
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24.17. Endomorphisms of the induction functor in the category of
representations. Let F : MC → MD be the induction functor associated
to a morphism of corings (γ : α) : (C : A) → (D : B). Then there is an
R-algebra isomorphism

Nat(F, F ) � EndRep(C:A|D:B)((γ : α)).

Proof. By 24.14, the R-algebra of natural endomorphisms of F is iso-
morphic to

A(α, γ) = {a ∈ AHomA(C, B) | ∀ c ∈ C,
∑

γ(c1)a(c2) =
∑

a(c1)γ(c2)}.

View B as an A-bimodule via the algebra map α. Then an R-module map
f : C → B is in EndRep(C:A|D:B)((γ : α)) if and only if f ∈ AHomA(C, B) and
for all c ∈ C,

∑
f(c1)γ(c2) =

∑
γ(c1)f(c2), that is, f ∈ A(α, γ), as claimed.

�

References. Gómez-Torrecillas [122]; Rojter [182].



Chapter 4

Corings and extensions of rings

Corings appear naturally in the context of extensions of rings. In fact, they
provide an alternative description of such extensions. This chapter is devoted
to studies of corings related to extensions. Thus we start with the description
of the canonical coring associated to an extension, its basic properties and
its connection with noncommutative descent theory. We then study specific
classes of corings that are closely related to separable, split and Frobenius
extensions. Next we analyse corings that are characterised by the existence
of a nonzero element, known as a grouplike element. The key property of such
an element g ∈ C is that its coproduct has the simplest possible form, ∆(g) =
g⊗ g. We study the basic properties of corings with a grouplike element and
reveal that they exhibit a natural ring structure. Then we associate a cochain
complex to a coring and a grouplike element. The constructed complex turns
out to generalise the Amitsur complex familiar in the ring extension theory.
Next we proceed to introduce a differential graded algebra associated to a
coring and a grouplike element and study some elements of the theory of
connections in this differential graded algebra. This leads to the equivalence
between the notions of a comodule and a module admitting a flat connection.
Next we define Galois corings. These are corings that are isomorphic to the
canonical coring associated to a ring extension, and they provide one with a
natural framework for studying Galois-type ring extensions.

In this chapter, A and B are algebras over a commutative ring R.

25 Canonical corings and ring extensions

In this section we introduce the fundamental example of a coring, which was
the motivation for Sweedler’s work on dualisation of the Bourbaki-Jacobson
Theorem. Such a coring can be associated to any extension of rings. Due to
its importance, we thus term it the canonical coring. We study comodules
of this coring and show how they are related to a noncommutative descent
theory.

25.1. The canonical coring. Let B → A be an extension of R-algebras.
Then C = A⊗B A is an A-coring with coproduct

∆ : C → C ⊗A C � A⊗B A⊗B A, a⊗ a′ �→ a⊗ 1A ⊗ a′,

251
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and counit ε(a ⊗ a′) = aa′. C is called the canonical or Sweedler A-coring
associated to a ring (algebra) extension B → A.

Proof. Note that A is a (B,A)-bimodule, which is finitely generated
projective as a right A-module, A∗ = HomA(A,A) � A, and the dual basis
consists only of 1A viewed as an element of A or A∗. Thus this is a special
case of a coring associated to a finitely generated projective module in 17.6.

Alternatively, C can be seen as a base ring extension of the trivial B-coring
B (cf. 17.2, 17.3). �

25.2. Dual algebras of a canonical coring. As special cases of 17.9
one easily computes the dual algebras of a canonical coring. First, the left
dual ∗C = AHom(A ⊗B A,A) � BEnd(A), where the endomorphisms have
the algebra structure provided by the composition of maps. Second, C∗ =
HomA(A⊗B A,A) � EndB(A) is an anti-algebra isomorphism. Therefore
C∗ � EndB(A)

op as algebras. Finally,

∗C∗ = AHomA(A⊗B A,A) � AB = {a ∈ A | for all b ∈ B, ab = ba}.

25.3. Comodules of a canonical coring. Let B → A be an algebra ex-
tension, and let C = A ⊗B A be the canonical A-coring in 25.1. The ob-
jects in the category MC are pairs (M, f), where M is a right A-module
and f : M → M ⊗B A is a right A-module morphism such that, writing
f(m) =

∑
imi ⊗ ai for any m ∈M ,

(1)
∑
i f(mi)⊗ ai =

∑
imi ⊗ 1A ⊗ ai;

(2)
∑
imiai = m.

Proof. Let M be a right C-comodule with a coaction �M . This induces
a right A-module map f : M

�M−→ M ⊗A A ⊗B A �−→ M ⊗B A. Explicitly,
if we denote �M(m) =

∑
m0 ⊗A m1 =

∑
imi ⊗A āi ⊗B ai, for m ∈ M , then

f(m) =
∑
imiāi⊗B ai. Since �M is a coaction of C = A⊗BA onM (compare

the definition of the coproduct in A⊗B A in 25.1),∑
ijmij ⊗A āij ⊗B aij ⊗A āi ⊗B ai =

∑
imi ⊗A āi ⊗B 1A ⊗A 1A ⊗B ai,

where, for each i, we used the notation �M(mi) =
∑
jmij ⊗A āij ⊗B aij. Note

that in this notation f(mi) =
∑
jmij āij ⊗B aij. This in turn implies that∑

i,jmij āij ⊗B aij āi ⊗B ai =
∑
imiāi ⊗B 1A ⊗B ai.

The last equality is equivalent to condition (1) for the map f defined above.
Now the fact that �M is counital means that

∑
imiāiai = m, which is precisely

condition (2) for the above-defined f . Now let (M, f) be a pair satisfying
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conditions (1) and (2). Write f(m) =
∑
imi ⊗ ai and define a right A-

module map �M : M → M ⊗A C, m �→
∑
imi ⊗A 1A ⊗B ai. Condition (1)

then implies

(�M ⊗A IC) ◦ �M(m) =
∑
i �
M(mi)⊗A 1A ⊗B ai

=
∑
i,jmij ⊗A 1A ⊗B aij ⊗A 1A ⊗B ai

=
∑
imi ⊗A 1A ⊗B 1A ⊗A 1A ⊗B ai

=
∑
imi ⊗A ∆(1A ⊗B ai)

= (IM ⊗A ∆) ◦ �M(m).

Here we used the notation f(mi) =
∑
jmij ⊗B aij. On the other hand,

condition (2) implies

(IM ⊗A ε) ◦ �M(m) =
∑
imi ⊗A ε(1A ⊗B ai) =

∑
imiai = m,

that is, M is a right C-comodule with the coaction �M . �

25.4. Descent data. Given an algebra extension B → A, the category
consisting of pairs (M, f), whereM is a right A-module and f :M →M⊗BA
satisfies conditions (1) and (2) in 25.3, is known as the category of (right)
descent data associated to a noncommutative algebra extension B → A [96].
The category of (right) descent data is denoted by Desc(A/B). A morphism
(M, f)→ (M ′, f ′) in Desc(A/B) is a right A-module map φ :M →M ′ such
that f ′ ◦ φ = (φ ⊗ IA) ◦ f . The category Desc(A/B) is a noncommutative
generalisation of the category of descent data associated to an extension of
commutative rings introduced by Knus and Ojanguren in [28] and forms a
backbone of the noncommutative extension of the classical descent theory
[17, 18]. Recall that the descent theory provides answers to the following
types of questions.

(i) Descent of modules: Given an algebra extension B → A and a right
A-module M , is there a right B-module N such that M � N ⊗B A as
right A-modules?

(ii) Classification of A-forms: Given a right B-module N , classify all right
B-modules M such that N ⊗B A �M ⊗B A as right A-modules.

Thus the result of 25.3 can be equivalently stated as

Proposition. Let B → A be an algebra map. Then the category of de-
scent data associated to this extension is isomorphic to the category of right
comodules of the canonical coring A⊗B A.

Under this isomorphism of categories, the induction functor − ⊗A C :
MA →MC takes the form of the functor − ⊗B A :MA → Desc(A/B). An
A-module M is sent to the descent datum (M ⊗B A, f), where

f :M ⊗B A→M ⊗B A⊗B A, m⊗ a �→ m⊗ 1A ⊗ a.
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The theory of corings provides a natural framework for studying the de-
scent of structures related to noncommutative rings. This is explored in
Section 28.

25.5. The inclusion morphism. Let C = A ⊗B A be the canonical coring
associated to an algebra inclusion i : B ↪→ A. Identify B with its image
i(B). View the subalgebra B of A as a trivial B-coring as in 17.3. Let
γ : B → A⊗B A be a (B,B)-bilinear map given by γ : b �→ 1A ⊗ b = b⊗ 1A.
Then (γ : IB) : (B : B) → (A ⊗B A : A) is a pure morphism of corings,
known as an inclusion morphism.

Proof. Obviously, IB is an algebra map, and, by definition, γ is a
(B,B)-bimodule map; therefore only conditions (2) in 24.1 need to be verified.
Clearly, the second of these conditions holds, since the counit in a trivial
coring is the identity map, and the counit in the canonical coring is given by
the product in A. Finally, for all b ∈ B,

χ ◦ (γ ⊗B γ) ◦∆B(b) = χ(γ(1B)⊗ γ(b)) = χ(1A ⊗ 1A ⊗ 1A ⊗ b)

= 1A ⊗ 1A ⊗ b = ∆A⊗BA(1A ⊗ b) = ∆A⊗BA(γ(b)),

as required. Thus (γ : IB) is a morphism of corings. It is a pure morphism
of corings, since B is a flat left B-module. �

25.6. Representations of the canonical coring in an algebra. Let C
be an R-algebra. The category Rep(A ⊗B A : A | C : C) of representations
of the canonical A-coring A⊗B A associated to an algebra map i : B → A in
C has as objects the R-algebra maps α : A→ C. Morphisms are given by

MorRep(A⊗BA:A|C:C)(α1, α2) = α1C
B
α2

≡ {c∈C | ∀ b∈B, α1(i(b))c=cα2(i(b))}.

Proof. This follows by 24.4 and the identification AHomA(A⊗B A,C) �
α1C

B
α2
. �

25.7. Representations of a coalgebra in the canonical coring. For
an R-coalgebra C and a canonical coring A⊗B A, the objects of the category
Rep(C : R | A ⊗B A : A) are R-linear maps γ : C → A ⊗B A such that,
writing γ(c) =

∑
γ(c)1̃ ⊗ γ(c)2̃ for c ∈ C,

(1)
∑
γ(c)1̃γ(c)2̃ = ε(c)1A;

(2)
∑
γ(c1)

1̃ ⊗ γ(c1)
2̃γ(c2)

1̃ ⊗ γ(c2)
2̃ =

∑
γ(c)1̃ ⊗ 1A ⊗ γ(c)2̃.

Morphisms γ1 → γ2 are R-linear maps f : C → A such that, for all c ∈ C,∑
γ1(c1)f(c2) =

∑
f(c1)γ2(c2).
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Proof. This follows immediately from 24.5 and the definition of the
canonical coring. �

A concrete example of a representation of the type described in 25.7 is
given in 34.5.

References. Brzeziński [73]; Cippola [96]; Grothendieck [17, 18]; Knus
and Ojanguren [28]; Sweedler [193].
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26 Coseparable and cosplit corings

Among all the types of extensions of rings, separable and split extensions form
two important classes. The former generalise the notion of a separable alge-
bra, and the latter is a complementary notion to the former. In this section
we study two types of corings that are closely related to separable and split
extensions of rings. These corings are respectively known as coseparable and
cosplit corings, and their properties determine when the forgetful and induc-
tion functors are separable, in particular, we show that a coseparable coring
has a structure of a nonunital ring whose (balanced) product has a section.
Comodules of C can then be viewed as (firm) modules of the corresponding
nonunital ring.

Definition. An A-coring C is said to be coseparable if the structure map
∆ : C → C ⊗A C splits as a (C, C)-bicomodule map, that is, if there exists an
(A,A)-bimodule map π : C ⊗A C → C such that

(IC ⊗ π) ◦ (∆⊗ IC) = ∆ ◦ π = (π ⊗ IC) ◦ (IC ⊗∆) and π ◦∆ = IC.

This is obviously a left-right symmetric notion, which can be viewed as
a dualisation of separable extensions of algebras (in which case the splitting
of the product is required). The notion of a coseparable coring generalises
the notion of a coseparable coalgebra introduced in 3.28, and, in fact, the
characterisations of coseparable coalgebras in 3.29 can be transferred.

26.1. Coseparable corings. For an A-coring C the following are equivalent:
(a) C is coseparable;
(b) there exists an (A,A)-linear map δ : C ⊗A C → A satisfying

δ ◦∆ = ε and (IC ⊗ δ) ◦ (∆⊗ IC) = (δ ⊗ IC) ◦ (IC ⊗∆);

(c) the forgetful functor (−)A :MC →MA is separable;

(d) the forgetful functor A(−) : CM→ AM is separable;

(e) the forgetful functor A(−)A : CMC → AMA is separable;

(f) C is (A,A)-relative semisimple as a (C, C)-bicomodule, that is, any mo-
nomorphism in CMC that splits as an (A,A)-morphism also splits in
CMC;

(g) C is (A,A)-relative injective as a (C, C)-bicomodule;
(h) C is (A, C)-relative injective as a (C, C)-bicomodule;
(i) C is (C, A)-relative injective as a (C, C)-bicomodule.

If these conditions are satisfied, then C is left and right (C, A)-semisimple,
that is, all comodules in MC and CM are (C, A)-injective.
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Proof. The proof of 3.29 can be adapted easily. Note that (g) implies
both (h) and (i), while (h) and (i) imply (a) since ∆ is split by a left A-module
right C-comodule map ε⊗ IC as well as by a right A-module left C-comodule
map IC ⊗ ε (cf. 22.8). �

26.2. Cointegrals and Maschke-type theorem. Any map δ : C⊗AC → A
satisfying conditions 26.1(b) is known as a cointegral in C. Note that the
relationship between a splitting map π and the corresponding cointegral is
given by the formulae δ = ε ◦ π and

π(c⊗ c′) =
∑

δ(c⊗ c′1)c′2 =
∑

c1δ(c2 ⊗ c′),

for all c, c′ ∈ C (compare the proof of 3.29).
Note also that the final assertion in 26.1 involving the relative semi-

simplicity of C can be viewed as a Maschke-type theorem for corings.

Thus, over a coseparable coring any comodule is relative injective, and
so the purity conditions 21.5 are satisfied. Hence, similarly as for coalgebras
(see 11.5), 22.3 implies:

26.3. Cotensor product over coseparable corings. Let C be an A-coring
and D a B-coring. If C is a coseparable coring, then:
(1) for any M ∈ DMC and N ∈ CM, M✷CN is a left D-comodule.
(2) For any M ∈MC and N ∈ CMD, M✷CN is a right D-comodule.
(3) For any M ∈ DMC and N ∈ CMD′

, M✷CN is a (D,D′)-bicomodule.

26.4. Dual rings and cosperable corings. Let B be the opposite algebra
of the left dual algebra ∗C of an A-coring C, and let iL : A→ B, a �→ ε(−a),
be the corresponding algebra map as in 17.8. If C is cogenerated by A as a left
A-module and the extension iL : A→ B is separable, then C is a coseparable
coring.

Proof. Let e =
∑
i fi ⊗ gi ∈ (B ⊗A B)B be the separability idempotent.

The B-centrality of e implies that, for all c, c′ ∈ C and f ∈ ∗C,∑
i
gi(cfi(c

′
1f(c

′
2))) =

∑
i
f(c1gi(c2fi(c

′))), (∗)

while the normalisation of e means that
∑
i gi(c1fi(c2)) = ε(c). Define a left

A-linear map δ : C ⊗A C → A, c ⊗ c′ �→
∑
i gi(cfi(c

′)). For any a ∈ A, take
the map iL(a) for f in (∗) to find that δ is also right A-linear. For all f ∈ ∗C
and c, c′ ∈ C, one can use (∗) and the (A,A)-bilinearity of δ to compute∑

f(c1δ(c2 ⊗ c′)) =
∑
if(c1gi(c2fi(c

′))) =
∑
igi(cfi(c

′
1f(c

′
2)))

=
∑
δ(c⊗ c′1f(c′2)) =

∑
f(δ(c⊗ c′1)c′2).
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Since AC is cogenerated by A, this implies that
∑
c1δ(c2⊗c′) =

∑
δ(c⊗c′1)c′2.

On the other hand, the unitality of e precisely means that δ◦∆ = ε. Therefore
δ is a cointegral, and hence C is a coseparable A-coring. �

Coseparable corings also turn out to be closely related to the following
generalisation of separable extensions of rings.

26.5. Separable A-rings. Let A be an R-algebra with unit 1A and let B be
an R-algebra (possibly) without unit. B is said to be a separable A-ring if

(1) B is an (A,A)-bimodule;

(2) the product µ : B ⊗R B → B is an A-balanced (A,A)-bimodule map,
that is, for all a ∈ A and b, b′ ∈ B, µ(ab⊗ b′) = aµ(b⊗ b′), µ(b⊗ b′a) =
µ(b⊗ b′)a and µ(ba⊗ b′) = µ(b⊗ ab′);

(3) the induced (B,B)-bimodule map µB/A : B ⊗A B → B, b⊗ b �→ bb′ has
a section.

26.6. A coseparable A-coring is a separable A-ring. If C is a coseparable
A-coring, then C is a separable A-ring.

Proof. Let π : C ⊗A C → C be a bicomodule retraction of the coproduct
∆C, and let δ = ε ◦ π be the corresponding cointegral. We claim that C is
an associative R-algebra (without unit) with product cc′ = π(c⊗ c′). Indeed,
since alternative expressions for the product are cc′ =

∑
δ(c ⊗ c′1)c′2 =∑

c1δ(c2 ⊗ c′) (cf. 26.2), for all c, c′, c′′ ∈ C, use of the left A-linearity of
δ and ∆ yields

(cc′)c′′ =
∑
(δ(c⊗ c′1)c′2)c′′ =

∑
δ(c⊗ c′1)δ(c′2 ⊗ c′′1)c′′2.

On the other hand, the colinearity of π, the right A-linearity of δ and the left
A-linearity of ∆ imply

c(c′c′′) =
∑
c(δ(c′ ⊗ c′′1)c′′2) =

∑
δ(c⊗ δ(c′ ⊗ c′′1)c′′2)c′′3

=
∑
δ(c⊗ c′1δ(c′2 ⊗ c′′1))c′′2 =

∑
δ(c⊗ c′1)δ(c′2 ⊗ c′′1)c′′2.

This explicitly proves that the product in C is associative. Clearly this product
is (A,A)-bilinear and A-balanced, and the induced map µC/A is precisely π.
Note that ∆ is a (C, C)-bimodule map since

c∆(c′) =
∑
cc′1 ⊗ c′2 =

∑
π(c⊗ c′1)⊗ c′2 = ∆ ◦ π(c⊗ c′) = ∆(cc′),

by right colinearity of π, and similarly for left C-linearity. Finally, π is split
by ∆ since π is a retraction of ∆. This proves that C is a separable A-ring. �
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26.7. Comodules of a coseparable coring. Let C be a coseparable coring
with cointegral δ. Then any right C-comodule M is a right C-module with the
product mc =

∑
m0δ(m1⊗ c). This product is right A-linear and A-balanced.

Furthermore M is firm, that is, M ⊗C C �M as right C-modules.

Proof. Take any m ∈M and c, c′ ∈ C and compute

(mc)c′ =
∑
(m0δ(m1 ⊗ c))c′ =

∑
m0δ(m1δ(m2 ⊗ c)⊗ c′)

=
∑
m0δ(δ(m1 ⊗ c1)c2 ⊗ c′) =

∑
m0δ(m1 ⊗ c1)δ(c2 ⊗ c′)

=
∑
m0δ(m1 ⊗ c1δ(c2 ⊗ c′)) =

∑
m0δ(m1 ⊗ cc′) = m(cc′),

as required. We use the colinearity of δ to derive the third equality and
(A,A)-bilinearity of δ to derive the fourth and fifth equalities. Obviously the
multiplication is right A-linear. It is A-balanced since the coaction is right
A-linear.

Note that M ⊗C C is defined as a cokernel of the right C-linear map

λ :M ⊗A C ⊗A C →M ⊗A C, m⊗ c⊗ c′ �→ mc⊗ c′ −m⊗ cc′.

Consider now the following right C-linear map:

�M/A :M ⊗A C →M, m⊗ c �→ mc =
∑
m0δ(m1 ⊗ c).

Since δ is a cointegral, �M/A is a right C-linear retraction of �M , and hence, in
particular it is surjective and there is the following sequence of right C-module
maps:

M ⊗A C ⊗A C λ �� M ⊗A C
�M/A �� M �� 0.

We need to show that this sequence is exact. Clearly associativity of the
product inM implies that �M/A◦λ = 0, so that Imλ ⊆ Ke �M/A. Furthermore,
for all m ∈M and c ∈ C,

(�M ◦ �M/A − λ ◦ (IM ⊗∆))(m⊗ c)

=
∑
m0 ⊗m1δ(m2 ⊗ c)−

∑
mc1 ⊗ c2 +

∑
m⊗ π(c1 ⊗ c2)

=
∑
m0δ(m1 ⊗ c1)⊗ c2 −

∑
m0δ(m1 ⊗ c1)⊗ c2 +m⊗ c = m⊗ c,

where we used the properties of a cointegral. This implies Ke �M/A ⊆ Imλ,
that is, the above sequence is exact, as required. �

In fact 26.6 has the following (partly) converse.

26.8. Coassociative coproduct in a separable A-ring. Let B be a sep-
arable A-ring. Then the (B,B)-bimodule map ∆ : B → B ⊗A B splitting the
product µB/A is coassociative.
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Proof. Since ∆ is assumed to be a (B,B)-bimodule map, there is the
following commutative diagram:

B ⊗A B ⊗A B
µB/A⊗IB

��

B ⊗A B
IB⊗∆��

µB/A

��

∆⊗IB�� B ⊗A B ⊗A B
IB⊗µB/A
��

B ⊗A B B
∆

��
∆

�� B ⊗A B .

For all b ∈ B we write (∆⊗IB)◦∆(b) =
∑
b11⊗b12⊗b2 and (IB⊗∆)◦∆(b) =∑

b1 ⊗ b21 ⊗ b22, and use the above diagram to obtain

∆(b) = (∆ ◦ µB/A ◦∆)(b) = (IB ⊗ µB/A) ◦ (∆⊗ IB) ◦∆(b)
=

∑
b11 ⊗ µB/A(b12 ⊗ b2) = (µB/A ⊗ IB) ◦ (IB ⊗∆) ◦∆(b)

=
∑

µB/A(b1 ⊗ b21)⊗ b22.

Using these identities we compute

(IB ⊗∆) ◦∆(b) =
∑
b11 ⊗ (∆ ◦ µB/A)(b12 ⊗ b2)

=
∑
b11 ⊗ ((µB/A ⊗ IB) ◦ (IB ⊗∆))(b12 ⊗ b2)

=
∑
b11 ⊗ µB/A(b12 ⊗ b21)⊗ b22

=
∑
((IB ⊗ µB/A) ◦ (∆⊗ IB))(b1 ⊗ b21)⊗ b22

=
∑
(∆ ◦ µB/A)(b1 ⊗ b21)⊗ b22

= (∆⊗ IB) ◦∆(b),

that is, (∆⊗ IB) ◦∆ = (IB ⊗∆) ◦∆. This completes the proof. �
Thus a separable A-ring B also can be viewed as an A-coring with co-

product ∆ but without a counit (i.e., B is a noncounital coring). Note then
that the diagram in the proof of 26.8 can be understood as a statement that
µB/A is a (B,B)-bicomodule map. Since µB/A is a retraction for ∆, one can
say that a separable A-ring is a coseparable noncounital A-coring.

The coseparability of the canonical coring associated to an algebra map
B → A is related to the problem when this map defines a split extension.
Recall that an extension of algebras B → A is called a split extension if there
exists a (B,B)-bimodule map E : A→ B such that E(1A) = 1B.

26.9. Coseparability of Sweedler corings. Let φ : B → A be an algebra
map, and let C = A ⊗B A be the canonical A-coring in 25.1. If φ is a split
extension, then C is a coseparable coring. Conversely, if C is coseparable and
either BA or AB is faithfully flat, then φ is a split extension.

Proof. In the case of the canonical A-coring A ⊗B A, the conditions
required for the cointegral δ ∈ AHomA(A⊗B A⊗B A,A) in 26.1 read as
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δ(a⊗ 1A ⊗ a′) = aa′ and a⊗ δ(1A ⊗ a′ ⊗ a′′) = δ(a⊗ a′ ⊗ 1A)⊗ a′′,

for all a, a′, a′′ ∈ A. Since AHomA(A ⊗B A ⊗B A,A) � BHomB(A,A), the
maps δ are in one-to-one correspondence with the maps E ∈ BHomB(A,A) via
δ(a⊗a′⊗a′′) = aE(a′)a′′. The first of the above conditions for δ is equivalent
to the normalisation of E, E(1A) = 1A, while the second condition gives for
all a ∈ A, 1A⊗BE(a) = E(a)⊗B 1A. Thus, if the extension φ is split, such an
E exists by definition. Conversely, if C is coseparable and either BA or AB is
faithfully flat, then φ is injective and the equation 1A⊗B E(a) = E(a)⊗B 1A
implies that E(a) ∈ B, where B is identified with its image in A. �

The coseparability of C in relation to A as considered in 26.1 can also be
studied in relation to other corings.

Definition. Given a morphism γ : C → D of A-corings, C is called D-
coseparable if ∆C : C → C✷DC splits as a (C, C)-bicomodule map, that is,
there exists a map π : C✷DC → C with the properties

(IC✷Dπ) ◦ (∆C✷DIC) = ∆C ◦ π = (π✷DIC) ◦ (IC✷D∆C) and π ◦∆C = IC.

D-coseparable corings are closely related to the injectivity of a coring rel-
ative to another coring or (C,D)-injectivity discussed in 22.13. In particular,
the characterisation of coseparable corings in 26.1 extends to D-coseparable
corings in the following way.

26.10. D-coseparable corings. Let γ : C → D be a morphism of A-corings.
Then the following are equivalent:

(a) C is D-coseparable;
(b) there exists a (D,D)-bicolinear map δ : C✷DC → D satisfying

δ ◦∆C = γ and (IC✷Dδ) ◦ (∆C✷DIC) = (δ✷DIC) ◦ (IC✷D∆C).

If C satisfies the left and right α-conditions 19.2, (a) and (b) are also equiv-
alent to:

(c) the corestriction functor (−)γ :MC →MD is separable (cf. 22.11);

(d) the corestriction functor γ(−) : CM→ DM is separable;

(e) the corestriction functor γ(−)γ : CMC → DMD is separable;

(f) C is D-relative semisimple as a (C, C)-bicomodule;
(g) C is D-relative injective as a (C, C)-bicomodule.

If these conditions are satisfied, then all comodules inMC and CM are (C,D)-
injective.
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Proof. Recall that the left and right α-conditions imply that the cat-
egories of C-comodules are fully included in the categories of ∗C-modules or
C∗-modules. Since 39.5 holds for noncommmutative algebras, we can apply
the proof of 11.12. �

The separability of the functor − ⊗A C has a similar characterisation as
for coalgebras.

26.11. Separability of −⊗A C. The following are equivalent for C:
(a) −⊗A C :MA →MC is a separable functor;
(b) C ⊗A − : AM→ CM is a separable functor;

(c) C ⊗A −⊗A C : AMA → CMC is a separable functor;
(d) there exists an invariant e ∈ CA with ε(e) = 1A.
Proof. (a)⇒ (d) Let ψ denote the counit of the adjoint pair of functors

((−)A,− ⊗A C). In particular, ψA = IA ⊗ ε : A ⊗A C → A, that is, ψA = ε
by the obvious identification. By 38.24(2), ψA is split by a morphism νA :
A → C. Since A is also a left A-module, we know by 39.5 that νA is in
fact left and right A-linear and hence e = νR(1A) is in CA. By definition,
ε(e) = ψA ◦ νA(1A) = 1A.

(d) ⇒ (a) Follow the proof of 3.30 and observe that e ∈ CA implies that,
for all M ∈MA, the map νM : M → M ⊗A C, m �→ m⊗ e, is right A-linear
and provides the required natural splitting of the counit of adjunction ψ.

The remaining arguments of the proof of 3.30 can be followed literally. �

26.12. Cosplit corings. Note that condition (d) in 26.11 simply means that
there is an (A,A)-bimodule section of a counit. Thus it is natural to term an
A-coring satisfying any of the equivalent conditions in 26.11 a cosplit coring.
The corresponding invariant e ∈ CA is called a normalised integral in C.

The notion of a cosplit coring can be viewed as a dualisation of the notion
of a split extension (hence the name). This can be formalised as the following
observation.

26.13. Dual ring of a cosplit coring. Let C be a cosplit A-coring, and
let B = (∗C)op be the opposite left dual ring. Then the algebra extension
iL : A→ B, a �→ ε(−a) is a split extension.
Proof. Let e be a normalised integral in C, and consider an R-linear

map E : B → A, b �→ b(e). Note that E(1B) = E(ε) = ε(e) = 1A by the
normalisation of e. Furthermore, for all a ∈ A and b ∈ B we can use the
definition of B = (∗C)op, the properties of the counit, and the fact that e is
an invariant to compute

E(ab) = (iL(a)b)(e) =
∑
b(e1iL(a)(e2)) =

∑
b(e1ε(e2)a)

= b(ea) = b(ae) = ab(e) = aE(b),
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showing that E is left A-linear. Similarly one shows that E is also right
A-linear, as required for a split extension. �

We noticed that a coseparable Sweedler coring corresponds to a split ex-
tension. Somewhat perversely, cosplit Sweedler corings correspond to sepa-
rable extensions.

26.14. Cosplit Sweedler corings. Let B → A be an algebra extension and
let C be the canonical A-coring in 25.1. The extension B → A is separable if
and only if C is a cosplit coring.

Proof. Recall that an extension is separable if there exists an invari-
ant e ∈ (A ⊗B A)A, such that µA/B(e) = 1A, where µA/B : A ⊗B A → A
is the product. In view of this the assertion follows immediately from the
characterisation of cosplit corings in 26.11. �

Given a coring morphism C → D, there is a functor −✷DC :MD →MC,
provided suitable pureness conditions are satisfied (cf. 22.3). The separability
of the functor −✷DC has similar characterisations as that of −⊗A C.

26.15. Separability of −✷DC. Let γ : C → D be a morphism of A-corings,
assume AC and CA to be flat and D to satisfy the left and right α-condition.
Then the following are equivalent:

(a) −✷DC :MD →MC is separable;

(b) C✷D− : DM→ CM is separable;

(c) C✷D − ✷DC : DMD → CMC is separable;

(d) there exists a (D,D)-colinear map δ : D → C with γ ◦ δ = ID.

Proof. (a) ⇒ (d) Let ψ denote the counit of the adjoint functor pair
((−)γ,−✷DC). Then ψD = ID✷γ : D✷DC → D, that is, ψD = γ by the
obvious identification. By 38.24(2), ψD is split by a morphism νD : D → C
in MD. Since D is also a left D-comodule – that is, a right D∗-module – we
know by 39.5 that νD is in fact right D∗-linear and hence it is (D,D)-colinear.

(d) ⇒ (a) The map IM✷δ : M � M✷DD → M✷DC is right D-colinear
and also (IM✷γ) ◦ (I✷∆) = IM . Hence it provides the required natural
splitting of the counit of adjunction ψ.

The remaining implications follow by symmetry and the properties of
separable functors (cf. 38.20). �

References. Brzeziński [73]; Brzeziński, Kadison and Wisbauer [78];
Caenepeel [8]; Gómez-Torrecillas [122]; Guzman [126, 127]; Pierce [39].
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27 Frobenius extensions and corings

Corings appear naturally in the context of Frobenius extensions of rings (cf.
40.21 for the definition). In this section we introduce a class of corings, termed
Frobenius corings, that provide an equivalent description of such extensions.
In particular, a Frobenius A-coring C is itself an R-algebra and a Frobenius
extension of A. The equivalence of descriptions is formulated rigorously as
the isomorphism of categories of Frobenius corings and Frobenius extensions.
This in turn implies that, to any Frobenius coring or a Frobenius extension,
one can associate a tower of Frobenius corings and Frobenius extensions.

27.1. Frobenius element and homomorphism. Recall that a ring ex-
tension A → B is called a Frobenius extension (of the first kind) if and only
if B is a finitely generated projective right A-module and B � HomA(B,A)
as (A,B)-bimodules. Equivalently, B is a finitely generated projective left
A-module and B � AHom(B,A) as (B,A)-bimodules. The (A,B)-bimodule
structure of HomA(B,A) is given by (afb)(b

′) = af(bb′), for a ∈ A, b, b′ ∈ B
and f ∈ HomA(B,A). The statement that A → B is a Frobenius extension
is equivalent to the existence of an (A,A)-bimodule map E : B → A and an
element β =

∑
i bi ⊗ b̄i ∈ B ⊗A B, such that, for all b ∈ B,∑

i
E(bbi)b̄

i =
∑

i
biE(b̄

ib) = b.

E is called a Frobenius homomorphism and β is known as a Frobenius element.
One can easily show that in fact a Frobenius element β is an invariant, that
is, β ∈ (B ⊗A B)B = {m ∈ B ⊗A B | for all b ∈ B, bm = mb}.

It turns out that, equivalently, one can describe Frobenius extensions as
a certain type of coring.

27.2. The coring structure of a Frobenius extension. A ring extension
A→ B is a Frobenius extension if and only if B is an A-coring such that the
coproduct is a (B,B)-bimodule map.

Proof. Suppose A → B is a Frobenius extension with a Frobenius
homomorphism E and a Frobenius element β =

∑
i bi ⊗ b̄i. Define ε = E, an

(A,A)-bimodule map, and

∆ : B → B ⊗A B, b �→ bβ = βb,

which is clearly a (B,B)-bimodule map, and hence it is also an (A,A)-
bimodule map. We need to check the coassociativity of ∆ and the counit
properties of ε. For all b ∈ B,

(∆⊗ IB) ◦∆(b) =
∑
i∆(bi)⊗ b̄ib =

∑
i,jbj ⊗ b̄jbi ⊗ b̄ib

=
∑
jbj ⊗∆(b̄jb) = (IB ⊗∆) ◦∆(b), and

(ε⊗ IB) ◦∆(b) =
∑
iE(bbi)b̄

i = b,
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and similarly for the second counit property. Thus we have proven that
a Frobenius element and homomorphism for A → B produce an A-coring
structure on B.

Conversely, suppose B is an A-coring with a (B,B)-bimodule comultipli-
cation. Define β = ∆(1B) =

∑
i bi ⊗ b̄i and E = ε. Since ∆ is a (B,B)-

bimodule map, we obtain for all b ∈ B,∑
b1 ⊗ b2 = ∆(b) = ∆(b1B) = b∆B(1B) =

∑
ibbi ⊗ b̄i,

and similarly
∑
b1⊗ b2 =

∑
i bi⊗ b̄ib. Now, using the counit property of ε we

obtain ∑
iE(bbi)b̄

i =
∑
ε(b1)b2 = b =

∑
b1ε(b2) =

∑
ibiE(b̄

ib),

as required. �
Note that 27.2 in fact establishes a bijective correspondence between

Frobenius structures (i.e., elements and homomorphisms) for A → B and
A-coring structures on B with a (B,B)-bimodule coproduct.

27.3. Diagrammatic definition of Frobenius extensions. Let A → B
be a ring extension with a Frobenius homomorphism and element, E and β.
Then β can be identified with a (B,B)-bimodule map ∆ defined in the proof
of 27.2, and by this means it can be viewed as a map β ∈ BHomB(B,B ⊗A B).
Then the defining properties of E and β described in 27.1 can be stated in
terms of the following commutative diagram:

B
β ��

β
��

IB



!!
!!!

!!!
!!!

!!!
!!!

! B ⊗A B
IB⊗E
��

B ⊗A B
E⊗IB �� B .

One can dualise the definition of a Frobenius extension by reversing the
arrows in the above notions, thus obtaining the notions of Frobenius corings
and Frobenius systems.

27.4. Frobenius corings. An A-coring C is called a Frobenius coring if
there exist an (A,A)-bimodule map η : A→ C and a (C, C)-bicomodule map
π : C ⊗A C → C yielding a commutative diagram

C
IC⊗η ��

η⊗IC
��

IC

��!!
!!!

!!!
!!!

!!!
!!!

! C ⊗A C
π

��
C ⊗A C π �� C .
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27.5. Frobenius systems. In view of the identification AHomA(A, C) � CA,
an A-coring C is Frobenius if and only if there exist e ∈ CA and a (C, C)-
bicomodule map π : C⊗AC → C such that, for all c ∈ C, π(c⊗e) = π(e⊗c) = c.
Such a pair (π, e) is called a Frobenius system for C. Furthermore, by the
same argument as in 26.1 (cf. 3.29), a (C, C)-bicomodule map π : C ⊗A C → C
can be identified with a certain (A,A)-bimodule map δ : C ⊗A C → A via
π �→ δ = ε ◦ π and δ �→ π = (δ ⊗ IC) ◦ (IC ⊗∆) = (IC ⊗ δ) ◦ (∆⊗ IC). Using
this identification one easily sees that C is Frobenius if and only if there exist
e ∈ CA and an (A,A)-bimodule map δ : C⊗AC → A such that, for all c, c′ ∈ C,∑

c1δ(c1 ⊗ c′) =
∑

δ(c⊗ c′1)c′2, δ(c⊗ e) = δ(e⊗ c) = ε(c).

The pair (δ, e) is called a reduced Frobenius system associated to a Frobenius
system (π, e).

The following two observations explain the immediate relationship be-
tween Frobenius corings and Frobenius extensions, and thus can serve as a
motivation for Definition 27.4.

27.6. Frobenius corings and Frobenius extensions. Let A → B be a
Frobenius extension with a Frobenius element β and a Frobenius homomor-
phism E. Then B is a Frobenius A-coring with a coproduct β (viewed as a
(B,B)-bimodule map B → B ⊗A B), a counit E, and a Frobenius system
(π, 1B), where π : B ⊗A B → B, b⊗A b′ �→ bb′.

Proof. By 27.2, B is an A-coring with the specified coproduct and counit.
The fact that B is a Frobenius coring can be verified by direct calculations.
We only note that if β =

∑
i bi ⊗ b̄i, then the fact that π is a bicomodule

morphism means that, for all b, b′ ∈ B,∑
i
bbi ⊗ π(b̄i ⊗ b′) =

∑
i
π(b⊗ b′)bi ⊗ b̄i =

∑
i
π(b⊗ bi)⊗ b̄ib′.

This follows immediately from the definition of π (as a product) and from
the fact that the Frobenius element β is B-central. �

In particular, 27.6 implies that the trivial A-coring is a Frobenius coring.

27.7. Sweedler corings and Frobenius extensions. Let C = A ⊗B A
be the Sweedler coring associated to an extension B → A. If B → A is
a Frobenius extension, then C is a Frobenius coring. Conversely, if A is a
faithfully flat left or right B-module and C is a Frobenius coring, then B → A
is a Frobenius extension.

Proof. Suppose B → A is a Frobenius extension with Frobenius element
α =

∑
i ai ⊗ āi ∈ A ⊗B A and Frobenius homomorphism E : A → B.
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Obviously α ∈ CA. Let π = IA ⊗ E ⊗ IA : A ⊗B A ⊗B A � C ⊗A C → C
and e = α. We claim that (π, e) is a Frobenius system for C. Indeed, using
the defining properties of Frobenius elements and homomorphisms, for all
a, a′ ∈ A,

π(e⊗A a⊗B a′) =
∑
i π(ai ⊗B āia⊗B a′) =

∑
i aiE(ā

ia)⊗B a′ = a⊗B a′.

Similarly one shows that π(a ⊗B a′ ⊗A e) = a ⊗B a′. The map π is clearly
(A,A)-bilinear. Its (C, C)-bicolinearity can easily be checked by using the fact
that the image of E is in B.

Conversely, suppose that BA or AB is faithfully flat and that C is a Frobe-
nius coring with a reduced Frobenius system δ : A⊗B A⊗B A→ A and e =∑
i ai ⊗ āi ∈ CA. By the obvious identification AHomA(A⊗B A⊗B A,A) �

BEndB(A), view δ as a (B,B)-bimodule map E : A → A. Take any a ∈ A;
then a = ε(1A ⊗B a) = δ(1A ⊗B a⊗A e), that is, a =

∑
iE(aai)ā

i. Similarly
one deduces that a =

∑
i aiE(ā

ia). Next, the properties of δ (see 27.5) imply,
for all a ∈ A,

1A⊗BE(a) = 1A⊗B δ(1A⊗B a⊗B 1A) = δ(1A⊗B a⊗B 1A)⊗B 1A = E(a)⊗B 1A.

Since A is a faithfully flat left or right B-module, we conclude that E(a) ∈ B
and thus E is a Frobenius homomorphism and e is a Frobenius element. �

Recall that a functor is a Frobenius functor provided it has the same right
and left adjoint (cf. 38.23).

27.8. Frobenius corings and Frobenius functors. Let C be an A-coring.
Then the following statements are equivalent:

(a) C is a Frobenius coring;
(b) the forgetful functor (−)A :MC →MA is a Frobenius functor;

(c) the forgetful functor A(−) : CM→ AM is a Frobenius functor.

Proof. (a)⇔ (b) We already know from 18.13 that the forgetful functor
F = (−)A :MC →MA has a right adjoint G = −⊗AC :MA →MC. Thus we
need to show that C is a Frobenius coring if and only if the induction functor
G is a left adjoint of the forgetful functor, that is, if and only if there exist
natural maps η : IMA

→ FG and ψ : GF → IMC that are a unit and a counit
of the adjunction, respectively.

Suppose that C is a Frobenius coring with a reduced Frobenius system
(δ, e). For all right A-modules M define an R-linear map

ηM :M → FG(M) =M ⊗A C, m �→ m⊗ e.
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Since e is A-central, it is clear that ηM is a right A-module morphism. Take
any f :M → N in MA and compute for all m ∈M ,

(f ⊗ IC) ◦ ηM(m) = f(m)⊗ e = ηN(f(m)),

that is, there is a commutative diagram

M
f ��

ηM
��

N

ηN
��

M ⊗A C
f⊗IC �� N ⊗A C,

thus proving that the assignment M �→ ηM defines a natural transformation
of functors, η : IMA

→ FG.
Next, for any M ∈MC, define a right A-module map

ψM : GF (M) =M ⊗A C →M, m⊗ c �→
∑

m0δ(m1 ⊗ c),

and compute∑
ψM(m⊗ c1)⊗ c2 =

∑
m0δ(m1 ⊗ c1)⊗ c2

=
∑
m0 ⊗m1δ(m2 ⊗ c) = �M(ψM(m⊗ c)),

where we used the definition of δ to derive the second equality. This proves
that ψM is a morphism of right C-comodules. Take any morphism of right
C-comodules f :M → N . Then, for all m ∈M and c ∈ C,

ψM ◦ (f ⊗ IC)(m⊗ c) =
∑
f(m)0δ(f(m)1 ⊗ c) =

∑
f(m0)δ(m1 ⊗ c)

=
∑
f(m0δ(m1 ⊗ c)) = f ◦ ψM(m⊗ c),

where the fact that f is a right C-comodule map has been used repeatedly.
Thus the diagram

M ⊗A C
f⊗IC ��

ψM
��

N ⊗A C
ψN
��

M
f �� N

commutes, so that the assignmentM �→ ψM defines a natural transformation
ψ : GF → IMC .

It remains to prove that η and ψ are a unit and a counit of an adjunction.
On one hand, for any M ∈MC and any m ∈M ,

F (ψM) ◦ ηF (M)(m) = ψM(m⊗ e) =
∑

m0δ(m1 ⊗ e) =
∑

m0ε(m1) = m,
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while on the other hand, using the properties of δ, for any M ∈MA, m ∈M
and c ∈ C,

ψG(M) ◦G(ηM)(m⊗ c) = ψM⊗AC(m⊗ e⊗ c) =
∑
m⊗ e1δ(e2 ⊗ c)

=
∑
m⊗ δ(e⊗ c1)c2 = m⊗ c.

This completes the proof that G is a left adjoint of F and, consequently, the
forgetful functor F is a Frobenius functor.

Conversely, suppose now that F is a Frobenius functor with η : IMA
→ FG

and ψ : GF → IMC the corresponding unit and counit of the adjunction.
Define

e = ηA(1A) ∈ C, π = ψC : C ⊗A C → C.

We intend to show that (π, e) is a Frobenius system for C. Since ηA is a
right A-module map, for all a ∈ A, ηA(a) = ea. Using the fact that η is a
natural transformation of functors in the context of the left multiplication
morphism in MA, which for all a ∈ A is given as A → A, a′ �→ aa′, one
immediately obtains that ηA is a left A-module map as well. Thus for all
a ∈ A, ea = ηA(a) = aηA(1A) = ae, that is, e ∈ CA, as needed.

Clearly, π is a right C-comodule map. For any a ∈ A, consider a morphism
of right C-comodules la : C → C, c �→ ac. In conjunction with this morphism,
the fact that ψ is a natural transformation immediately yields that ψC is
a left A-module map. Now, for any c ∈ C, consider a morphism in MC,
lc : C → C ⊗A C, c′ �→ c⊗ c′. Since ψ is a natural transformation, there is the
commutative diagram

C ⊗A C
lc⊗IC ��

ψC
��

C ⊗A C ⊗A C
ψC⊗AC
��

C lc �� C ⊗A C,

that is, for all c, c′, c′′ ∈ C,

ψC⊗AC(c⊗ c′ ⊗ c′′) = c⊗ ψC(c′ ⊗ c′′).

On the other hand, since the coproduct ∆ : C → C ⊗A C is a morphism in
MC and ψ is natural, we obtain for all c, c′ ∈ C,∑

ψC⊗AC(c1 ⊗ c2 ⊗ c′) =
∑

ψC(c⊗ c′)1 ⊗ ψC(c⊗ c′)2.

Combining these two observations, one obtains for all c, c′ ∈ C,

∆C(ψC(c⊗ c′)) =
∑

c1 ⊗ ψC(c2 ⊗ c′),
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that is, ψC is a left C-comodule map. Therefore π = ψC is a (C, C)-bicomodule
morphism, as required.

Finally, since η and ψ are the unit and counit of an adjunction with F
the right adjoint of G, first, for all c ∈ C,

c = ψC(ηA ⊗ IC)(c) = ψC(e⊗ c),

that is, for all c ∈ C, π(e ⊗ c) = c. Second, for all c ∈ C consider a right
A-module morphism fc : A→ C, a �→ ca. Since η is a natural transformation,
there is a commutative diagram

R
fc ��

ηA

��

C
ηC
��

C
fc⊗IC�� C ⊗A C.

Evaluation of this diagram at a = 1A yields ηC(c) = (fc ⊗ IC)(e) = c⊗ e, for
all c ∈ C. Since η is a unit and ψ is a counit, we obtain

c = ψC ◦ ηC(c) = ψC(c⊗ e),

that is, for all c ∈ C, π(c⊗ e) = c. This completes the proof of the assertion
that (π, e) is a Frobenius system for C, and thus completes the proof of the
first equivalence in the theorem.

(a)⇔ (c) Note that the definition of a Frobenius coring is left-right sym-
metric because it involves maps of (C, C)-bicomodules and (A,A)-bimodules
only. Thus a similar argument as in the proof of the first equivalence can
be used to prove its left-handed version. This completes the proof of the
theorem. �

27.9. The finiteness of a Frobenius coring. If C is a Frobenius A-coring,
then C is finitely generated and projective both as a right and a left A-module.
Proof. This follows from 18.15 and 27.8. On the other hand, this

can also be proven directly, by displaying explicitly the dual bases. Suppose
C is a Frobenius A-coring with a reduced Frobenius system (δ, e). Write
∆(e) =

∑n
i=1 ei ⊗ ēi. Taking c

′ = e in the defining relations of the reduced
Frobenius system in 27.5 we obtain c =

∑n
i=1 δ(c ⊗ ei)ēi. Similarly, taking

c = e we obtain c′ =
∑n
i=1 eiδ(ēi ⊗ c′). Since δ is an (A,A)-bimodule map,

for each i ∈ {1, 2, . . . , n}, the map ξi : C → A, c �→ δ(c ⊗ ei), is left A-linear
while the map ξ̄i : C → A, c �→ δ(ēi ⊗ c), is right A-linear. Hence {ξi, ēi} is a
dual basis of AC, and {ξ̄i, ei} is a dual basis of CA. �

Recall that for every A-coring C there is an associated algebra extension
iL : A → (∗C)op, where (∗C)op is the opposite algebra of the left-dual algebra
to C in 17.8(2). It turns out that the notion of a Frobenius coring is closely
related to the problem when this extension is a Frobenius extension.
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27.10. Characterisation of Frobenius corings (I). Let C be an A-coring
and S = (∗C)op. The following are equivalent:
(a) the forgetful functor (−)A :MC →MA is a Frobenius functor;

(b) C is a finitely generated projective left A-module and the ring extension
A→ S is Frobenius;

(c) C is a finitely generated projective left A-module and C � S as (A, S)-
bimodules, where C is a right S-module via cs =

∑
c1s(c2), for all

c ∈ C, s ∈ S;

(d) C is a finitely generated projective left A-module and there exists e ∈ CA
such that the map φl : S → C, s �→

∑
e1s(e2) is bijective.

Proof. (a) ⇔ (b) Since by 18.13 the functor − ⊗A C : MA → MC is
the right adjoint of the forgetful functor (−)A, 27.10(a) is equivalent to the
statement that −⊗A C is the left adjoint of (−)A. By 27.9, (a) implies that C
is a finitely generated projective left A-module. By 19.6, the category of right
C-comodules is isomorphic to the category of right S-modules, the forgetful
functor is the restriction of scalars functor MS →MA, and this functor has
the right adjoint −⊗A C. By 40.21, the restriction of scalars functor has the
same left and right adjoint if and only if the extension A→ S is Frobenius.

(b) ⇔ (c) Since C is a finitely generated projective left A-module, the
(A, S)-bimodule map

α : C → HomA(S,A) = HomA(AHom(C, A), A), c �→ [s �→ s(c)],

is bijective. Thus C � HomA(S,A) as (A, S)-bimodules. The extension A→
S is Frobenius if and only if S � HomA(S,A), that is, if and only if C � S as
(A, S)-bimodules.

(c) ⇔ (d) This follows from the bijective correspondence θ : CA →
AHomS(S, C), θ(e)(s) = es =

∑
e1s(e2), θ

−1(f) = f(εC). Note that the
inverse of φl comes out explicitly as φ

−1
l : c �→ [c′ �→ δ(c⊗ c′)]. �

27.11. Endomorphism Ring Theorem. In the case of the canonical coring
associated to a ring extension B → A, 27.10 gives the criteria when the
extension A → BEnd(A) is Frobenius. The ring structure on BEnd(A) is
given by the opposite composition of maps. For example, if B → A is itself
a Frobenius extension with a Frobenius homomorphism E ∈ BHomB(A,B)
and a Frobenius element β =

∑
i ai ⊗ ai, then A → S is Frobenius by the

Endomorphism Ring Theorem ([139, Section 2], [23, Theorem 2.5]). In this
case the inverse of φl in 27.10(d) is given by φ

−1
l (a⊗ a′)(a′′) = E(a′′a)a′, for

all a, a′, a′′ ∈ A.

By pulling back the algebra structure of S to C one obtains the following
corollary of 27.10.
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27.12. Ring structure of a Frobenius coring. Let C be a Frobenius
A-coring with a Frobenius system (π, e). Then

(1) C is an algebra with product cc′ = π(c⊗ c′) and unit 1C = e.

(2) The extension ιC : A → C, a �→ ae = ea, is Frobenius with Frobenius
element ∆(e) and Frobenius homomorphism E = ε.

Proof. The algebra structure is induced from the algebra structure of
S = (∗C)op via the maps φl and its inverse φ−1

l described in 27.10. Note
that the alternative expressions for the product are cc′ =

∑
δ(c ⊗ c′1)c′2 =∑

c1δ(c2 ⊗ c′). When viewed through φl, the map iL : A → S becomes the
map ιC : A→ C as described above. Since the extension A→ S is Frobenius,
so is the extension ιC : A → C. One can verify explicitly that the Frobenius
element and homomorphism have the form stated. By definition, the counit
ε is an (A,A)-bimodule map. Note further that, for all c ∈ C,

c∆(e) =
∑
ce1 ⊗ e2 =

∑
c1δ(c2 ⊗ e1)⊗ e2

=
∑
c1 ⊗ c2δ(c3 ⊗ e) =

∑
c1 ⊗ c2ε(c3) =

∑
c1 ⊗ c2 = ∆(c).

Similarly one shows that ∆(c) = ∆(e)c. Therefore ∆(e) ∈ (C ⊗A C)C, and

c =
∑
ε(c1)c2 =

∑
ε(ce1)e2, c =

∑
c1ε(c2) =

∑
e1ε(e2c),

thus proving that ιC : A→ C is a Frobenius extension with Frobenius element
∆(e) and Frobenius homomorphism ε. �

Obviously, there is also a left-handed version of 27.10

27.13. Characterisation of Frobenius corings (II). Let C be an A-coring
and T = C∗. The following are equivalent:

(a) the forgetful functor F : CM→ AM is a Frobenius functor;

(b) C is a finitely generated projective right A-module and the ring extension
Aop → T is Frobenius;

(c) CA is finitely generated projective and C � T as (Aop, T )-bimodules,
where C is a right T -module via ct =

∑
t(c1)c2, for all c ∈ C, t ∈ T ;

(d) CA is finitely generated projective and there exists e ∈ CA such that the
map φr : T → C, t �→

∑
t(e1)e2 is bijective.

We only point out here that the inverse of the map φr in 27.13(d) explicitly
reads

φr : C → C∗, φr : c �→ [c′ �→ δ(c⊗ c′)].

One can use this map to build an algebra structure on C. The algebra struc-
ture obtained in this way coincides with the algebra structure constructed in
27.12.

Combining 27.10 with 27.13 and 27.8, one obtains the following
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27.14. Characterisation of Frobenius corings (III). Let C be an A-
coring, S = (∗C)op, and T = C∗. Then the following are equivalent:

(a) C is a Frobenius coring;
(b) C is a finitely generated projective left A-module and the ring extension

A→ S is Frobenius;

(c) C is a finitely generated projective right A-module and the ring extension
Aop → T is Frobenius.

27.15. Co-Frobenius corings. The notion of a Frobenius coring should
be compared with the notions of right and left co-Frobenius coalgebras in-
troduced in [152]. The notions of right or left co-Frobenius coalgebras can
be extended to the case of corings as follows. An A-coring C is said to be
a left co-Frobenius coring when there is an injective morphism C → ∗C of
left ∗C-modules. C is a right co-Frobenius coring when there is an injective
morphism C → C∗ of right C∗-modules.

By 27.10 and 27.13, a Frobenius A-coring C is isomorphic to ∗C as a left
∗C-module via the map φl, and it is isomorphic to C∗ as a right C∗-module
via the map φr. Thus, in particular, a Frobenius coring is left and right
co-Frobenius.

The above discussion allows one to understand Frobenius corings as a
different description of Frobenius extensions of rings.

27.16. Categories of Frobenius corings and Frobenius extensions.
Define a category Frob(A) of Frobenius extensions over an R-algebra A, tak-
ing as objects quintuples (M,µM/A, ιM , EM , βM), where (M,µM/A, ιM) is a
unital A-ring, that is, M is an R-algebra with multiplication µM/A : M ⊗A
M → M , ιM : A → M is an algebra map (cf. 26.5), and EM , βM are the
Frobenius homomorphism and element for this extension. Thus objects in
Frob(A) are Frobenius extensions over A. Morphisms

f : (M,µM/A, ιM , EM , βM)→ (N,µN/A, ιN , EN , βN)

are defined as R-linear maps f :M → N satisfying the following conditions:

(i) f is an A-ring map, that is, f ◦ ιM = ιN and f ◦µM/A = µN/A ◦ (f ⊗ f);

(ii) EM = EN ◦ f ;
(iii) (f ⊗ f)(βM) = βN .

Similarly, define the category FrobCor(A) of Frobenius A-corings, taking
as objects quintuples (C,∆C, εC, πC, eC), where (C,∆C, εC) is an A-coring with
a Frobenius system (πC, eC). Morphisms

f : (C,∆C, εC, πC, eC)→ (D,∆D, εD, πD, eD)

are defined as A-coring maps f : C → D such that



274 Chapter 4. Corings and extensions of rings

(1) eD = f(eC);

(2) πD ◦ (f ⊗ f) = f ◦ πC.
Theorem. The functor F : FrobCor(A)→ Frob(A) given by

(C,∆, ε, π, e) �→ (C, π, ιC, ε,∆(e)), f �→ f,

is an isomorphism of categories. Here ιC is an (A,A)-bimodule map induced
by e as in 27.12(2). The inverse of F explicitly reads

F−1 : (M,µM/A, ιM , EM , βM) �→ (M,βM , EM , µM/A, ιM(1A) = 1M).

Proof. The fact that F is well defined on objects follows immediately
from 27.12. If f : (C,∆C, εC, πC, eC) → (D,∆D, εD, πD, eD) is a morphism in
FrobCor(A), then condition (2) above implies that f is a multiplicative map.
Furthermore, since f is an (A,A)-bimodule map, for a ∈ A,

(f ◦ ιC)(a) = f(aeC) = af(eC) = aeD = ιD(a),

by condition (2). Thus f is an A-ring map. The fact that f is a coring
morphism implies that conditions (ii) and (iii) are fulfilled.

Conversely, the functor F−1 is well defined on objects by 27.6. For mor-
phisms, condition (ii) guarantees the compatibility of f with counits, while
(iii) is responsible for the compatibility with coproducts. Furthermore, con-
dition (i) implies that f satisfies condition (1), while (2) follows from the fact
that f is an algebra map. Therefore f is a morphism of Frobenius A-corings
and F−1 is a well-defined functor. Clearly F−1 is the inverse of F on mor-
phisms. To check that this is also true on objects one only needs to observe
that, for all c ∈ C, ∆(c) = ∆(e)c = c∆(e) (compare the proof of 27.12) and
that, for all a ∈ A,

ιC(a)c = (ae)c = π(ae⊗ c) = aπ(e⊗ c) = ac,

and similarly for the right A-multiplication. �

One of the most interesting features of Frobenius corings is that, given
any such coring, one can construct a full tower of Frobenius corings.

27.17. Towers of Frobenius corings. Suppose that C is a Frobenius
A-coring with a Frobenius system (π, e). Then, by 27.12, e viewed as a
map ιC : A → C is a Frobenius extension with Frobenius element ∆(e) and
Frobenius homomorphism ε. Now 27.7 implies that the Sweedler C-coring
C⊗AC is Frobenius with the Frobenius system (IC⊗ε⊗IC,∆(e)). Then C⊗AC
is a ring with unit ∆(e) and product (c⊗ c′)(c′′ ⊗ c′′′) = c⊗ δ(c′ ⊗ c′′)c′′′, and
the extension ∆ : C → C ⊗A C is Frobenius by 27.12. The Frobenius element
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explicitly reads
∑
e1 ⊗ e⊗ e2 and the Frobenius homomorphism is π. Apply

27.7 to deduce that Sweedler’s C⊗AC-coring (C⊗AC)⊗C (C⊗AC) � C⊗AC⊗AC
is Frobenius. Iterating this procedure, we obtain the following

Theorem. Let C be a Frobenius A-coring, and let Ck = C⊗Ak, k = 1, 2, . . .,
and C0 = A. Then there is a sequence of algebra maps

C0 ιC �� C1 ∆ �� C2 IC⊗ιC⊗IC �� C3 �� . . . ,

where, for all k = 1, 2, . . ., Ck−1 → Ck is a Frobenius extension and Ck is a
Frobenius Ck−1-coring.

This tower of corings bears very close resemblance to the tower of rings
introduced by Jones [136] as means of classification of subfactors of von Neu-
mann algebras.

References. Brzeziński [70, 75]; Caenepeel, DeGroot and Militaru [83];
Caenepeel, Ion and Militaru [84]; Jones [136]; Kadison [23]; Kasch [139]; Lin
[152]; Menini and Nǎstǎsescu [156]; Morita [162].
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28 Corings with a grouplike element

Most closely related to ring extensions are those corings that have a grouplike
element g. With the exception of Section 30, the remainder of this chapter is
devoted to the studies of such corings. In this section we collect their basic
properties, introduce the corresponding g-coinvariants functor and view it as
a Hom-functor, and reveal that corings with a grouplike element exhibit a
natural ring structure. We also introduce Galois corings, which are isomor-
phic to the Sweedler coring associated to a ring extension B → A induced by
the existence of a grouplike element, and prove the Galois Coring Structure
Theorem 28.19. This theorem determines when the g-coinvariants functor is
an equivalence, and by this means generalises the faithfully flat (effective)
descent theorem. It will be shown in Section 34 that the Fundamental The-
orem of Hopf algebras 15.5 is a special case of the Galois Coring Structure
Theorem 28.19 (via the structure theorem for Hopf-Galois extensions).

Throughout this section C denotes an A-coring.

28.1. Grouplike elements. An element g ∈ C is said to be semi-grouplike
provided ∆(g) = g ⊗ g, and g is called a grouplike element if ∆(g) = g ⊗ g
and ε(g) = 1A.

Note that every coring has a semi-grouplike element (indeed, take g = 0).
Note also that, for a semi-grouplike element g, u = ε(g) ∈ A is an idempotent
in the centraliser of g in A, that is, u2 = u and ug = gu.

In the trivial A-coring A, 1A is a grouplike element. Furthermore, if
B → A is an algebra extension, then g = 1A ⊗ 1A is a grouplike element in
the Sweedler A-coring A ⊗B A. So corings with a grouplike element can be
viewed as a generalisation of the Sweedler coring, and we keep the latter as
our guiding example for general constructions.

28.2. Existence of grouplike elements. C has a grouplike element if and
only if A is a right or left C-comodule.

Proof. We prove the proposition in the right C-comodule case. Let g ∈ C
be a grouplike element. Define a right A-module map

�A : A→ A⊗A C � C, a �→ 1A ⊗ ga = ga.

By the fact that g is a grouplike element, for all a ∈ A,

(�A ⊗ IC) ◦ �A(a) = g ⊗ 1A ⊗ ga = g ⊗ ga = (IA ⊗∆) ◦ �A(a),

and also (IA ⊗ ε) ◦ �A(a) = ε(ga) = ε(g)a = a. Therefore �A defines a right
C-comodule structure on A. Similarly, the left coaction of C on A is given by
A�(a) = ag.
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Conversely, let A be a right C-comodule with a coaction �A : A→ C, and
put g = �A(1A) ∈ C. Since �A is a right coaction,

∆(g) = (IA ⊗∆)(�A(1A)) = (�A ⊗ IC)(�A(1A)) = �A(1A)⊗ g = g ⊗ g,

and also ε(g) = I ⊗ ε(�A(1A) = 1A, showing that g is grouplike. �
Notation. If g ∈ C is grouplike, we write Ag or gA when we consider A with
the right or left comodule structure induced by g.

In view of 25.3, 28.2 provides an algebra extension B → A with a descent
datum (A, f), where f : A→ A⊗B A, a �→ a⊗ 1A.

28.3. Kernel of the counit as a coideal. If C has a grouplike element,
then Ke ε is a coideal in C.

Proof. Since C has a grouplike element, the map ε is surjective. Thus
Ke ε is a coideal by 17.16. �

28.4. Coinvariants. Given a grouplike element g ∈ C and M ∈ MC, one
defines g-coinvariants of M as the R-submodule

M coC
g = {m ∈M | �M(m) = m⊗ g} = Ke (�M − (−⊗ g)).

Proposition. There is an R-module isomorphism

θM : HomC(Ag,M)→M coC
g , f �→ f(1A).

Proof. For any f ∈ HomC(Ag,M) there is the commutative diagram of
right A-module maps

A
�C ��

f

��

A⊗A C
f⊗IC
��

M
�M ��M ⊗A C

1A	

��

� �� g
	

��
f(1A)

� �� �M(f(1A)) = f(1A)⊗ g ,

which shows that f(1A) ∈M coC
g .

Any f ∈ HomC(Ag,M) is uniquely determined by f(1A), and for any
m ∈M coC

g the map hm : A→M,h(a) = ma, is C-colinear. One easily checks
that the assignment m �→ hm is the inverse of θM . �

Similarly, g-coinvariants of any N ∈ CM are defined as

coC
gN = {n ∈ N | N�(n) = g ⊗ n} = Ke (N�− (g ⊗−)),

and there is an R-module isomorphism

Nθ :
CHom(gA,N)→ coC

gN, h �→ h(1A).
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Corings with a grouplike element lend themselves naturally to the exten-
sion theory. In fact, the existence of a grouplike element alone provides one
with a pair of algebras connected by an algebra map.

28.5. Coinvariants of A and C. Let g be a grouplike element in C and let
B = {b ∈ A | bg = gb}.
(1) AcoCg = coC

gA is a subalgebra of A equal to B.

(2) For any M ∈ MC, M coC
g is a right B-submodule of M , and for any

N ∈ CM, coCgN is a left B-submodule of N .

(3) For any X ∈MA and Y ∈ AM,

(X ⊗A C)coCg � X in MB,
coC
g(C ⊗A Y ) � Y in BM.

(4) In particular, CcoCg � A as an (A,B)-bimodule, and coC
gC � A as a

(B,A)-bimodule.

Proof. (1) Since A is both a right and a left C-comodule, the definition
of AcoCg or coCgA makes sense and

HomC(Ag, Ag) � AcoCg = {a ∈ A | ga = �A(a) = ag} = B,

which is an (anti-)ring isomorphism, depending on which side the morphisms
are written.

(2) Since B is the endomorphism ring EndC(Ag), there is a natural right
B-module structure on HomC(Ag,M). In view of the isomorphism θM in 28.4,
this B-module structure can be transported to M coC

g . One easily checks that
the resulting B-multiplication in M coC

g comes from the A-multiplication in
M . The second statement follows from the isomorphism Nθ (see above) by a
similar reasoning.

(3),(4) By the canonical Hom-tensor relation (see 18.10),

(X ⊗A C)coCg � HomC(Ag, X ⊗A C) � HomA(A,X) � X,

and for X = A,

CcoCg � HomC(Ag, C) � HomA(A,A) � A,

which is a left A- and right EndC(A)-morphism (when morphisms are written
on the left). Similar isomorphisms exist for the left-hand side versions. �

28.6. Coinvariants of Sweedler corings. Let A ⊗Q A be the canonical
Sweedler coring associated to a ring extension Q → A. Take g = 1A ⊗ 1A.
Then B = AcoCg is given by an equaliser,

B �� A ���� A⊗Q A,

where the maps are a �→ a⊗ 1A and a �→ 1A ⊗ a. In particular, if Q → A is
faithfully flat, then B = Q.
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28.7. The induction functor. Let g ∈ C be a grouplike element and
B = AcoCg . Given any right B-module M , the tensor product M ⊗B A is a
right C-comodule via the coaction

�M⊗BA :M ⊗B A→M ⊗B A⊗A C �M ⊗B C, m⊗ a �→ m⊗ ga.

If f : M → N is a morphism in MB then f ⊗ IA : M ⊗B A → N ⊗B A is a
morphism in MC since, for all a ∈ A and m ∈M ,

�N⊗BA(f(m)⊗ a) = f(m)⊗ ga = (f ⊗ IC)(m⊗ ga)

= (f ⊗ IC) ◦ �M⊗BA(m⊗ a).

Hence the assignments M �→ M ⊗B A and f �→ f ⊗ IA define a functor
−⊗B A :MB →MC known as an induction functor.

28.8. The g-coinvariants functor. Let g ∈ C be a grouplike element and
B = AcoCg . There is a pair of adjoint functors

−⊗B A :MB →MC, HomC(Ag,−) :MC →MB.

In view of the isomorphism θM in 28.4, the Hom-functor is isomorphic to the
g-coinvariants functor,

Gg :M
C →MB, M �→M coC

g ,

which acts on morphisms by restriction of the domain; that is, for f :M → N
in MC, Gg(f) = f |McoC

g
. For N ∈MB, the unit of adjunction is given by

ηN : N → (N ⊗B A)coCg , n �→ n⊗ 1A,

and for M ∈MC the counit reads

ψM :M coC
g ⊗B A→M, m⊗ a �→ ma.

Proof. Notice that �C : A → C is (B,A)-linear. Hence, by the Hom-
tensor relation in 18.10(2), setting M = A there, we obtain for all M ∈MC

and N ∈MB, the functorial isomorphisms

HomC(N ⊗B A,M) � HomB(N,Hom
C(Ag,M)) � HomB(N,M

coC
g ).

This proves the adjointness of the functors. The remaining assertions are
easily verified. �

28.9. Proposition. Let g ∈ C be a grouplike element and B = AcoCg . Then,
for any right B-module N , there is a left A-module isomorphism

HomC(N ⊗B A, C) � HomB(N,A).
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Proof. By 28.5, CcoCg � A as (A,B)-bimodules. Now 28.8 implies the
isomorphism of R-modules,

θ : HomC(N ⊗B A, C)→ HomB(N,A), f �→ ε(f(−⊗ 1A)),

with the inverse h �→ [n⊗ a �→ h(n)ga].
HomC(N ⊗B A, C) is viewed as a left A-module via (af)(n⊗ a′) = af(n⊗

a′) for all f ∈ HomC(N ⊗B A, C), a, a′ ∈ A and n ∈ N , while HomB(N,A)
is a left A-module via (ah)(n) = ah(n), for all h ∈ HomB(N,A), n ∈ N and
a ∈ A. Thus the isomorphism θ is clearly an isomorphism of left A-modules
with specified A-multiplications. �

Another way of understanding the g-coinvariants functor is to view it as
a coinduction functor associated to a pure morphism of corings.

28.10. The inclusion morphism and associated functors. Let g ∈ C
be a grouplike element and B = AcoCg with inclusion α : B → A. Define
a (B,B)-bimodule map γ : B → C, b �→ gb = bg, and view B as a trivial
B-coring. Then (γ : α) : (B : B) → (C : B) is a pure morphism of corings
known as a g-inclusion morphism. The associated induction functor has the
form F :MB →MC, M �→M ⊗B A, as in 28.7. The associated coinduction
functor G :MC →MB is the g-coinvariants functor N �→ N coC

g .

Proof. First note that γ is well defined since B = {b ∈ A | bg = gb}
by 28.5. The pair (γ : α) is a morphism indeed, since for all b ∈ B, ε(gb) =
ε(g)b = b = εB(b) and, with the canonical map χ : C ⊗B C → C ⊗A C,

χ ◦ (γ ⊗B γ) ◦∆B(b) = χ(γ(1B)⊗ γ(b)) = χ(g ⊗ gb) = g ⊗A gb,

while on the other hand ∆ ◦ γ(b) = ∆(gb) = g⊗A gb. Thus all the conditions
in 24.1 are satisfied as required. Since B is a flat B-module, this morphism
is necessarily pure.

The form of the induction functor F follows immediately from the def-
inition of (γ : α). Now, for any N ∈ MC, N ⊗B B = N canonically and
thus the equalising maps in the definition of G(N) in 24.7 come out as
tN , bN : N → N ⊗A C, with tN = �N and bN : n �→ n ⊗ γ(1B) = n ⊗ g.
Therefore G(N) = N coC

g = {n ∈ N | �N(n) = n⊗ g}, as claimed. �
In view of the general Hom-tensor relations in 24.11, 28.10 provides one

with an alternative proof of the adjointness in 28.8.

28.11. Representations of an algebra in a coring. Viewing an algebra
B as a trivial B-coring, objects in the category Rep(B : B | C : A) are pairs
(g, α), where g is a grouplike element in C and α is an algebra map B → AcoCg .
The morphisms (g1, α1)→ (g2, α2) are (B,B)-bimodule maps f : B → A such
that g1f(b) = f(b)g2 for all b ∈ B. Here A is a left (resp. right) B-module
via the map α1 (resp. α2).
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Proof. If (γ : α) is an object in Rep(B : B | C : A), then γ is a (B,B)-
bimodule map, and hence it is fully determined by an element g = γ(1B). The
fact that 1B is a grouplike element in B implies that g is a grouplike element in
C. Furthermore, since γ is a (B,B)-bimodule map and C is viewed as a (B,B)-
bimodule via α, we immediately obtain for all b ∈ B, α(b)g = γ(b) = gα(b),
that is, Im (α) ∈ AcoCg . Thus a morphism (γ : α) leads to a pair (g, α), as
stated. In the converse direction, given any such pair, one defines γ : B → C
via b �→ α(b)g and easily checks that this satisfies all the requirements for a
morphism of corings.

Since the maps γ1, γ2 are determined by grouplike elements g1 and g2,
respectively, the definition of a morphism in Rep(B : B | C : A) given in 24.3
immediately leads to a map f with the asserted properties. �

Another property characterising corings with a grouplike element is the
fact that their dual rings are augmentation rings. From [10, p. 143] we know
that a ring A is called a right (resp. left) augmentation ring if there exists an
A-module M and a right (resp. left) A-module morphism π : A → M . M is
called an augmentation module.

28.12. Dual algebras as augmentation rings. Let g ∈ C be a grouplike
element. Then:

(1) ∗C is a left augmentation ring with an augmentation module A. The
left action of ∗C on A is provided by ξa = ξ(ga), for a ∈ A, ξ ∈ ∗C.

(2) C∗ is a right augmentation ring with an augmentation module A. The
right action of C∗ on A is provided by aξ = ξ(ag), for a ∈ A, ξ ∈ C∗.

Proof. We prove only part (1), since the second statement is proven in
an analogous way. That the map given above defines a left action of ∗C on A
follows from the fact that A is a right C-comodule, and hence a left ∗C-module
by 19.1. The augmentation π : ∗C → A is given by ξ �→ ξ(g). To show that
π is a left ∗C-module map, take any ξ, ξ′ ∈ ∗C and obtain

π(ξ ∗l ξ′) = (ξ ∗l ξ′)(g) = ξ(gξ′(g)) = ξ(gπ(ξ′)) = ξπ(ξ′),

as required. �

28.13. The splitting of the counit. Let g ∈ C be a grouplike element and
let B = AcoCg . Then the short sequence

0 �� Ke ε i �� C ε �� A �� 0,

where i is the canonical inclusion, is split-exact as a sequence of (A,B)-
bimodules and (B,A)-bimodules.
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Proof. First note that the sequence under consideration is exact in the
category of (A,A)-bimodules since ε is an (A,A)-bimodule map. Consider
an R-linear map iR : A → C, a �→ ga. Clearly, the map iR is right A-
linear. Furthermore, it is left B-linear since, for all b ∈ B, iR(ba) = gba =
bga = biR(a), for B is the centraliser of g in A. Finally, for any a ∈ A,
ε(iR(a)) = ε(ga) = a. Therefore we conclude that iR provides the required
splitting of (B,A)-modules, and the sequence in the theorem is split-exact.
The retraction of i is then given by pR : C → Ke ε, c �→ c− gε(c).

Similarly one proves that iL : A → C, a �→ ag, and pL : C → Ke ε,
c �→ c− ε(c)g, provide the splitting of the sequence of (A,B)-bimodules. �

28.14. Direct sum decompositions of C. Let g ∈ C be a grouplike element
and B = AcoCg . Then:

(1) C � A⊕Ke ε as (B,A)-bimodules with the isomorphism

uR : C → A⊕Ke ε, c �→ (ε(c), gε(c)− c).

(2) C � A⊕Ke ε as (A,B)-bimodules with the isomorphism

uL : C → A⊕Ke ε, c �→ (ε(c), c− ε(c)g).

Proof. This follows immediately from 28.13. We only remark that the
inverse u−1

R of uR explicitly reads, u
−1
R (a, c) = ga− c, while the inverse of uL

is given by u−1
L (a, c) = c+ ag. �

In view of 28.5 we obtain the

28.15. Corollary. Let g ∈ C be a grouplike element and B = AcoCg . Then:

(1) C � coC
gC ⊕Ke ε as (B,A)-bimodules.

(2) C � CcoCg ⊕Ke ε as (A,B)-bimodules.

Since Ke ε is an (A,A)-bimodule (as a kernel of an (A,A)-bimodule map),
A⊕Ke ε has a natural ring structure with the product given by (a, c)(a′, c′) =
(aa′, ac′ + ca′) and the unit (1, 0). Using the isomorphisms in 28.14, one can
pull this ring structure back to C. As a consequence one obtains

28.16. The algebra structure of C. Let g ∈ C be a grouplike element.
Then:

(1) C is an associative R-algebra with unit g and product

c � c′ = ε(c)c′ + c ε(c′)− ε(c)g ε(c′).

(2) The counit ε : C → A is an algebra map.
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(3) The R-linear maps iL, iR : A → C given by iL : a �→ ag, iR : a �→ ga,
are algebra morphisms splitting ε. For all a ∈ A and c ∈ C,

ac = iL(a) � c, ca = c � iR(a).

Proof. (1) For any c, c′ ∈ C define a product in C via the formula

c � c′ = u−1
R (uR(c)uR(c

′)),

where uR is the isomorphism constructed in 28.14 and uR(c)uR(c
′) is the

natural product in A ⊕ Ke ε recalled in the preamble to the proposition.
Then

c � c′ = u−1
R ((ε(c), gε(c)− c)(ε(c′), gε(c′)− c′))

= u−1
R (ε(c)ε(c

′), ε(c)gε(c′)− ε(c)c′ + gε(c)ε(c′)− cε(c′))

= gε(c)ε(c′)− ε(c)gε(c′) + ε(c)c′ − gε(c)ε(c′) + cε(c′)

= ε(c)c′ + cε(c′)− ε(c)gε(c′).

Furthermore, u−1
R (1, 0) = g. Therefore C has an algebra structure, as claimed.

Note that the same algebra structure can also be defined using the second
isomorphism via c � c′ = u−1

L (uL(c)uL(c
′)).

(2) Let p : A ⊕ Ke ε → A be the canonical projection p : (a, c) �→ a.
Then for all c ∈ C we obtain p ◦ uR(c) = p(ε(c), gε(c) − c) = ε(c), and also
ε = p ◦ uL. Since p is an algebra morphism and both uR and uL are algebra
maps by construction, so is ε.

(3) Consider an algebra injection i : A → A ⊕ Ke ε, a �→ (a, 0). For any
a ∈ A, u−1

R ◦ i(a) = u−1
R (a, 0) = ga = iR(a). Similarly, iL = u−1

L ◦ i. Thus
both iR and iL are algebra morphisms, and they are split by ε as i splits p
(or directly from the split-exact sequence in 28.13). Furthermore,

iL(a) � c = ac+ iL(a)ε(c)− agε(c) = ac+ agε(c)− agε(c) = ac,

for all a ∈ A, c ∈ C. Similarly one proves that c � iR(a) = ca. �

28.17. Algebra structure of Sweedler corings. Let C = A⊗B A be the
Sweedler coring associated to a ring extension B → A. Then C is an algebra
with unit 1A ⊗ 1A and the product

(a1 ⊗ a2) � (a3 ⊗ a4) = a1a2a3 ⊗ a4 + a1 ⊗ a2a3a4 − a1a2 ⊗ a3a4.

This product appears in [170, Section 1.2] in the context of a braiding related
to the noncommutative descent theory.
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In view of 28.2, an A-coring has a grouplike element if and only if A is a
C-comodule. Corings for which A is a Galois comodule (cf. 18.25) form an
important class that is well worth distinguishing.

Definition. Let g ∈ C be a grouplike element and B = AcoCg . The pair (C, g)
is said to be a Galois coring if Ag (equivalently gA) is a Galois comodule (cf.
18.25), that is, if the canonical map

ϕC : HomC(Ag, C)⊗B Ag → C, f ⊗ a �→ f(a),

is an isomorphism of right C-comodules.

28.18. Galois corings. Let g ∈ C be a grouplike element and B = AcoCg .
The following are equivalent:

(a) (C, g) is a Galois coring;
(b) for every (C, A)-injective comodule N ∈MC, the evaluation

ϕN : Hom
C(Ag, N)⊗B Ag → N, f ⊗ a �→ f(a),

is an isomorphism of right C-comodules;
(c) the (A,A)-bimodule map defined by

canA : A⊗B A→ C, a⊗ a′ �→ aga′,

is an isomorphism of A-corings.

The map canA is called a Galois isomorphism.

Proof. This follows from 18.26 by setting M = Ag and identifying B
with EndC(Ag) and A∗ = HomA(A,A) with A. �

Note that 28.18 shows in particular that Galois corings are those corings
C with a grouplike element g that are isomorphic to the canonical Sweedler
coring associated to the algebra extension AcoCg → A (cf. [73]).

28.19. The Galois Coring Structure Theorem. Let g ∈ C be a grou-
plike element, B = AcoCg , and let Gg : M

C → MB, M �→ M coC
g , be the

g-coinvariants functor.

(1) The following are equivalent:

(a) (C, g) is a Galois coring and A is a flat left B-module;

(b) AC is flat and Ag is a generator in MC.

(2) The following also are equivalent:

(a) (C, g) is a Galois coring and BA is faithfully flat;

(b) AC is flat and Ag is a projective generator in MC;



28. Corings with a grouplike element 285

(c) AC is flat and HomC(Ag,−) : MC → MB is an equivalence with
inverse −⊗B A :MB →MC (cf. 28.8).

Proof. This follows from 18.27 by setting M = Ag. �
Note that not every canonical coring associated to an algebra extension

B → A is a Galois coring with respect to a grouplike 1A ⊗ 1A. However, as
noted in 28.6, if the extension B → A is faithfully flat, then (A⊗BA, 1A⊗B1A)
is a Galois coring. As a particular example of this one can consider a Galois
coring provided by

28.20. Sweedler’s Fundamental Lemma. Let A be a division ring and
g ∈ C a grouplike element. Suppose that C is generated by g as an (A,A)-
bimodule. Then (C, g) is a Galois coring.

Proof. Under the given condition A is simple as a left C-comodule, and
it subgenerates C and hence MC. This implies that C is a simple and right
semisimple coring (see 19.15) and Ag is a projective generator in M

C. So
(C, g) is a Galois coring by 28.19. �

More generally, we characterise simple corings with grouplike elements.

28.21. Simple corings. Let g ∈ C be a grouplike element. Then the following
are equivalent:

(a) C is a simple and left semisimple coring;
(b) (C, g) is a Galois coring and EndC(Ag) is simple and left semisimple;
(c) canA : A⊗BA→ C is an isomorphism and B is a simple left semisimple

subring of A;

(d) AC is flat, Ag is a projective generator in MC, and EndC(Ag) is simple
and left semisimple;

(e) CA is flat, gA is a projective generator in CM, and EndC(gA) is simple
and left semisimple.

Proof. If C is simple and semisimple, then every nonzero comodule is
a projective generator in MC and EndC(Ag) is simple and left (and right)
semisimple. So the assertions follow by 28.18, 28.19 and 28.6. �

28.22. Comparison functor for a coring. In view of 25.1, the first part
of Theorem 28.19 can be understood as a restatement of one of the main
results in noncommutative descent theory (cf. [96, Theorem]). We refer to
[3, Chapter 4] for a nice introduction to descent theory. Given an algebra
extension B → A, there is a comparison functor −⊗BA :MB → Desc(A/B)
that, to every right B-module M , assigns a descent datum (M ⊗B A, f) with
f :M ⊗B A→M ⊗B A⊗B A, m⊗ a �→ m⊗ 1A⊗ a. The comparison functor
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should be compared but not confused with the induction functor described
in 25.4.

An algebra morphism B → A is called an effective descent morphism if
the comparison functor is an equivalence of the categories. Extending this
terminology to corings, we propose the following:

Definition. Given a grouplike element g ∈ C and g-coinvariants B of A, we
call the functor −⊗B A :MB →MC a comparison functor for a coring with
a grouplike element (C, g).

If (C, g) is a Galois coring, then the category of right C-comodules is
isomorphic to the category of descent data Desc(A/B), and thus the first
part of 28.19 states that if B → A is faithfully flat, then it is an effective
descent morphism. The second part of 28.19 can be viewed as a clarification
of the idea of a Galois coring: Under the faithfully flat condition, Galois
corings correspond to comparison functors that are equivalences.

28.23. Exercises

(1) Let C be an A-coring with a grouplike element g. Suppose that C is a cosep-
arable coring with cointegral δ, and view it as an A-ring as in 26.6. Let MC
denote the subcategory of MA consisting of firm right C-modules, that is,
right A-modulesM with associative A-linear C-action such thatM⊗CC �M .
Note that MC is a subcategory of MC by 26.7. For any M ∈ MC define

MC
g,δ = {m ∈M | for all c ∈ C, mc = mδ(g ⊗ c)}.

Prove ([78]):

(i) B = AC
g,δ = {b ∈ A | for all c ∈ C, δ(gb⊗ c) = bδ(g⊗ c)} is a subalgebra

of A.
(ii) The assignment (−)Cg,δ : MC → MB, M �→ MC

g,δ, is a covariant functor
that has a left adjoint −⊗B A : MB → MC .

(iii) Q = CCg,δ is a firm left ideal in C and hence a (C, B)-bimodule.
(iv) For every M ∈ MC , the additive map

ωM :M ⊗C Q→MC
g,δ, m⊗ q �→ mq,

is bijective.

(2) In the setup of Exercise (1), define two maps

σ : Q⊗B A→ C, q ⊗ a �→ qa, and τ : A⊗C Q→ B, a⊗ q �→ δ(ga⊗ q).

Prove ([78]):

(i) σ is a (C, C)-bilinear map.
(ii) τ is a (B,B)-bimodule isomorphism.
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(iii) The maps σ and τ have the following associativity property: For all
a, a′ ∈ A and q, q′ ∈ Q,

σ(q ⊗ a)q′ = qτ(a⊗ q′), aσ(q ⊗ a′) = τ(a⊗ q)a′.

In brief, this exercise shows that (B, C, A,Q, τ, σ) is a Morita context (with a
nonunital ring C), in which τ is an isomorphism.

References. Borceux [3]; Brzeziński [71, 73, 74]; Brzeziński, Kadison and
Wisbauer [78]; Cartan and Eilenberg [10]; Cipolla [96]; El Kaoutit, Gómez-
Torrecillas and Lobillo [112]; Kleiner [140]; Nuss [170]; Sweedler [193].
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29 Amitsur complex and connections

In this section we reveal a close relationship between corings with a grouplike
element and noncommutative differential geometry. As a first step we show
that to any coring with a grouplike element one can associate a differential
graded algebra. This algebra can be viewed as a generalisation of the Amit-
sur complex associated to ring extensions, and hence it is termed an Amitsur
complex for a coring. We study when this complex is acyclic. The Amitsur
complex for a coring restricts to a graded differential algebra, termed cor-
ing valued differential forms, which can be interpreted as a generalisation of
relative differential forms of noncommutative geometry. Motivated by non-
commutative geometry, we study coring-valued connections. In particular, we
show that the category of comodules of a coring with a grouplike element is
isomorphic to the category of flat connections. This result provides us with a
noncommutative geometric interpretation of comodules, in addition to giving
a representation-theoretic point of view on noncommutative geometry.

29.1. Differential graded algebras. A differential graded algebra is an
N ∪ {0}-graded R-algebra Ω =

⊕∞
n=0Ω

n together with an R-linear degree-1
operation d : Ω• → Ω•+1 such that d(R1A) = 0 and

(1) d ◦ d = 0;
(2) d satisfies the graded Leibniz rule, that is, for all elements ω′ and all

degree-n elements ω,

d(ωω′) = d(ω)ω′ + (−1)nωd(ω′).

Condition (1) means that (Ω, d) is a cochain complex with a coboundary
operator d, while (2) states that d is a graded derivation in Ω.

29.2. Differential algebra for a coring with a semi-grouplike element.
Let g ∈ C be a semi-grouplike element. Consider the tensor algebra

Ω(C) =
∞⊕
n=0

Ωn(C),

where Ω0(C) = A and Ωn(C) = C⊗AC⊗A · · ·⊗AC (n-times). Define a degree-1
linear map d : Ω(C)→ Ω(C) via d(a) = ga− ag, for all a ∈ A, and

d(c1 ⊗ · · · ⊗ cn) = g ⊗ c1 ⊗ · · · ⊗ cn + (−1)n+1c1 ⊗ · · · ⊗ cn ⊗ g

+
n∑
i=1

(−1)ic1 ⊗ · · · ⊗ ci−1 ⊗∆(ci)⊗ ci+1 ⊗ · · · ⊗ cn.

Then Ω(C) is a differential graded algebra.
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Proof. Let dn = d |Ωn(C). Since d0 is given as a commutator, it satisfies
the Leibniz rule. To show that d1 ◦ d0 = 0, take any a ∈ A and compute

d1(d0(a)) = d1(ga−ag) = g⊗ga−∆(ga)+ga⊗g−g⊗ag+∆(ag)−ag⊗g = 0,

since g is a semi-grouplike element and ∆ is an (A,A)-bimodule map. Next
we need to show that dn+1 ◦ dn = 0 for all n ≥ 1. This can be done by a
straightforward but lengthy calculation. The main points to notice here can
be summarised as follows. The expression for dn+1 ◦ dn involves sums of the
following pairs of terms (i ≤ j):

(−1)i+j . . .⊗∆(ci)⊗ . . .⊗∆(cj)⊗ . . . , and

(−1)i+j+1 . . .⊗∆(ci)⊗ . . .⊗∆(cj)⊗ . . . .

The first term comes from the i+ 1-st term in the expansion of dn+1 applied
to the j + 1-st term in the expansion of dn. The second is the j + 2-nd term
in the expansion of dn+1 applied to the i + 1-st term in the expansion of dn.
Obviously such terms cancel each other. The sum of the i+1-st and i+2-nd
terms in the expansion of dn+1 applied to the i + 1-st term in the expansion
of dn reads

(−1)2i . . .⊗ (∆⊗ IC)∆(ci)⊗ . . .+ (−1)2i+1 . . .⊗ (IC ⊗∆)∆(ci)⊗ . . .

and vanishes because of the coassociativity of ∆.
Finally, d satisfies the graded Leibniz rule since

dm+n(c1 ⊗ · · · ⊗ cm+n)

= g ⊗ c1 ⊗· · ·⊗ cm+n +
m+n∑
i=1

(−1)ic1 ⊗· · ·⊗ ci−1 ⊗∆(ci)⊗ ci+1 ⊗· · ·⊗ cm+n

+(−1)m+n+1c1 ⊗ · · · ⊗ cm+n ⊗ g

= g ⊗ c1 ⊗· · ·⊗ cm+n +
m∑
i=1

(−1)ic1 ⊗· · ·⊗ ci−1 ⊗∆(ci)⊗ ci+1 ⊗· · ·⊗ cm+n

+(−1)m+1c1 ⊗ · · · ⊗ cm ⊗ g ⊗ cm+1 ⊗ . . .⊗ cm+n

+(−1)mc1 ⊗ · · · ⊗ cm ⊗ g ⊗ cm+1 ⊗ . . .⊗ cm+n

+
m+n∑
i=m+1

(−1)ic1 ⊗ · · · ⊗ ci−1 ⊗∆(ci)⊗ ci+1 ⊗ · · · ⊗ cm+n

+(−1)m+n+1c1 ⊗ · · · ⊗ cm+n ⊗ g

= dm(c1 ⊗ . . .⊗ cm)⊗ cm+1 ⊗ . . .⊗ cm+n

+(−1)mc1 ⊗ . . .⊗ cm ⊗ dn(cm+1 ⊗ . . .⊗ cm+n),

as required. Thus we conclude that Ω(C) is a differential graded algebra, as
stated. �
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Recall that, given an R-algebra B, an R-algebra A is called a B-ring or
an algebra over B (with unit) if there is an algebra map B → A. Thus the
notion of a B-ring extends the notion of a B-algebra to the case in which
B is neither commutative nor central in A. Extending this notion further to
differential graded algebras, one says that Ω is a B-relative differential graded
algebra or a differential graded algebra over B if there is an R-algebra map
B → A = Ω0 such that d is a (B,B)-bimodule map and d(B) = 0.

29.3. Ω(C) as a B-relative differential graded algebra. Let C be an
A-coring with a semi-grouplike element g, and B = {b ∈ A | bg = gb}. The
differential graded algebra Ω(C) constructed in 29.2 is a B-relative differential
graded algebra.

Proof. This immediately follows from the facts that B is a centraliser
of g in A (hence d(B) = 0) and that ∆ is a (B,B)-bimodule map. �

29.4. The Amitsur complex. Take an algebra extension B → A, its
Sweedler coring C = A⊗B A, and the grouplike element g = 1A⊗B 1A. Then
Ωn(C) = A⊗Bn+1 and dn =

∑n+1
i=0 (−1)ieni : A⊗Bn+1 → A⊗Bn+2, where

eni : a1 ⊗ . . .⊗ an+1 �→ a1 ⊗ . . .⊗ ai ⊗ 1A ⊗ ai+1 ⊗ . . .⊗ an+1,

i = 0, 1, . . . , n + 1. This means that Ω(A ⊗B A) is the Amitsur complex
associated to an algebra extension B → A (cf. [55], [57]).

Motivated by 29.4, we call the cochain complex Ω(C) defined in 29.2 the
Amitsur complex associated to a coring C and a semi-grouplike element g.

The faithfully flat descent theorem can be restated as a property of the
Amitsur complex. If an algebra extension B → A is faithfully flat, then the
corresponding Amitsur complex Ω(A/B) is acyclic (i.e., all the cohomology
groups are trivial). Guided by the relationship between Galois corings and
noncommutative descent theory, we can answer the following question.

29.5. When is the Amitsur complex acyclic? The Amitsur complex of
a Galois A-coring (C, g) is acyclic provided A is a faithfully flat left module
over the subring B of its g-coinvariants.

Proof. Since BA is faithfully flat and the Amitsur complex (Ω(C), d) is
a complex in the category of right B-modules, it suffices to show that the
complex (Ω(C)⊗B A, d⊗ IA) is acyclic. Let canA : A⊗B A→ C be the Galois
isomorphism of corings and write can−1

A (c) =
∑
c1̃ ⊗ c2̃, for all c ∈ C. First

note that, for all c ∈ C,
∑
c1̃gc2̃ = c, and then compute

(IC ⊗A canA)(
∑
c1̃g ⊗A 1A ⊗B c2̃ −

∑
c1 ⊗A c21̃ ⊗B c22̃)

=
∑
c1̃g ⊗A gc2̃ −

∑
c1 ⊗A c2 = ∆(

∑
c1̃gc2̃ − c) = 0.
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Since canA is bijective, we conclude that for all c ∈ C,∑
c1̃g ⊗ c2̃ =

∑
c1can

−1
A (c2). (∗)

Now, for any n = 1, 2, . . ., consider an R-linear map

hn : Ωn(C)⊗B A −→ Ωn−1(C)⊗B A,
c1 ⊗A . . .⊗A cn ⊗B a �−→ (−1)nc1 ⊗A . . .⊗A cn−1can−1

A (c
na).

We claim that the collection h of all such hn is a contracting homotopy for
d⊗ IA. On the one hand, (⊗ stands for ⊗A)

hn+1(dn(c1 ⊗ . . .⊗ cn)⊗B a) = (−1)n+1g ⊗ c1 ⊗ . . .⊗ cn−1can−1
A (c

na)

+
n−1∑
i=1

(−1)n+i+1c1 ⊗ . . .⊗∆(ci)⊗ . . .⊗ cn−1can−1
A (c

na)

−
∑
c1 ⊗ · · · ⊗ cn1can

−1
A (c

n
2a) + c1 ⊗ · · · ⊗ cncan−1

A (ga)

= (−1)n+1g ⊗ c1 ⊗ . . .⊗ cn−1can−1
A (c

na)

+
n−1∑
i=1

(−1)n+i+1c1 ⊗ . . .⊗∆(ci)⊗ . . .⊗ cn−1can−1
A (c

na)

−
∑
c1 ⊗ · · · ⊗ cn1̃g ⊗B cn2̃a+ c1 ⊗ · · · ⊗ cn ⊗B a,

where we have used equation (∗) and the fact that can−1
A (g) = 1A ⊗ 1A. On

the other hand,

dn−1(hn(c1 ⊗ . . .⊗ cn)⊗B a) = (−1)ng ⊗ c1 ⊗ . . .⊗ cn−1can−1
A (c

na)

+
n−1∑
i=1

(−1)n+ic1 ⊗ . . .⊗∆(ci)⊗ . . .⊗ cn−1can−1
A (c

na)

+
∑
c1 ⊗ · · · ⊗ cn1̃g ⊗B cn2̃a.

Thus hn+1 ◦ dn+ dn−1 ◦ hn = IΩn(C)⊗BA. This means that d⊗ IA is homotopic
to the identity, so the complex (Ω(C) ⊗B A, d ⊗ IA) is acyclic, and therefore
the Amitsur complex is acyclic by virtue of the fact that the functor −⊗B A
reflects exact sequences (for A is a faithfully flat left B-module). �

In fact, since there is an algebra map B → A, and hence a map B → Ω(C),
if B → A is faithfully flat and (C, g) is a Galois coring, then the associated
Amitsur complex Ω(C) is a resolution of B.

The category of comodules of a coring with a grouplike element can be
described naturally in terms of connections over an algebra.

29.6. Connections. Let B → A be an algebra extension, and let Ω be a
B-relative differential graded algebra with A = Ω0. A connection in a right
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A-module M is a right B-linear map ∇ :M ⊗A Ω• →M ⊗A Ω•+1 such that,
for all ω ∈M ⊗A Ωk and ω′ ∈ Ω,

∇(ωω′) = ∇(ω)ω′ + (−1)kωd(ω′). (∗)

A curvature of a connection ∇ is a right B-linear map

F∇ :M →M ⊗A Ω2,

defined as a restriction of ∇◦∇ to M , that is, F∇ = ∇◦∇ |M . A connection
is said to be flat if its curvature is identically equal to 0.

It is important to note that a connection is fully determined by its restric-
tion to the module M . Indeed, any element of M ⊗A Ω is a sum of simple
tensors m⊗ ω with m ∈ M and ω ∈ Ω. Now, using the Leibniz rule (∗), the
action of ∇ on m⊗ ω reads,

∇(m⊗ ω) = ∇(m)ω +m⊗ d(ω).

Here we concentrate on right connections (i.e., connections in right mod-
ules) and right comodules. Obviously parallel to this one can develop the
left-handed version of the theory. To describe a relationship between connec-
tions and comodules of a coring, we first need to introduce an appropriate
differential graded algebra.

29.7. Coring-valued differential forms. Let C be an A-coring with a
grouplike element g ∈ C, and let B be the subalgebra of g-coinvariants of
A. Then the associated Amitsur complex (Ω(C), d) restricts to the B-relative
differential graded algebra (Ω(C/B), d) with Ω0(C/B) = B and

Ωn(C/B) = Ke ε⊗A Ke ε⊗A . . .⊗A Ke ε

(Ke ε taken n-times). We term Ω(C/B) the algebra of C-valued differential
forms on A.

Proof. The key observation here is that, first, for all a ∈ A, ε(d(a)) =
ε(ga)−ε(ag) = a−a = 0, and, second, for any c1, . . . , cn ∈ Ke ε, the Amitsur
coboundary operator dn can be written equivalently as

dn(c1 ⊗. . .⊗ cn)

=
n∑
i=1

(−1)ic1 ⊗. . .⊗ ci−1 ⊗ (ci1 − gε(ci1))⊗(ci2 − ε(ci2)g)⊗ ci+1 ⊗. . .⊗ cn.

This expression shows immediately that the image of d restricted to (Ke ε)⊗An

is contained in (Ke ε)⊗An+1, as required. Note how the canonical projections
featuring in the description of C as a direct sum of A with Ke ε discussed in
28.14 are used here. �
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29.8. Corings associated to differential graded algebras. The con-
struction in 29.7 has an interesting converse. Let Ω be a differential graded
algebra with Ω0 = A, and Ωn = Ω1⊗A Ω1⊗A . . .⊗A Ω1 (n-times). Consider a
left A-module C = A ⊕ Ω1. Let g = (1, 0) and identify (0, ω) with ω so that
C consists of elements of the form ag + ω, where a ∈ A, ω ∈ Ω1. One easily
checks that C can be made into an (A,A)-bimodule with right multiplication
(ag + ω)a′ = aa′g + ad(a′) + ωa′ for all a, a′ ∈ A, ω ∈ Ω1. Then C is an
A-coring with coproduct and counit

∆(ag) = ag ⊗ g, ∆(ω) = g ⊗ ω + ω ⊗ g − d(ω), ε(ag + ω) = a,

for all a ∈ A and ω ∈ Ω1. The coassociativity of ∆ follows from the equality∑
d(ω1̃)⊗ ω2̃ + ω1̃ ⊗ d(ω2̃) = 0, where d(ω) =

∑
ω1̃ ⊗ ω2̃ is a notation. This

is a consequence of the Leibniz rule and the nilpotency of d. Clearly, g is a
grouplike element and Ω = Ω(C/B), where B = ker(d : A → Ω1). Note also
that d(a) = ga−ag. In particular, some differential calculi of noncommutative
geometry based on Dirac operators or Fredholm modules lead to corings with
grouplike elements.

29.9. Relative differential forms. Given an algebra extension B → A,
there is an associated universal differential graded algebra over B generated
by the B-ring A known as an algebra of B-relative differential forms ΩBA.
Let A/B denote the cokernel of the algebra homomorphism B → A viewed
as a map of (B,B)-bimodules, and let π : A→ A/B be the canonical map of
(B,B)-bimodules. Thus A/B is a (B,B)-bimodule, and for any n ∈ N ∪ {0}
one can consider an (A,B)-bimodule,

ΩnBA = A⊗B (A/B)⊗Bn = A⊗B A/B ⊗B A/B ⊗B · · · ⊗B A/B,

and combine them into a direct sum ΩBA =
⊕∞

n=0Ω
n
BA. ΩBA is a cochain

complex with a coboundary operator

d : Ω•
BA→ Ω•+1

B A, a0 ⊗ a1 ⊗ . . .⊗ an �→ 1A ⊗ π(a0)⊗ a1 ⊗ . . .⊗ an.

It is clear that d ◦ d = 0 since B → A as an algebra homomorphism is a
unit-preserving map so that π(1A) = 0. Less trivial is the observation that
(ΩBA, d) is a B-relative differential graded algebra. The product in ΩBA is
given by the formula

(a0, . . . , an)(an+1, . . . , am) =
n∑
i=0

(−1)n−i(a0, . . . , ai−1, ai · ai+1, ai+2, . . . , am),

where we write (a0, . . . , an) for a0 ⊗B . . . ⊗B an, and so on, to relieve the
notation. Also, the notation ai · ai+1 is a formal expression that is to be
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understood as follows. Take any a′i ∈ π−1(ai) and a′i+1 ∈ π−1(ai+1), i =
1, . . . n− 1. Then

ai · ai+1 =




aia
′
i+1 for i = 0

π(a′ia
′
i+1) for 0 < i < n

π(a′iai+1) for i = n.

Although ai ·ai+1 depends on the choice of the a
′
i, it can be easily shown that

the product of cochains does not. It can also be shown that the above ex-
pression defines an associative product and that d satisfies the graded Leibniz
rule. The details can be found in [103]. The algebra of B-relative differential
forms has the following universality property. Given any graded differential
algebra Ω =

⊕
Ωn and an algebra homomorphism u : A → Ω0 such that

d(u(b)) = 0 for all b ∈ B, there exists a unique differential graded algebra ho-
momorphism u∗ : ΩBA→ Ω extending u. This means, in particular, that the
identity map A→ A extends to a map of B-relative differential graded rings
ΩBA → Ω(C/B). This can be understood purely in terms of coring-valued
differential forms.

29.10. Sweedler coring-valued differential forms. Let B → A be an
algebra extension. Take the Sweedler coring C = A ⊗B A and a grouplike
element g = 1A⊗ 1A. Then the differential graded algebra over B of C-valued
differential forms is isomorphic to the algebra of B-relative differential forms
ΩBA.

Proof. We first describe the structure of C = A⊗B A-valued differential
forms. Since the counit of the canonical coring coincides with the product
map µA/B : A⊗B A→ A, a⊗ a′ �→ aa′, we have Ω1(C/B) = Ke ε = KeµA/B.
Clearly, the Amitsur 0-differential d : a �→ 1A⊗a−a⊗1A has values restricted
to KeµA/B. Note that Ω

n(C/B) = (KeµA/B)⊗An. Thus, if we can show that
KeµA/B � A⊗B A/B as (A,A)-bimodules, then we will obtain the required
form of Ωn(C/B). Indeed, the iteration

Ωn(C/B) = Ωn−1(C/B)⊗A KeµA/B
� Ωn−1(C/B)⊗A A⊗B A/B � Ωn−1(C/B)⊗B A/B

repeated n-times then yields the desired result.
Note that KeµA/B � A⊗B A/B as (A,B)-bimodules via the map

θ : KeµA/B → A⊗B A/B,
∑
i ai ⊗ a′i �→

∑
i ai ⊗ π(a′i),

with the inverse θ−1 : a⊗π(a′) �→ a⊗a′−a′⊗1A. Note also that the map θ−1

does not depend on the choice of a′ in the inverse image of π(a′). Indeed, if
π(a′) = 0, then a′ = b1A with b ∈ B and hence a⊗a′−aa′⊗1A = a⊗b1A−ab⊗
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1A = 0, as needed. The right A-module structure of A⊗BA/B is derived from
the product in ΩBA, that is, (a0⊗π(a1))a = −a0a⊗π(a1)+a0⊗π(a1a), and
is well defined (does not depend on the choice of a1) by a similar argument
as above. Clearly θ and θ−1 are maps of right A-modules. The isomorphism
θ extends to cochains of all degrees, and one can easily check that it provides
an isomorphism of B-relative graded differential algebras. This isomorphism
involves projections π in all bar the first tensorand and thus maps all the
Amitsur operators eni with i > 0 in 29.4 to 0. Thus the resulting differential
d has the form d : a0⊗a1⊗ . . .⊗an �→ 1A⊗π(a0)⊗a1⊗ . . .⊗an, as required.

�

29.11. Existence of connections. Let C be an A-coring with a grouplike
element g ∈ C, let B = AcoCg be the subring of g-coinvariants of A, and let
Ω(C/B) be the algebra of C-valued differential forms on A. A right A-module
M admits an Ω(C/B)-valued connection if and only if IM ⊗A ε is a retraction
in MA.

Proof. Given a connection ∇ :M →M ⊗A Ω1(C/B), define an R-linear
map

j∇ :M →M ⊗A C, m �→ ∇(m) +m⊗ g.

Since Im(∇) ⊆ M ⊗A Ke ε and ε(g) = 1A, the map j∇ is an R-linear section
of IM ⊗ ε. Furthermore, for all m ∈M and a ∈ A,

j∇(ma) = ∇(ma) +ma⊗ g = ∇(m)a+m⊗ d(a) +m⊗ ag

= ∇(m)a+m⊗ ga−m⊗ ag +m⊗ ag = j∇(m)a,

where we used that ∇ is a connection to obtain the second equality. Thus j∇
is a right A-linear section of IM ⊗ ε.

Conversely, suppose j :M →M ⊗A C is a right A-linear section of IM ⊗ε,
and define an R-linear map

∇j :M →M ⊗A Ω1(C/B) =M ⊗A Ke ε, m �→ j(m)−m⊗ g.

Note that ∇j is well defined since the fact that j is a section implies that, for
all m ∈M ,

∑
im

iε(ci) = m, where
∑
im

i ⊗ ci = j(m). Therefore

∇j(m) =
∑
i(m

i ⊗ ci −miε(ci)⊗ g) =
∑
im

i ⊗ (ci − ε(ci)g),

and each ci − ε(ci) ∈ Ke ε. Finally, ∇j is a connection since, for all m ∈ M
and a ∈ A,

∇j(ma) = j(ma)−ma⊗ g = j(m)a−m⊗ ag
= j(m)a−m⊗ ga+m⊗ ga−m⊗ ag = ∇j(m)a+m⊗ d(a),

as required. �
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29.12. Corollary. In the situation of 29.11, if a right A-moduleM admits an
Ω(C/B)-valued connection, then M is a direct summand of a right A-module
M ⊗A C.

Proof. By 29.11, the map M
j∇ ��M ⊗A C is split by M ⊗A C

IM⊗ε ��M
in MA. �

29.13. Connections and cosplit corings. If C is a cosplit A-coring with
a grouplike element g and B = AcoCg , then any right A-module admits an
Ω(C/B)-valued connection.

Proof. If C is cosplit, then the counit ε has an (A,A)-bimodule section.
Hence, for any right A-module M , the map IM ⊗A ε has a right A-module
section, and thus M admits a connection by 29.11. Explicitly, given e ∈ CA
such that ε(e) = 1A, the connection ∇ is given by ∇ : m �→ m⊗ (e− g). �

29.14. Comodules and flat connections. Let C be an A-coring with a
grouplike element g, B = AcoCg , and let Ω(C/B) be the algebra of C-valued
differential forms on A. Then a right A-module M is a right C-comodule if
and only if it admits a flat connection ∇ :M →M ⊗A Ω(C/B).

Proof. Suppose M is a right C-comodule with coaction �M and define

∇ :M →M ⊗A Ω1(C/B), m �→ �M(m)−m⊗ g.

Since �M is a right A-module splitting of IM ⊗ ε, the map ∇ is a connection
by 29.11. We can now compute the curvature F∇ of ∇. For any m ∈M ,

F∇(m) = ∇(
∑
m0 ⊗m1 −m⊗ g)

=
∑

∇(m0)⊗m1 +
∑
m0 ⊗ dm1 −∇(m)⊗ g +m⊗ dg = 0,

by coassociativity of �M and the definition of d.
Conversely, suppose M is a right A-module with a flat connection ∇ :

M → M ⊗A Ke ε. For any m ∈ M write ∇(m) =
∑
im

i ⊗ ci. Then the
flatness of ∇ means

0 = ∇(
∑
im

i ⊗ ci) =
∑
i∇(mi)⊗ ci +

∑
im

i ⊗ d(ci), i.e.,∑
im

i ⊗ ci1 ⊗ ci2 =
∑
i,jm

ij ⊗ c̃ij ⊗ ci +
∑
im

i ⊗ g ⊗ ci +
∑
im

i ⊗ ci ⊗ g,

where ∇(mi) =
∑
jm

ij ⊗ c̃ij. Now define an R-linear map

�M :M →M ⊗A C, m �→ ∇(m) +m⊗ g.

Note that �M coincides with the map j∇ constructed in the proof of 29.11,
and thus it is a right A-module section of IM⊗ε, that is, (IM⊗ε)�M(m) = m.
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So it only remains to show that �M is coassociative. Since explicitly �M(m) =∑
im

i ⊗ ci +m⊗ g, we can compute

(�M ⊗ IC)�M(m) =
∑
i �
M(mi)⊗ ci + �M(m)⊗ g

=
∑
ijm

ij ⊗ c̃ij ⊗ ci +
∑
im

i ⊗ g ⊗ ci +
∑
im

i ⊗ ci ⊗ g +m⊗ g ⊗ g

=
∑
im

i ⊗ ci1 ⊗ ci2 +m⊗ g ⊗ g

= (IM ⊗∆)�M(m),

where we used the flatness of ∇ to derive the penultimate equality. This
proves that (M,�M) is a right C-comodule. �

In the proof of 29.14 we constructed two assignments. Given a right A-
module M , to every right C-coaction �M one assigns a flat connection by
∇�M : m �→ �M(m)−m⊗ g. Conversely, to any flat connection ∇ one assigns
a right C-coaction �M∇ : m �→ ∇(m) + m ⊗ g. Clearly these assignments
are inverses of each other and hence establish an isomorphism of sets of flat
connections and right C-comodule structures. In fact, 29.14 describes an
isomorphism of categories.

29.15. The category of connections. Consider an algebra extension B →
A and a B-relative differential graded algebra Ω with Ω0 = A. The category
of (right) connections with values in Ω, denoted by Conn(A/B,Ω), consists
of pairs (M,∇), whereM is a right A-module and ∇ :M⊗AΩ• →M⊗AΩ•+1

is a connection. A morphism (M,∇)→ (N,∇′) in Conn(A/B,Ω) is a right
A-module map f :M → N inducing a commutative diagram,

M
f ��

∇
��

N

∇′
��

M ⊗A Ω1
f⊗IΩ �� N ⊗A Ω1.

Note that the Leibniz rule also implies that the diagram

M ⊗A Ω• f⊗IΩ ��

∇
��

N ⊗A Ω•

∇′
��

M ⊗A Ω•+1
f⊗IΩ �� N ⊗A Ω•+1

is commutative. In particular, we can consider the diagram

M
∇ ��

f

��

M ⊗A Ω1 ∇ ��

f⊗IΩ
��

M ⊗A Ω2

f⊗IΩ
��

N
∇′

�� N ⊗A Ω1 ∇′
�� N ⊗A Ω2,
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in which both left and right squares commute. This implies that the outer
rectangle is commutative, and hence F ′ ◦ f = (f ⊗A IΩ2) ◦ F , where F is the
curvature of ∇ and F ′ is the curvature of ∇′. This shows that Conn(A/B,Ω)
contains a full subcategory Conn0(A/B,Ω) of flat connections. Objects of
Conn0(A/B,Ω) are pairs (M,∇), where M is a right A-module and ∇ is a
flat connection.

29.16. Isomorphism of categories of flat connections and comodules.
Let C be an A-coring with a grouplike element g, B = AcoCg , and let Ω(C/B)
be the algebra of C-valued differential forms on A. Then MC is isomorphic to
Conn0(A/B,Ω(C/B)).

Proof. On objects, the isomorphism is provided by the assignement
constructed in 29.14 while, on morphisms, f : M → N , f ↔ f . Indeed, if f
is a morphism of right C-comodules, then, for all m ∈M ,

∇�N ◦ f(m) = �N ◦ f(m)− f(m)⊗ g

= (f ⊗ IC)(�M(m)−m⊗ g) = (f ⊗ IC) ◦ ∇�M (m).

If f is a morphism (M,∇)→ (N,∇′) in Conn0(A/B,Ω(C/S)), then

�N∇′ ◦ f(m) = ∇′(f(m)) + f(m)⊗ g = (f ⊗ IC) ◦ ∇(m) + f(m)⊗ g

= (f ⊗ IC) ◦ (∇(m) +m⊗ g) = (f ⊗ IC) ◦ �M∇ .

This completes the proof of the theorem. �
A similar isomorphism as in 29.16 can be established between the category

of flat connections in left A-modules and the category of left C-comodules.
References. Amitsur [55]; Artin [57]; Brzeziński [74]; Connes [101];

Cuntz and Quillen [103]; Nuss [170]; Rojter [182]; Sweedler [192].



30. Cartier and Hochschild cohomology 299

30 Cartier and Hochschild cohomology

In this section we outline two cohomology theories of corings. Our main aim
is to give a cohomological interpretation of coseparable and cosplit corings.

As before, A is an R-algebra and C is an A-coring.
30.1. The cobar complex. Let Cob(C) = (Cob(C)•, δ) be a complex given
as Cob(C)n = C⊗An+2,

δn =
n+1∑
k=0

(−1)kI⊗AkC ⊗∆⊗ I⊗An−k+1
C : Cob(C)n → Cob(C)n+1,

n = 0, 1, 2 . . . Then Cob(C) is a resolution of C in the category of (A,A)-
bimodules and is called a cobar complex or a cobar resolution of C.
Proof. First we need to show that Cob(C) is a cochain complex, that is,

for all n ∈ N ∪ {0}, δn+1 ◦ δn = 0. This follows directly from 29.2, by taking
a semi-grouplike element g = 0 there.

Let M be an (A,A)-bimodule. Recall that a cochain complex of (A,A)-
bimodules X = (X•, δ) is called a resolution of M in the category of (A,A)-
bimodules if there exists an (A,A)-bimodule map i : M → X0 such that the
sequence

0 ��M i �� X0 δ0 �� X1 δ1 �� X2 δ2 �� . . .

is exact. Next note that there is an injective map ∆ : C → C⊗A C = Cob(C)0.
We will construct a contracting homotopy for Cob(C), that is, a sequence of
(A,A)-bimodule maps (hn)n∈N∪{0}, hn : C⊗An+2 → C⊗An+1, with the property
hn+1 ◦ δn + δn−1 ◦ hn = I⊗n+2

C . Let hn = ε⊗ I⊗n+1
C for all n ∈ N ∪ {0}. Then

hn+1δ
n =

n+1∑
k=0

(−1)k(ε⊗ I⊗n+1
C )(I⊗kC ⊗∆⊗ I⊗n−k+1

C )

= I⊗n+2
C −

n∑
k=0

(−1)k(ε⊗ I⊗kC ⊗∆⊗ I⊗n−k+1
C ) = I⊗n+2

C − δn−1hn,

as required. The first equality follows from the counit property of ε. Further-
more, note that

(h1δ
0+∆h0) = (ε⊗ IC ⊗ IC)(∆⊗ IC)− (ε⊗ IC ⊗ IC)(IC ⊗∆)+ ε⊗∆ = IC ⊗ IC

by the counit property of ε again. By this equality x ∈ Ke δ0 implies x ∈
Im ∆. Combined with the existence of a contracting homotopy, we conclude
that the sequence

0 �� C ∆ �� C ⊗A C δ0 �� C⊗A3 δ1 �� C⊗A4 δ2 �� . . .

is exact. Hence Cob(C) is a resolution of C. �
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30.2. The cobar resolution of a Sweedler coring. Consider an algebra
extension B → A, and let C = A⊗B A be the Sweedler A-coring. Then

Cob(C) = A⊗Bn+3, δn =
n+1∑
i=0

(−1)ien+2
i+1 : A

⊗Bn+3 → A⊗Bn+4,

where eni : a1 ⊗ . . . ⊗ an+1 �→ a1 ⊗ . . . ⊗ ai ⊗ 1A ⊗ ai+1 ⊗ . . . ⊗ an+1, for
i = 0, 1, . . . , n+ 1.

Note the similarity of this complex to the Amitsur complex Ω(A ⊗B A)
in 29.4. In fact, Cob(A ⊗B A) = A ⊗B Ω(A ⊗B A) ⊗B A. Thus it comes
as no surprise that, although the Amitsur complex is not acyclic, the cobar
complex is (cf. 29.5).

30.3. The Cartier complex. The cobar resolution Cob(C) of C can be
viewed as a resolution in the category of (C, C)-bicomodules. The left coac-
tion of C on Cob(C)n = C⊗An+2 is given as ∆ ⊗ I⊗n+1

C , while the right C-
coaction is I⊗n+1

C ⊗∆. Note that every Cob(C)n is an (A, C)-relative injective
(C, C)-bicomodule. This follows immediately from 22.8 since the left coactions
have the (C, C)-bicomodule retractions IC ⊗ ε⊗ I⊗n+1

C . The coassociativity of
∆ implies that all the coboundary operators δn are (C, C)-bicomodule maps.
Furthermore, the contracting homotopy constructed in the proof of 30.1 con-
sists of right C-comodule left A-module maps. In other words we have
Corollary. Cob(C) is an (A, C)-relative injective resolution of C in the cate-
gory of (C, C)-bicomodules.

Thus, for any (C, C)-bicomodule M , one can consider a cochain complex

CCa(C,M) = (CCa(C,M)•, d) = CHomC(M,Cob(C)).

There is a Hom-tensor relation for (C, C)-bicomodules,

θ : CHomC(M, C⊗An+2)
�−→ AHomA(M, C⊗An), f �→ (ε⊗ I⊗nC ⊗ ε) ◦ f,

with the inverse θ−1(g) = (IC ⊗ g ⊗ IC) ◦ (M�⊗ IC) ◦ �M , where M� is the left
and �M is the right coaction of C on M . This Hom-tensor relation can be
used to view the complex CCa(C,M) as

AHomA(M,A) d0 ��
AHomA(M, C) d1 ��

AHomA(M, C ⊗A C) d2 �� . . . ,

where dn : AHomA(M, C⊗An)→ AHomA(M, C⊗An+1) reads

dnf = (IC⊗f)◦M�+
n∑
k=1

(−1)k(I⊗k−1
C ⊗∆⊗I⊗n−kC )◦f +(−1)n+1(f ⊗IC)◦�M .

The complex CCa(C,M) is called the Cartier complex of C with values in M .
Its cohomology is called the Cartier cohomology of C with values in M and is
denoted by HCa(C,M).
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The relative Hochschild cohomology detects when an extension of rings
is separable. Similarly, the Cartier cohomology of a coring detects when the
coring is coseparable.

30.4. The cohomological meaning of coseparability. For an A-coring
C the following statements are equivalent:
(a) C is coseparable;
(b) for all (C, C)-bicomodules M , Hn

Ca(C,M) = 0, n ≥ 1;

(c) for all (C, C)-bicomodules M , H1
Ca(C,M) = 0.

Proof. The Cartier cohomology can be understood as a right-derived
Ext-functor associated to an (A, C)-relative injective resolution of the (C, C)-
bicomodule C. Thus the assertion follows from standard arguments of relative
homological algebra and from 26.1. The assertion of the theorem can also be
proven directly as follows.

(a) ⇒ (b) Let C be a coseparable coring with cointegral δ : C ⊗A C → A
(cf. 26.2). For all M ∈ CMC and n = 1, 2, . . ., the maps

hn : C
n
Ca(C,M)→ Cn−1

Ca (C,M), f �→ (δ ⊗ I⊗n−1
C ) ◦ (IC ⊗ f) ◦ M�,

form a contracting homotopy for the Cartier complex. Hence, Hn
Ca(C,M) = 0

for all n ≥ 1, as asserted.
(b)⇒ (c) is obvious.
(c) ⇒ (a) Suppose that H1

Ca(C,M) = 0 for all M ∈ CMC. Since ∆ : C →
C ⊗A C is a (C, C)-bicomodule map, its cokernel Q = C ⊗A C/∆(C) is a (C, C)-
bicomodule (see 18.6). Let p : C⊗AC → Q be the canonical (C, C)-bicomodule
epimorphism. The (A,A)-bimodule map f : Q→ C given by

f(p(c⊗ c′)) = ε(c)c′ − cε(c′), for all c, c′ ∈ C,

is a one cocycle in the Cartier complex of C with values in Q. Since, by as-
sumption, the first cohomology group is trivial, there exists g ∈ AHomA(Q,A)
such that dg = f . Then the (A,A)-bimodule map δ : C ⊗A C → A, δ =
g ◦ p+ ε⊗ ε is a cointegral in C, and hence C is a coseparable coring by 26.1.

�
In the classical paper [119] analysing the structure of the Hochschild co-

homology of an associative ring, Gerstenhaber revealed a very rich algebraic
structure that was initially called a pre-Lie system and later was renamed a
comp algebra.

30.5. Comp algebras. A (right) comp algebra (V •, +, π) consists of a se-
quence of R-modules V 0, V 1, V 2, . . ., an element π ∈ V 2, and R-linear opera-
tions
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+i : V m ⊗R V n → V m+n−1 for i ≥ 0,

such that, for any f ∈ V m, g ∈ V n, h ∈ V p,

(1) f +i g = 0 if i > m− 1;
(2) (f +i g) +j h = f +i (g +j−i h) if i ≤ j < n+ i;

(3) (f +i g) +j h = (f +j h) +i+p−1 g if j < i;

(4) π +0 π = π +1 π.
A comp algebra (V •, +, π) is said to be strict if there exists an (unique) element
u ∈ V 1 such that, for all f ∈ V m,

(5) u +0 f = f +i u = f for all i < m.

A strict comp algebra is denoted by (V •, +, π, u). It is said to be unital if
there is an (unique) element 1 ∈ V 0 such that π +0 1 = π +1 1 = u. A unital
comp algebra is denoted by (V •, +, π, u, 1). For any f ∈ V m, the number m
is called a dimension of f and m− 1 is called a degree of f .

30.6. Remarks. It is an easy exercise to check that condition (3) of 30.5
implies also that

(f +i g) +j h = (f +j−n+1 h) +i g if j ≥ n+ i.

This equation is often built into the definition of a comp algebra. There is a
close relationship between comp algebras and operads, as studied by May in
[35] as a tool for the theory of iterated loop spaces. Nowadays, operads are
a major tool in deformation-quantisation, including the Kontsevich theory
of formal quantisation of Poisson structures [142], [143], [199] (cf. [27] and
[29]). In fact, a system of R-modules V 0, V 1, V 2, . . ., an element u ∈ V 1, and
additive operations +i : V m ⊗R V n → V m+n−1 for i ≥ 0 satisfying conditions
(1)–(3) and (5) of the above definition 30.5 is called a preoperad or a composi-
tion system. We refer the interested reader to [141], where several properties
of preoperads are reviewed.

30.7. The structure of comp algebras. An interlude. The usefulness of
comp algebras stems from the following basic facts (which we state without
proofs). Let (V •, +, π) be a comp algebra over R.
The Lie structure. A comp algebra is a graded (by degree) Lie algebra
with the bracket given by [f, g] = f + g − (−1)(m−1)(n−1)g + f, for all f ∈ V m

and g ∈ V n. Here the R-linear operation + : V m ⊗R V n → V m+n−1 is defined
by f + g =

∑m−1
i=0 (−1)i(n−1)f +i g, and is known as a comp or composition.

The cup product. V =
⊕

i=0 V
i is a nonunital graded algebra with the

product defined for all f ∈ V m, g ∈ V n by f ∪g = (π +0 f)+m g = (π +1 g)+0 f.
The operation ∪ is known as a cup product. V has a unit if (V •, +, π) is unital.
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Differential graded algebra structure and cohomology. A unital comp
algebra is a differential graded algebra with the derivation d : V m → V m+1,
df = −[π, f ] and product ∪. The corresponding cohomology is denoted by
H(V ). Since V is a differential graded algebra, the cup product descends to
H(V ). Furthermore, for all α ∈ Hm(V ) and β ∈ Hn(V ), α∪β = (−1)mnβ∪α.
The Lie bracket also descends to H(V ), thus making H(V ) a graded (by
degree) Lie algebra.

Gerstenhaber algebra structure. A Gerstenhaber algebra over R is a
collection of R-modules H0, H1, H2, . . . with a graded (by degHm = m − 1)
Lie bracket [−,−] : Hm ⊗R Hn → Hm+n−1 and an associative unital graded
(by dimHm = m) commutative product ∪ : Hm ⊗R Hn → Hm+n, such that,
for all α ∈ Hm, β ∈ Hn and γ ∈ H,

[α, β ∪ γ] = [α, β] ∪ γ + (−1)(m−1)nβ ∪ [α, γ].

The cohomology of a unital comp algebra is a Gerstenhaber algebra.

The relevance of this discussion of comp algebras to the Cartier cohomol-
ogy of a coring is revealed in the following theorem.

30.8. Gerstenhaber algebra structure of the Cartier cohomology.
Let CCa(C) = CCa(C, C) be the Cartier complex of C with values in C. Then
CCa(C) is a unital comp algebra with the compositions

+i : CCa(C)m ⊗R CCa(C)n → CCa(C)m+n−1, f +i g = (I⊗iC ⊗ g ⊗ I⊗m−i−1
C ) ◦ f,

and distinguished elements π = ∆, u = IC, and 1 = ε. Consequently, the
Cartier cohomology of C with values in C is a Gerstenhaber algebra.

Proof. This can be verified by lengthy but routine calculations. �
The Cartier cohomology of a coring is obtained by the dualisation of

the relative Hochschild cohomology of a ring. In addition to the relative
Hochschild complex, the Amitsur complex is associated to a ring extension.
By dualising the Amitsur cochain complex one obtains a new kind of coho-
mology for corings, which we term the Hochschild cohomology of corings.

30.9. The Hochschild complex of a coring. Let X(C) = (X(C)•, δ) be a
complex given by

X(C)n = C⊗An+1, δn : C⊗An+2 → C⊗An+1, δn =
n+1∑
k=0

(−1)kI⊗kC ⊗ε⊗I⊗n−k+1
C ,

for all n = 0, 1, 2, . . .. Then X(C) is a chain complex.
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Proof. We need to show that δn−1 ◦ δn = 0 for all n = 1, 2, . . .. For
all k = 0, 1, . . . , n, define εk,n = I⊗kC ⊗ ε ⊗ I⊗n−kC : C⊗An+1 → C⊗An. Then
δn =

∑n+1
k=0(−1)kεk,n+1, and therefore δn−1 ◦ δn = Γ1 + Γ2, where

Γ1 =
n+1∑
l=0

n∑
k=0

(−1)k+lεk,n ◦ εl,n+1, Γ2 =
n∑
k=0

(εk,n ◦ εk,n+1 − εk,n ◦ εk+1,n+1).

There is a term-by-term cancellation in Γ1 and also ε
k,n ◦ εk,n+1 = εk,n ◦

εk+1,n+1, since ε is an (A,A)-bimodule map. This proves that Γ2 = 0 as well,
so that δn−1 ◦ δn = 0, as required. �

In general, the complex (X(C), δ) is not acyclic; however, there are some
instances in which its homology vanishes.

30.10. A sufficient condition for X(C) to be acyclic. If there exists an
element e ∈ C such that ε(e) = 1A, then the complex (X(C), δ) is acyclic.

Proof. A contracting homotopy h• for (X(C), δ) can be constructed as
hn : C⊗An+1 → C⊗An+2, x �→ e⊗ x. Indeed,

δn(h
n(c0 ⊗ . . .⊗ cn)) =

n+1∑
k=0

(−1)kεk,n+1(e⊗ c0 ⊗ . . .⊗ cn)

= c0 ⊗ . . .⊗ cn −
n∑
k=0

(−1)ke⊗ c0 ⊗ . . .⊗ ckε(ck+1)⊗ . . .⊗ cn

= c0 ⊗ . . .⊗ cn − hn−1(δn−1(c
0 ⊗ . . .⊗ cn)).

Therefore, δn ◦ hn + hn−1 ◦ δn−1 = I⊗n+1
C , for all n = 1, 2, . . ., that is, h• is a

contracting homotopy, as claimed. Thus the complex (X(C)•, δ) is acyclic. �

30.11. X(C) for a coring with a grouplike element. If C has a grouplike
element, then the associated complex (X(C)•, δ) is acyclic.

Proof. By definition, if g ∈ C is a grouplike element, then ε(g) = 1A and
the assertion follows immediately from 30.10. �

30.12. X(C) of a Sweedler coring. Consider an algebra extension B →
A and the associated Sweedler A-coring C = A ⊗B A. Then the complex
(X(C)•, δ) is the B-relative bar resolution of A, that is, X(C)n = A⊗Bn+2 and

δn(a0 ⊗ a1 ⊗ . . .⊗ an+1) =
n∑
k=0

(−1)ka0 ⊗ . . .⊗ ak−1 ⊗ akak+1 ⊗ . . .⊗ an+1,

for all a0 ⊗ a1 ⊗ . . .⊗ an+1 ∈ A⊗Bn+2.
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Proof. This is clear from the natural identification A⊗Bn+2 � C⊗An+1

and from the definition of the counit in this case. The complex (X(C)•, δ) is
a resolution of A in the category of (B,B)-bimodules since, first, each of the
δn is a (B,B)-bimodule map. Second, since ε(1A⊗1A) = 1A, we can take e =
1A⊗1A in 30.10 and thus obtain a homotopy h• with hn : A⊗Bn+2 → A⊗Bn+3,
x �→ 1A ⊗ x, n = 0, 1, 2, . . .. Each of the hn is a (B,B)-bimodule map. Thus
there is the sequence

. . .
δ2 �� A⊗B4 δ1 �� A⊗B3 δ0 �� A⊗B2 µA/B �� A ��0

of (B,B)-bimodule maps that is exact up to and including the map δ0. Note
that µA/B ◦ δ0 = 0 and consider a (B,B)-bimodule map σ : A → A ⊗B A,
a �→ 1A ⊗ a. Then, for all a, a′ ∈ A,

(δ0 ◦ h0 + σ ◦ µA/B)(a⊗ a′) = δ0(1⊗ a⊗ a′) + 1A ⊗ aa′

= a⊗ a′ − 1A ⊗ aa′ + 1A ⊗ aa′ = a⊗ a′.

This completes the proof for the example. �

30.13. X(C) for a coring over a simple ring. Note that the hypothesis
of 30.10 is satisfied if A is a simple ring, in particular a division ring. Indeed,
there exists an element ẽ ∈ C such that ε(ẽ) = a �= 0. If A is a simple ring,
there exist ai, bi ∈ A such that

∑
aiabi = 1A. Then, for e =

∑
aiẽbi, we

obtain ε(e) = 1A, as required. Hence X(C) is acyclic for any coring C over a
simple (or division) ring.

30.14. X(C) for a faithfully flat coring. If C is faithfully flat as a right
or left A-module, then the associated complex (X(C)•, δ) is acyclic.
Proof. Suppose that CA is faithfully flat. Since (X(C)•, δ) is a complex of

(A,A)-bimodules, one can consider the derived complex (C ⊗AX(C)•, IC⊗ δ).
Consider a collection of (A,A)-bimodule mappings hn : C⊗An+1 → C⊗An+2,
hn = ∆⊗ I⊗nC . Then hn ◦ (IC ⊗ δn) = ∆⊗ δn and

(IC ⊗ δn+1) ◦ hn+1 = (IC ⊗ δn+1) ◦ (∆⊗ I⊗n+1
C )

= (IC ⊗ ε⊗ I⊗n+1
C ) ◦ (∆⊗ I⊗n+1

C )−
n+1∑
k=0

(−1)k∆⊗ εk,n+1

= I⊗n+2
C −∆⊗ δn.

This proves that hn ◦ (IC⊗ δn)+(IC⊗ δn+1)◦hn+1 = I⊗n+2
C , which means that

h• is a contracting homotopy for C ⊗A X(C). Therefore the derived complex
(C⊗AX(C)•, IC⊗δ) is acyclic, and, since C is a faithfully flat right A-module,
the complex (X(C)•, δ) is acyclic, too.

In case C is a faithfully flat left A module, consider the derived complex
(X(C)• ⊗A C, δ ⊗ IC) and take hn = (−1)nI⊗nC ⊗A ∆. �
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30.15. The bimodule-valued Hochschild cohomology of a coring.
Note that the complex (X(C)•, δ) is a complex of (A,A)-bimodules in which
all the δ are (A,A)-bimodule maps. Thus, for any (A,A)-bimodule M ,
one can define a cochain complex CHo(C,M) by applying the contravariant
Hom-functor AHomA(−,M) to (X(C)•, δ). Thus, explicitly, CHo(C,M) =
(C•

Ho(C,M), d•), where

CnHo(C,M) = AHomA(C⊗An+1,M), dn(f) =
n+1∑
k=0

(−1)kf ◦(I⊗kC ⊗ε⊗I⊗n+1−k
C ).

The complex CHo(C,M) is called the Hochschild cochain complex associated
to C with values inM , and its cohomology is called the Hochschild cohomology
of C with values in M . The Hochschild cohomology of C with values in M is
denoted by HHo(C,M).

As explained in 30.4, the Cartier cohomology of a coring detects cosepara-
bility. Similarly, the Hochschild cohomology detects when a coring is cosplit
(cf. 26.12 for the definition of a cosplit coring).

30.16. The cohomological interpretation of cosplit corings. For an
A-coring C the following statements are equivalent:
(a) C is a cosplit coring;
(b) the counit of C is surjective and, for n ≥ 1, Hn

Ho(C,M) = 0, for all
(A,A)-bimodules M ;

(c) the counit of C is surjective and H1
Ho(C,M) = 0, for all (A,A)-bimodules

M .

Proof. (a) ⇒ (b). Since C is a cosplit coring, there exists e ∈ CA such
that ε(e) = 1A (cf. 26.11). The latter immediately implies that ε is surjective.
Take any (A,A)-bimodule M , and for every nonnegative integer n define an
R-module map

hn : AHomA(C⊗An+1,M)→ AHomA(C⊗An,M), f �→ [x �→ f(e⊗ x)].

One easily checks that the collection (hn)n∈N is a contracting homotopy. Thus
Hn

Ho(C,M) = 0, as claimed.
(b)⇒ (c) is obvious.
(c)⇒ (a) Suppose H1

Ho(C,M) = 0 for all (A,A)-bimodules M . In partic-
ular, takeM = Ke ε and consider f = IC⊗ε−ε⊗IC ∈ AHomA(C ⊗A C,Ke ε).
One easily checks that f is a 1-cocycle in CHo(C,Ke ε). By assumption, any
1-cocycle is a coboundary; thus there exists h ∈ AHomA(C,Ke ε) such that
dh = f , that is, such that, for all c1, c2 ∈ C,

ε(c1)h(c2)− h(c1)ε(c2) = c1ε(c2)− ε(c1)c2. (∗)
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Since the counit ε is surjective, there exists g ∈ C such that ε(g) = 1A. Define
e = g + h(g). Since h(g) ∈ Ke ε, we immediately conclude that ε(e) = 1A.
Furthermore, setting c1 = ga and c2 = g in (∗) we obtain ah(g) − h(ga) =
ga− ag, for all a ∈ A. The right A-linearity of h now implies that the above
equation can be transformed to a(g + h(g)) = (g + h(g))a, that is, ae = ea
for all a ∈ A. In view of 26.11, we conclude that C is a cosplit coring. �

30.17. Exercises

(1) Prove that condition (3) of 30.5 implies that

(f +i g) +j h = (f +j−n+1 h) +i g if j ≥ n+ i.

(2) A cosimplicial object in a category A is a collection of objects X0, X1, . . .
in A and arrows δni : Xn → Xn+1, i = 0, 1, . . . , n, and σni : Xn+1 → Xn,
i = 0, 1, . . . , n− 1 such that

δn+1
i δnj = δn+1

j+1 δ
n
i , i ≤ j,

σn−1
j σni = σn−1

i σnj+1, i ≤ j,

σnj δ
n
i =




δn−1
i σn−1

j−1 for i < j

IXn for i = j, i = j + 1
δn−1
i−1 σ

n−1
j for i > j + 1.

The morphisms δni are known as coface operators and the σnj are known as
degeneracies. Show:
Given an A-coring C, there is a cosimplicial object in the category AMA of
(A,A)-bimodules with Xn = C⊗An+1, coface operators δni = I⊗AiC ⊗A ∆ ⊗A
I⊗An−iC , and degeneracies σni = I⊗Ai+1

C ⊗A ε⊗A I⊗An−iC .

References. Cartier [90]; Gerstenhaber [119]; Gerstenhaber and Schack
[120]; Guzman [126, 127]; Hochschild [132]; Kluge, Paal and Stasheff [141].
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31 Bialgebroids

The idea of generalising bialgebras to the case of bimodules rather than mod-
ules goes back to Sweedler [192]. Since there is no obvious way in which
a (part of) tensor product of bimodules can be equipped with an algebra
structure, there is no obvious compatibility between algebra and coalgebra
structures. This led to a number of different definitions of generalised bial-
gebras over noncommutative rings or bialgebroids. It is easy to overlook that
those definitions are equivalent to each other. In this section we define bial-
gebroids following Lu [154], and then provide equivalent descriptions that
appeared in the literature.

As before, R denotes a commutative ring and A is an R-algebra.

31.1. A-rings. Recall that a unital A-ring or an algebra over A is a pair
(U, i), where U is an R-algebra and i : A → U is an algebra map. If (U, i)
is an A-ring, then U is an (A,A)-bimodule with the structure provided by
the map i, aua′ := i(a)ui(a′). A map of A-rings f : (U, i) → (V, j) is an
R-algebra map f : U → V such that f ◦ i = j. Equivalently, a map of A-rings
is an R-algebra map that is a left or right A-module map. Indeed, clearly, if
f : (U, i) → (V, j) is a map of A-rings, it is an algebra and an A-bimodule
map. Conversely, if f is a left A-linear algebra map, then, for all a ∈ A,
f(i(a)) = f(a1U) = af(1U) = j(a), and similarly in the right A-linear case.

31.2. Algebras over enveloping algebras: Ae-rings. Let Ā = Aop be the
opposite algebra of A. For a ∈ A, ā ∈ Ā is the same a but now viewed as an
element in Ā, that is, a �→ ā is an (obvious) anti-isomorphism of algebras. Let
Ae = A⊗R Ā be the enveloping algebra of A. Note that a pair (H, i) is an Ae-
ring if and only if there exist an algebra map s : A→ H and an anti-algebra
map t : A → H, such that s(a)t(b) = t(b)s(a), for all a, b ∈ A. Explicitly,
s(a) = i(a⊗ 1) and t(a) = i(1⊗ ā), and, conversely, i(a⊗ b̄) = s(a)t(b).

In the sequel, the expression “let (H, s, t) be an Ae-ring” will be under-
stood to mean an R-algebra H with algebra maps s, t : A→ H as described
above. A is called a base algebra, H a total algebra, s the source map and t
the target map.

31.3. EndR(A) as an Ae-ring. An example of an Ae-ring is provided by
EndR(A). In this case, i : A⊗R Ā→ EndR(A), i(a⊗ b̄)(x) = axb. The source
and the target come out as s(a)(x) = ax and t(b)(x) = xb. It follows that
EndR(A) is an A

e-bimodule via i. In particular, EndR(A) is a left A
e-module

via

(af)(b) = af(b), (āf)(b) = f(b)a,

for all a, b ∈ A and f ∈ EndR(A).
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31.4. The ×A-product. Let M and N be (Ae, Ae)-bimodules. Let∫
a ā
M ⊗ aN :=M ⊗R N/ < {ām⊗ n−m⊗ an | for all a ∈ A} >,

that is,
∫
a ā
M⊗aN =M⊗AN , where the structure ofM as a right A-module

arises from that of M as a left Ā-module. Let∫ b
Mb̄ ⊗Nb := {

∑
i

mi ⊗ ni∈M⊗RN | ∀ b∈A,
∑
i

mib̄⊗ ni =
∑
i

mi ⊗ nib}.

Define the R-module

M ×A N :=
∫ b ∫

a ā
Mb̄ ⊗ aNb.

Explicitly,

M ×A N := {
∑
i

mi ⊗ ni∈M⊗AN | ∀ b∈A,
∑
i

mib̄⊗ ni =
∑
i

mi ⊗ nib},

where again M is viewed as a right A-module through its left Ā-module
structure. The operation −×A − : AeMAe × AeMAe → AeMAe is a bifunctor.
Here, for M,N ∈ AeMAe , the product M ×A N is in AeMAe with the actions
given by

(a′ ⊗ ā)(
∑
imi ⊗ ni)(b

′ ⊗ b̄) =
∑
i a

′mib
′ ⊗ ānib̄.

The importance of the notion of the ×A-product stems from the following
observation.

31.5. The ×A-product of two Ae-rings. For any pair of Ae-rings (U, i)
and (V, j), the (Ae, Ae)-bimodule U ×A V is an Ae-ring with the algebra map
A⊗R Ā→ U ×A V , a⊗ b̄→ i(a)⊗ j(b̄), the associative product

(
∑
i u
i ⊗ vi)(

∑
j ũ
j ⊗ ṽj) =

∑
i,j u

iũj ⊗ viṽj,

and the unit 1U ⊗ 1V .

Proof. The only nontrivial part is to check that the product is well
defined, that is, it is independent of the choice of the representations. Since
the operation clearly is linear, it suffices to show that the product yields zero
provided one of the factors is zero.

First assume that
∑
i u
i ⊗ vi = 0. By the characterisation of 0 in tensor

products, there exist finitely many bki ∈ A and yk ∈ U , such that
∑
i bkiv

i = 0,
for all k, and ui =

∑
k b̄kiyk (e.g., [46, 12.10]). For any ũ⊗ ṽ ∈ U ⊗R V ,

(
∑
i u
i ⊗ vi)(ũ⊗ ṽ) =

∑
i u
iũ⊗ viṽ =

∑
i,k b̄kiykũ⊗ viṽ

=
∑
k ykũ⊗ (

∑
i bkiv

i)ṽ = 0.
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Since no use is made of the fact that
∑
i u
i⊗ vi is an element of U ×A V , this

shows that U⊗AV =
∫
a ā
U⊗aV is a right module of the tensor algebra U⊗RV

and also implies that the formula for the product in U ×A V is independent
of the representation of the left factors.

Now assume that
∑
j ũ
j ⊗ ṽj = 0. Then there exist finitely many akj ∈ A

and xk ∈ U , such that
∑
j akj ṽ

j = 0, for all k, and ũj =
∑
k ākjxk. Using the

definition of the ×A-product, compute

(
∑
i u
i ⊗ vi)(

∑
j ũ
j ⊗ ṽj) =

∑
i,j u

iũj ⊗ viṽj

=
∑
i,j u

i(
∑
k ākjxk)⊗ viṽj

=
∑
i,j,k(u

iākj ⊗ vi)(xk ⊗ ṽj)

=
∑
i,j,k(u

i ⊗ viakj)(xk ⊗ ṽj)

=
∑
i,k u

ixk ⊗ vi(
∑
j akj ṽ

j) = 0.

Whence the product is also independent of the representation of right factors.
The fact that the right-hand side of the product formula is in U ×A V is

proven by a similar straightforward calculation. �
With all these preliminary data at hand we can define the following gen-

eralisation of bialgebras introduced in [154].

31.6. Bialgebroids and Hopf algebroids. Let (H, s, t) be an Ae-ring.
View H as an (A,A)-bimodule, with the left A-action given by the source
map s, and the right A-action that descends from the left Ā-action given by
the target map t, that is,

ah = s(a)h, ha = t(a)h, for all a ∈ A, h ∈ H.

We say that (H, s, t,∆, ε) is an A-bialgebroid if
(1) (H,∆, ε) is an A-coring;
(2) Im(∆) ⊆ H×AH and the corestriction of ∆ to ∆ : H → H×AH is an

algebra map;

(3) ε(1H) = 1A, and, for all g, h ∈ H,

ε(gh) = ε (gs(ε(h))) = ε (gt(ε(h))) .

An antipode for an A-bialgebroid H is an antialgebra map τ : H → H
such that

(i) τ ◦ t = s;

(ii) µH ◦ (τ ⊗ IH) ◦∆ = t ◦ ε ◦ τ ;
(iii) there exists a section γ : H⊗A H → H⊗R H of the natural projection

H⊗R H → H⊗A H such that µH ◦ (IH ⊗ τ) ◦ γ ◦∆ = s ◦ ε.
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An A-bialgebroid with an antipode is called a Hopf algebroid

31.7. Remarks about bialgebroids. (1) Observe that the counit property
of ε in 31.6 explicitly means that, for all h ∈ H,∑

s (ε(h1))h2 =
∑

t (ε(h2))h1 = h.

The first condition of 31.6(2) explicitly means
∑
h1t(a)⊗h2 =

∑
h1⊗h2s(a),

for all a ∈ A and h ∈ H.
(2) The facts that ε preserves the unit and is an (A,A)-bimodule map

imply that s and t are sections of ε, that is, ε(s(a)) = ε(t(a)) = a for all
a ∈ A. Using this and 31.6(3), one easily finds ε(hs(a)) = ε(ht(a)), for all
a ∈ A, h ∈ H. Similarly, the facts that ∆ is a unital and an (A,A)-bimodule
map imply

∆(s(a)) = s(a)⊗ 1H, ∆(t(a)) = 1H ⊗ t(a).

(3) For an Ae-ring (H, s, t), let F : HM → AMA be the restriction of
scalars functor. H is an (A,A)-bimodule as in 31.6. If (H, s, t,∆, ε) is an
A-bialgebroid, then HM has a monoidal structure such that F is a strict
monoidal functor. For all M,N ∈ HM, the tensor product M ⊗A N is in

HM via h(m⊗n) =
∑
h1m⊗h2n. Here M and N have the (A,A)-bimodule

structures induced from their left H-module structures via the source and
target maps, that is, ama′ = s(a)t(a′)m, for all a, a′ ∈ A and m ∈ M or
m ∈ N . The right-hand side is well defined because Im(∆) ⊆ H ×A H. A is
the unit object, when viewed in HM via the action hSa = ε(hs(a)) = ε(ht(a)),
for all h ∈ H, a ∈ A. The fact that this is an action follows from 31.6(3). Note
that the left H-module structure on the tensor product of left H-modules is
an analog (and generalisation) of the module structure −⊗bR− defined in 13.4
for bialgebras. We thus denote the left H-module M ⊗A N with the above
left H-module structure by M ⊗bA N . The corresponding left multiplication
by H via the coproduct, h!(m⊗n) =

∑
h1m⊗h2n is known as a left diagonal

action of H on M ⊗bA N .
(4) The notion of a bialgebroid can be understood as a dualisation (and

generalisation) of the notion of a groupoid. Recall that a groupoid is defined
as a small category in which all morphisms are isomorphisms. One can then
consider the sets of points and arrows and maps from the latter to the former,
which to each arrow associate its source and target. Intuitively, dualising the
notion of a groupoid, thus in particular the base and total sets, and the
source and target maps, one arrives at the notion of a bialgebroid. For this
reason one often terms Hopf algebroids quantum groupoids. This connection
between Hopf algebroids and groupoids can also be used to construct concrete
examples of the former.

(5) The observation in item (3) indicates a marked difference between
bialgebroids and bialgebras. Given an A-bialgebroid H, HM is a monoidal
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category, but it is not true thatMH is a monoidal category. From this point of
view bialgebroids defined in 31.6 are one-sided objects and often are termed
left bialgebroids, since they allow only for left diagonal actions. Using the
left-right symmetry one can easily define right bialgebroids as those that lead
to a monoidal structure in MH via the right diagonal actions. We leave this
to the reader.

An example of a bialgebroid is provided by the following construction.

31.8. The tensor product bialgebroid. Let A be an R-algebra, and let B
be an R-bialgebra with coproduct ∆ and counit ε. Then H = A ⊗R B ⊗R Ā
is an A-bialgebroid with the natural tensor product algebra structure and the
following structure maps:

(i) the source map s : a �→ a⊗ 1B ⊗ 1A;
(ii) the target map t : a �→ 1A ⊗ 1B ⊗ ā;

(iii) the coproduct ∆ : a⊗ b⊗ ā′ �→
∑
a⊗ b1 ⊗ 1A ⊗ 1A ⊗ b2 ⊗ ā′;

(iv) the counit ε : a⊗ b⊗ ā′ �→ ε(b)aa′.

Furthermore, if B is a Hopf algebra with antipode S, then H is a Hopf alge-
broid with antipode

τ : a⊗ b⊗ ā′ �→ a′ ⊗ S(b)⊗ ā.

In particular, Ae is a Hopf algebroid over A.

Proof. This is proven by routine checking of the axioms and is left to
the reader as an exercise. �

A slightly more elaborate example of a bialgebroid termed an Ehresmann-
Schauenburg bialgebroid or a quantum gauge groupoid is given in 34.14.

31.9. An anchor. For an R-algebra A, view EndR(A) as an (A,A)-bimodule
with the structure maps

(af)(b) = af(b), (fa)(b) = f(b)a,

for all a, b ∈ A and f ∈ EndR(A). Let (H, s, t) be an Ae-ring, viewed as an
(A,A)-bimodule as in 31.6. Suppose that

(1) ∆ : H → H⊗A H is a coassociative (A,A)-bimodule map;

(2) Im(∆) ⊆ H×AH and the corestriction of ∆ to ∆ : H → H×AH is an
algebra map.

Then H is an A-bialgebroid if and only if there exists an algebra and an
(A,A)-bimodule map ν : H → EndR(A) such that

(i)
∑
s(h1 S a)h2 = hs(a);
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(ii)
∑
t(h2 S a)h1 = ht(a);

where h S a := ν(h)(a), for all a ∈ A and h ∈ H.
The map ν is called an anchor for the bialgebroid H.

Proof. First, note that the left-hand sides of (i) and (ii) are well defined
since ν is an (A,A)-bimodule map; that is, for all a, b ∈ A and h ∈ H,

ν(s(a)h)(b) = aν(h)(b), ν(t(a)h)(b) = ν(h)(b)a.

Suppose (H, s, t,∆, ε) is an A-bialgebroid, and define

ν = νε : H → EndR(A), ν(h)(a) = h S a := ε(hs(a)) = ε(ht(a)). (∗)

The map ν is an algebra morphism since A is a left H-module with the
structure map S. The fact that ν is (A,A)-bilinear follows by an elementary
calculation. Explicitly, for any a, b ∈ A, h ∈ H,

ν(ah)(b) = ν(s(a)h)(b) = ε(s(a)hs(b)) = aε(hs(b)) = aν(h)(b) = (aν(h))(b),

thus proving that ν is left A-linear. A similar calculation using the definition
of the (A,A)-bimodule structure of EndR(A), proves the right A-linearity of
ν. Next we prove that (i) and (ii) hold for ν. Using 31.6(2) and 31.7(2), we
compute ∆(hs(a)) = ∆(h)∆(s(a)) =

∑
h1s(a)⊗h2. Now, using the first part

of the counit property 31.7(1) for hs(a), we obtain
∑
s (ε(h1s(a)))h2 = hs(a),

that is, (i) for ν. The condition (ii) follows from h S a = ε(ht(a)) and the
second part of the counit property 31.7(1) together with 31.6(2) and 31.7(2).

Conversely, suppose (H, s, t), ∆ and ν satisfy the hypothesis of the propo-
sition, and let ε = εν : H → A, h �→ ν(h)(1A). We claim that ε is a counit
for ∆. Indeed, since ε is (A,A)-bilinear, ε(s(a)) = ε(t(a)) = a, and hence,
in particular ε(1H) = 1A. Furthermore, note that for all g, h ∈ H, ε(gh) =
ν(g)(ε(h)). Therefore ε(gh) = ν(g)(ε(h)) = ν(g)(ε(s(ε(h)))) = ε(hs(ε(h))),
and similarly for the target map t. This proves conditions 31.6(3), and we
conclude that (H, s, t,∆, εν) is a bialgebroid, as required. �

The original formulation of bialgebroids in the works of Sweedler [192] and
Takeuchi [196] makes more direct use of the ×A-product. The main problem
to overcome here is the fact that the ×A-product is not associative.

31.10. ×A-coalgebras. For M , N and P ∈ AeMAe define

M ×A P ×A N :=
∫ s,u ∫

r,t r̄
Ms̄ ⊗ r,t̄Ps,ū ⊗ tNu.

There exist obvious maps (identities on elements)

α : (M×AP )×AN →M×AP ×AN, α′ :M×A (P ×AN)→M×AP ×AN.
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The maps α, α′ are not isomorphisms in general. Since EndR(A) is an Ae-ring
by 31.3, it is an (Ae, Ae)-bimodule, so one can define the maps

θ :M ×A EndR(A)→M, θ(
∑
imi ⊗ fi) =

∑
i fi(1)mi, and

θ′ : EndR(A)×AM →M, θ′(
∑
i fi ⊗mi) =

∑
i fi(1)mi.

A triple (L,∆, ν) is called a ×A-coalgebra if L is an (Ae, Ae)-bimodule and

∆ : L→ L×A L, ν : L→ EndR(A),

are (Ae, Ae)-bimodule maps such that

α◦(∆×AIL)◦∆ = α′◦(IL×A∆)◦∆, θ◦(IL×Aν)◦∆ = IL = θ′◦(ν×AIL)◦∆.

∆ is called a coproduct and ν is called a counit of the ×A-coalgebra L.

31.11. The coring structure of a ×A-coalgebra. Let L be an (Ae, Ae)-
bimodule, and ∆ : L → L ×A L, ν : L → EndR(A) be (A

e, Ae)-bimodule
maps. Let i : L×A L→ L⊗A L be the canonical inclusion. Then (L,∆, ν) is
a ×A-coalgebra if and only if (L,∆, εν) is an A-coring, where ∆ = i ◦∆ and
εν(l) = ν(l)(1A).

Proof. Clearly the coassociativity of ∆ is equivalent to the coassociativ-
ity of ∆. The equivalence of the counit properties is checked by straightfor-
ward calculation. �

31.12. ×A-bialgebras. Let (H, s, t) be an Ae-ring. H is an A-bialgebroid
if and only if there exists a ×A-coalgebra structure on H such that both the
coproduct ∆ and the counit ν are algebra maps. In this case (H,∆, ν) is called
a ×A-bialgebra.

Proof. Let (H, s, t,∆, ε) be an A-bialgebroid, and let ν be the corre-
sponding anchor (cf. 31.9). Since ν and ∆ are (A,A)-bimodule maps, they
are left Ae-module maps. Furthermore, both ν and the corestriction ∆ of ∆
to H×AH are R-algebra maps. Therefore, ν and ∆ are maps of Ae-rings, and
hence also maps of (Ae, Ae)-bimodules. Then 31.11 implies that (H,∆, ν) is
a ×A-bialgebra.

In view of 31.11, the converse is obvious. �
A conceptual understanding of the notion of a bialgebroid is provided by

the following equivalence obtained by Schauenburg [183].

31.13. The monoidal structure. Let (H, s, t) be an Ae-ring. Then H is an
A-bialgebroid if and only if HM is a monoidal category such that the forgetful
functor F : HM→ AMA is strict monoidal.
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Proof. If H is an A-bialgebroid, then HM is a monoidal category and
F is a strict monoidal functor by 31.7(3).

Conversely, if HM is a monoidal category, then both H and H⊗A H are
left H-modules. Define then a left H-module map

∆ : H → H⊗A H, h �→ h(1⊗ 1) =:
∑
h1 ⊗ h2.

Note that ∆ is an (A,A)-bimodule map, since H is an Ae-ring. Further-
more,∑

h1 ⊗ h21 ⊗ h22 =
∑
h1 ⊗ h2(1⊗ 1) = h(1⊗ (1⊗ 1))

= h((1⊗1)⊗1) =
∑
h1(1⊗1)⊗h2 =

∑
h11 ⊗ h12 ⊗ h2.

Hence ∆ is a coassociative coproduct. Next observe that Im(∆) ⊆ H ×A H,
since, for all h ∈ H and a ∈ A,∑

h1 ⊗ h2s(a) = h(1⊗ s(a)) = h(t(a)⊗ 1) =
∑
h1t(a)⊗ h2.

Directly from the definition of ∆ it follows that ∆ is a multiplicative map.
Since the forgetful functor F is a strict monoidal functor, A is a neutral object
in HM, and there is a left multiplication A� : H⊗RA→ A of H on A. Define
ε : H → A, h �→ A�(h ⊗ 1A). One easily checks that ε is a counit for the
bialgebroid H with coproduct ∆. This completes the proof. �

Examples of bialgebroids are provided by depth-2 ring extensions [138].

31.14. Depth-2 algebra extensions. An algebra extension B → D is said
to be a depth-2 extension if

(i) the (B,D)-bimodule D⊗BD is a direct summand of
⊕nD for some n;

(ii) the (D,B)-bimodule D ⊗B D is a direct summand of
⊕lD for some l.

Equivalently, B → D is a depth-2 extension if there exist bi, cj ∈ (D⊗B D)B
and βi, γj ∈ BHomB(D,B), with i, j in finite index sets, such that, for all
d ∈ D, ∑

i biβi(d) = d⊗ 1,
∑
j γj(d)cj = 1⊗ d.

The system {bi, βi} is known as a left D2 quasibasis while the system {cj, γj}
is known as a right D2 quasibasis for the extension B → D.

Examples of depth-2 algebra extensions are provided by H-separable ex-
tensions introduced in [130] (in this case one requires D ⊗B D to be a direct
summand of

⊕nD for some n as a (D,D)-bimodule).

31.15. A bialgebroid associated to depth-2 algebra extensions. Let
B → D be a depth-2 algebra extension, A = DB = {a ∈ D | for all b ∈
B, ab = ba}, and viewH = BEndB(D) as an algebra via the map composition.
Then H is an A-bialgebroid with the following structure maps:
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(i) the source map s : a �→ [d �→ ad];

(ii) the target map t : a �→ [d �→ da];

(iii) the comultiplication ∆ : h �→
∑
j γj ⊗ cj

1̃h(cj
2̃−), where the system

{cj =
∑
cj

1̃ ⊗ cj
2̃, γj} is a right D2 quasibasis;

(iv) the counit ε : h �→ h(1D).

Proof. Clearly s is an algebra map and t is an anti-algebra map. Note
that, for all a, a′ ∈ A, h ∈ H and d ∈ D,

(s(a) ◦ t(a′) ◦ h)(d) = ah(d)a′ = (t(a′) ◦ s(a) ◦ h)(d),

so that H is an Ae-ring, and the (A,A)-bimodule structure of H induced by
the source and target maps comes out as aha′ = ah(−)a′. ∆ is obviously
a right A-module map. Furthermore, using the left D2 quasibasis {bi =∑
bi
1̃ ⊗ bi

2̃, βi}, one finds the following alternative expression for ∆:

∆(h) =
∑
j γj ⊗ cj

1̃h(cj
2̃−) =

∑
i,j γj ⊗ cj

1̃h(cj
2̃bi

1̃)bi
2̃βi(−)

=
∑
i,j γj(−)cj 1̃h(cj 2̃bi1̃)bi2̃ ⊗ βi

=
∑
i h(−bi1̃)bi2̃ ⊗ βi.

This immediately implies that ∆ is a left A-module map. The coassociativity
of ∆ follows directly from the expressions of ∆ in terms of left and right
quasibases. These expressions also imply that ε is the counit for ∆. Thus H
is an A-coring.

Next, observe that for all a ∈ A, b ∈ B,∑
i βi(abi

1̃)bi
2̃b =

∑
i βi(abbi

1̃)bi
2̃ =

∑
i bβi(abi

1̃)bi
2̃,

so that
∑
i βi(abi

1̃)bi
2̃ ∈ A. Using this observation one can easily prove that

for all h ∈ H and a ∈ A,

∆(h) ◦ (t(a)⊗ IH) =
∑
ih(−abi1̃)bi2̃ ⊗ βi

=
∑
i,jh(−bj 1̃)bj 2̃βj(abi1̃)bi2̃ ⊗ βi

=
∑
ih(−bi1̃)bi2̃ ⊗ βi(a−) = ∆(h) ◦ (IH ⊗ s(a)),

that is, ∆(h) ∈ H ×A H. Using a similar type of arguments (and expressing
∆ in terms of left and right quasibases, as the need arises) one proves that ∆
is multiplicative. Obviously, ∆(1) = 1⊗ 1 and ε(1) = 1. Finally we compute
for all h, h′ ∈ H,

ε(h ◦ s(ε(h′))) = h(h′(1)) = ε(hh′),
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and similarly for the target map t. Thus H is an A-bialgebroid. �
This intriguing connection between extensions and bialgebroids certainly

deserves further investigation.
Similarly as for coalgebras, one can study modules associated to bialge-

broids. However, since 31.6 defines left bialgebroids (cf. 31.7(5)), only left
modules can be studied. The right-handed version requires the use of the
notion of a right bialgebroid (which we do not develop here).

31.16. H-bialgebroid modules. Given an A-bialgebroid (H, s, t,∆, ε), a left
H-bialgebroid module is a left H-module and a left (A-coring) H-comodule
M with the coaction M� :M → H⊗AM such that

M�(hm) =
∑

h1m−1 ⊗ h2m0,

for all m ∈ M and h ∈ H. Here M is viewed as an (A,A)-bimodule via the
source and target maps of H, that is, ama′ = s(a)t(a′)m. Note that the right-
hand side of the displayed equation is well defined since ∆(H) ⊆ H×AH. A
morphism of two H-bialgebroid modules is a left H-module left H-comodule
map. The category of left H-bialgebroid modules is denoted by H

HM.

31.17. Trivial H-bialgebroid modules. Let H be an A-bialgebroid and let
N be any left A-module.

(1) H⊗A N is a left H-bialgebroid module with the canonical structures

∆⊗IN : H⊗AN → H⊗A(H⊗AN), µ⊗IN : H⊗R(H⊗AN)→ H⊗AN.

(2) For any f : N → N ′ in AM, the map IH ⊗ f : H⊗A N → H⊗A N ′ is
an H-bialgebroid module morphism.

Proof. It is clear that H⊗A N is a left H-module, and it is a comodule
of the A-coring H by 18.9. The compatibility conditions follow immediately
from the properties of a bialgebroid. Moreover, it is clear that IH ⊗ f is left
H-linear and it is left H-colinear by 18.9. �

31.18. H-modules and H-bialgebroid modules. For an A-bialgebroid H,
let N ∈ HM.

(1) The left H-module H⊗bAN is a left H-bialgebroid module with the canon-
ical comodule structure

∆⊗ IN : H⊗bA N → H⊗A (H⊗bA N), h⊗ n �→ ∆(h)⊗ n.

(2) For any f : N → N ′ in HM, the map IH ⊗ f : H⊗bA N → H⊗bA N ′ is
an H-bialgebroid module morphism.
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(3) There is a bialgebroid module morphism

γN : H⊗A N → H⊗bA N, h⊗ n �→ (1H ⊗ n)∆(b).

Proof. The proof of 14.3 can be adapted to this situation. �

A number of properties of Hopf modules discussed in Section 14 can be
easily generalised to the case of bialgebroid modules. Instead of repeating
these properties we make an observation that allows us to deduce properties
of bialgebroid modules from those of the comodules of a coring.

31.19. H-bialgebroid modules as comodules of a coring. Let H be an
A-bialgebroid.

(1) View C = H⊗bA H as an (H,H)-bimodule with the left diagonal action
and the right action (h⊗h′)h′′ = h⊗h′h′′. Then C is an H-coring with
the coproduct

∆C : H⊗bAH → H⊗bAH⊗HH⊗bAH � H⊗bAH⊗bAH, ∆C = ∆H⊗IH,

and counit εC = εH ⊗ IH.

(2) The category H
HM is isomorphic to the category of left C-comodules CM.

Proof. (1) It is clear that C is an (H,H)-bimodule, and it follows from
31.18 that ∆C is an (H,H)-bimodule map. The coassociativity of ∆C follows
from the coassociativity of ∆H. Clearly, εC is a right H-module map. The
only nontrivial part is to show that it is left H-linear as well. Take any
h, h′, h′′ ∈ H and compute

εC(h(h
′ ⊗ h′′)) =

∑
εC(h1h

′ ⊗ h2h
′′) =

∑
εH(h1h

′)h2h′′

= εH(h1t(εH(h
′)))h2h′′ = εH(h1)h2s(εH(h

′))h′′

= hs(εH(h
′))h′′ = hεC(h

′ ⊗ h′′),

where we used 31.6(3) to derive the third equality and then the fact that
∆H(h) ∈ H×AH to obtain the fourth equality. Finally, εC is a counit for ∆C
since εH is a counit for ∆H.

(2) For any left H-moduleM , the canonical isomorphism H⊗AH⊗HM �
H ⊗AM allows one to view any H-bialgebroid module as a left C-comodule
and vice versa. �

In view of 31.19 we immeditely deduce from (the left-handed versions of)
18.10, 18.13, 18.14 and 18.17 the following characterisation of H-bialgebroid
modules.
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31.20. The category H
HM. Let H be an A-bialgebroid. Then:

(1) (i) The left H-bialgebroid module H⊗bA H is a subgenerator in H
HM.

(ii) For any M ∈ H
HM, N ∈ HM,

H
HHom(M,H⊗bA N)→ HHom(M,N), f �→ (ε⊗ IN) ◦ f,

is an A-module isomorphism with inverse map g �→ (IH⊗ g) ◦M�.
(2) If H is flat as a left A-module, then:

(i) H
HM is a Grothendieck category.

(ii) For all M ∈ H
HM, the functor H

HHom(M,−) : H
HM → AM is left

exact.

(iii) For all N ∈ H
HM, the functor H

HHom(−, N) : H
HM → AM is left

exact.

Since bialgebroids have both an algebra and a coalgebra structure that
are compatible with each other, it makes sense to consider not only modules
and comodules but also module coalgebras (corings) and comodule algebras.

31.21. Module corings of a bialgebroid. Let (H, sH, tH) be an A-bialge-
broid. We say that a left H-module C is a left H-module coring if C is a
coalgebra in the monoidal category (HM,⊗A) of left H-modules (cf. 31.13
and 38.33).

Recall from 31.13 that HM has a monoidal structure defined as follows.
For allM,N ∈ HM,M⊗AN ∈ HM via h(m⊗n) =

∑
h1m⊗h2n. A is the unit

object, when viewed in HM via the action h S a = εH(hsH(a)) = εH(htH(a)).
Thus, C is a left H-module coring if and only if C is a left H-module and
(C,∆C, εC) is an A-coring, where C is viewed as an (A,A)-bimodule via aca′ =
sH(a)tH(a′)c, such that ∆C, εC are left H-module maps, that is, for all h ∈ H
and c ∈ C,

∆C(hc) =
∑

h1c1 ⊗ h2c2, εC(hc) = h S εC(c) = εH(hsH(εC(c))).

A morphism between two H-module corings is an H-linear map of A-corings.

31.22. Examples of module corings. Let H be an A-bialgebroid.

(1) (H,∆H, εH) is a left H-module coring with the left H-action provided
by the product. This is known as the left regular module coring of H.

(2) View A as a trivial A-coring (cf. 17.3). Then (A, S) is a left H-module
coring, known as a trivial left H-module coring . Indeed, note that for
all a ∈ A and h ∈ H we know that

∑
sH(h1 S a)h2 = hsH(a), and

then we apply the left A-module map εH to obtain that εH(hsH(a)) =∑
εH(h1sH(a))εH(h2). This is equivalent to the fact that ∆A = IA is a

left H-linear map.
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(3) C = Ae is an A-coring with the coproduct ∆Ae(a
′⊗ ā) = a′⊗1Ā⊗1A⊗ ā

and the counit εAe(a
′⊗ā) = a′a, and it can be made into a leftH-module

coring by the H-action h(a′ ⊗ ā) = εH(hsH(a
′)tH(ā)).

31.23. Comodule algebras of a bialgebroid. Let (H, sH, tH) be an A-
bialgebroid. A left H-comodule algebra is an R-algebra B together with an
algebra map sB : A → B and a left H-module map B� : B → H ⊗A B such
that

(1) B is a unital A-ring via the map sB.

(2) B is a left comodule of the A-coring H with the coaction B�.

(3) Im(B�) ⊆ H ×A B and its corestriction B� : B → H×A B is an algebra
map.

A morphism between two H-comodule algebras is a left H-colinear map
that is also a morphism of A-rings (the latter defined in the obvious way).

31.24. Examples of comodule algebras of a bialgebroid. Let H be an
A-bialgebroid.

(1) H is a left H-comodule algebra with the map sH given by the source
map and with the regular coaction ∆. This is known as a left regular
comodule algebra of H.

(2) The algebra A is a left H-comodule algebra, when viewed as an A-ring
via the identity map sA = IA and with the coaction

A� : A→ H⊗A A, a �→ sH(a)⊗ 1A.

This comodule algebra is known as the trivial left H-comodule algebra.
(3) B = Ae is a left H-comodule algebra via sBe = − ⊗ 1A, and coaction

Ae�(a′ ⊗ ā) = sH(a′)⊗ 1A ⊗ ā.

(4) The above example can be generalised as follows. For an H-comodule
algebra B and an algebra B′, B⊗RB′ is a left H-comodule algebra with
the structures arising from those of B. This defines a functor from the
category of R-algebras to the category of H-comodule algebras.

31.25. Strict comodule algebras. Note that the definition of a left H-
comodule algebra is not dual to that of a left H-module coring. The reason is
that, although the category of left H-modules is monoidal, the category HM
of left comodules of the A-coring H is not. Thus there is no way of defining a
left H-module algebra as an algebra in the category HM. However, one can
consider a more restrictive definition of a left comoduleM of an A-bialgebroid
H by requiring it to be an (A,A)-bimodule with an (A,A)-bimodule coaction
M� :M → H⊗AM such that Im(M�) ⊆ H×AM , where

H×AM = {
∑
i

hi⊗mi ∈ H⊗AM | ∀ a∈A,
∑
i

hitH(a)⊗mi =
∑
i

hi⊗mia}.
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Such an M is called a strict left comodule of an A-bialgebroid H. The cate-
gory of strict left H-comodules is a subcategory of HM, and it is monoidal.
Explicitly, for all strict comodules M,N , the tensor product M ⊗A N is a
strict H-comodule via M⊗AN�(m ⊗ n) =

∑
m−1n−1 ⊗ m0 ⊗ n0. Note that

the right-hand side is well defined because Im(M�) ⊆ H ×A M . A is the
unit object in the category of strict left comodules with the trivial coaction
A�(a) = sH(a)⊗ 1A. Furthermore, the forgetful functor from the category of
strict leftH-comodules to the category of (A,A)-bimodules is strict monoidal.
Now, one defines a strict left H-comodule algebra as an algebra in the monoidal
category of strict left H-comodules. This definition, however, turns out to be
too restrictive to cover the examples that we will encounter in Section 37.

31.26. Exercises

(1) Given an A-bialgebroid H, use the fact that, Im(∆) ⊆ H×A H to show that
for anyM,N ∈ HM, the tensor productM ⊗AN is a left H-module with the
product h(m⊗ n) =

∑
h1m⊗ h2n. Here M and N have an (A,A)-bimodule

structure induced from their left H-module structures via the source and
target maps, that is, ama′ = s(a)t(a′)m, for all a, a′ ∈ A and m ∈ M or
m ∈ N .

(2) Let H be an A-bialgebroid with source map s and target map t. Then the
identity 1 ∈ H is a grouplike element. Prove that

AcoH1 = {b ∈ A | s(b) = t(b)}.

References. Brzeziński, Caenepeel and Militaru [76]; Brzeziński and
Militaru [81]; Hirata [130]; Kadison [137]; Kadison and Szlachányi [138]; Lu
[154]; Schauenburg [183, 185]; Sweedler [192]; Takeuchi [196]; Xu [215].
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Chapter 5

Corings and entwining
structures

In this chapter we introduce and analyse the main new class of examples
of corings, that is, corings associated to entwining structures. An entwining
structure can be understood as a generalisation of a bialgebra. In many appli-
cations, in particular in mathematical physics and noncommutative geometry,
it can be viewed as a symmetry of a noncommutative manifold. From the
Hopf algebra point of view, the introduction of an entwining structure leads
to the unification of various categories of Hopf modules studied for over 30
years. Various properties of such modules can be then understood on a more
fundamental level once they are formulated in terms of associated corings.
Thus in this chapter we introduce the notion of an entwining structure, give
numerous examples and study properties of associated corings and comod-
ules. All aspects of the general theory of corings and comodules discussed in
the previous chapters are thus illustrated and used in deriving properties of
entwined modules.

Throughout this chapter, R is a commutative ring, A is an R-algebra and
C is an R-coalgebra. The coproduct of C and any other coalgebra (including
bialgebras and Hopf algebras) is denoted by ∆ and its counit by ε. The
product in A is denoted by µ, and the unit as a map is ι : R → A. If no
confusion arises, we also write 1 for the element 1A = ι(1R).

32 Entwining structures and corings

Entwining structures were introduced in [80] in order to recapture in non-
commutative geometry symmetry properties of classical principal bundles.
Although motivated by the geometry of noncommutative principal bundles,
entwining structures have revealed a deep algebraic meaning leading far be-
yond their initial motivation. In this section we define entwining structures
and entwined modules, and we prove an important theorem that will allow us
to construct a coring associated to an entwining structure and then identify
entwined modules with comodules of this coring. We also study the dual alge-
bra of this coring, which turns out to be a ψ-twisted convolution algebra, and
gather some general properties of entwining structures related to the notions

323
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introduced earlier for general corings. The latter include cointegrals (cosepa-
rability) and the Amitsur complex, as well as the ψ-equivariant cohomology
obtained from the Cartier cohomology for the associated coring.

32.1. Entwining structures. A (right-right) entwining structure (over R)
is a triple (A,C)ψ consisting of an R-algebra A, an R-coalgebra C and an
R-module map ψ : C ⊗RA→ A⊗R C satisfying the following four conditions:
(1) ψ ◦ (IC ⊗µ) = (µ⊗ IC) ◦ (IA⊗ψ) ◦ (ψ⊗ IA),

(2) (IA⊗∆) ◦ ψ = (ψ⊗ IC) ◦ (IC ⊗ψ) ◦ (∆⊗ IA),

(3) ψ ◦ (IC ⊗ ι) = ι⊗ IC ,

(4) (IA⊗ ε) ◦ ψ = ε⊗ IA.

The map ψ is known as an entwining map, and C and A are said to be
entwined by ψ.

32.2. The bow-tie diagram. The conditions of Definition 32.1 can be
summarised in the following commutative bow-tie diagram (tensor over R):

C ⊗ A⊗ A

ψ⊗IA

��""
""
""
""
""
""
""
""
""
"

IC⊗µ
����

���
���

���
C ⊗ C ⊗ A

IC⊗ψ

���
��

��
��

��
��

��
��

��
��

C ⊗ A

∆⊗IA
�����������

ε⊗IA

����
���

���
���

�

ψ

��

A⊗ C ⊗ A

IA⊗ψ

���
��

��
��

��
��

��
��

��
��

C

IC⊗ι
������������

ι⊗IC ����
���

���
���

� A C ⊗ A⊗ C

ψ⊗IC

��""
""
""
""
""
""
""
""
""
"

A⊗ C
IA⊗ε

������������

IA⊗∆ ����
���

���
���

A⊗ A⊗ C
µ⊗IC

�����������
A⊗ C ⊗ C .

32.3. The α-notation. To denote the action of an entwining map ψ on
elements we use the following α-notation:

ψ(c⊗a) =
∑

α
aα⊗cα, (IA⊗ψ)◦(ψ⊗IA)(c⊗a⊗a′) =

∑
α,β

aα⊗a′β⊗cαβ,

and so on, for all a, a′ ∈ A, c ∈ C. This notation proves very useful in concrete
computations involving ψ. The reader is advised to check that the bow-tie
diagram is equivalent to the following relations, for all a, a′ ∈ A, c ∈ C:

left pentagon:
∑
α (aa

′)α ⊗ cα =
∑
α,β aαa

′
β ⊗ cαβ,

left triangle:
∑
α 1α ⊗ cα = 1⊗ c,

right pentagon:
∑
α aα ⊗ cα1 ⊗ cα2 =

∑
α,β aβα ⊗ c1

α ⊗ c2
β,

right triangle:
∑
α aαε(c

α) = aε(c).
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One can define right-left, left-right and left-left entwining structures by
replacing the pair (A,C) with the pairs (A,Ccop), (Aop, C) and (Aop, Ccop),
respectively, in the bow-tie diagram. All such combinations lead to equivalent
theories; thus we concentrate on right-right entwining structures only.

32.4. Entwined modules. Associated to any entwining structure (A,C)ψ
is the category of (right-right) (A,C)ψ-entwined modules denoted byM

C
A(ψ).

An object M ∈ MC
A(ψ) is a right A-module with multiplication �M and a

right C-comodule with coaction �M inducing a commutative diagram

M ⊗R A
�M⊗IA ��

�M

��

M ⊗R C ⊗R A
IM⊗ψ



���
����

����
���

M ⊗R A⊗R C .

�M⊗IC��####
####

####
##

M
�M ��M ⊗R C

A morphism in MC
A(ψ) is a right A-module map that is at the same time a

right C-comodule map.

The category of entwined modules was introduced in [69], but special
cases where studied intensively in the literature for many years, starting from
the work by Sweedler on Hopf modules, through Doi’s and Takeuchi’s work
on relative Hopf modules, up to Yetter-Drinfeld and Doi-Koppinen modules.
These special examples of entwining structures and corresponding entwined
modules are collected in the next section.

32.5. Self-duality of an entwining structure. One of the important
properties of the notion of an entwining structure is its self-duality. The bow-
tie diagram is invariant (bar a space rotation) under the operation consisting
of interchanging A with C, µ with ∆, ι with ε, and reversing all the arrows.
Note also that the notion of an entwined module is self-dual in the same sense.
Explicitly, interchange C with A, �M with �M , and reverse all the arrows in
the diagram in 32.4; then it remains unchanged.

32.6. Corings associated to entwining structures. View A ⊗R C as a
left A-module with the obvious left multiplication a(a′ ⊗ c) = aa′ ⊗ c, for all
a, a′ ∈ A, c ∈ C. Then:

(1) For an entwining structure (A,C)ψ, C = A⊗R C is an (A,A)-bimodule
with right multiplication (a′ ⊗ c)a = a′ψ(c ⊗ a), and it is an A-coring
with the coproduct and counit

∆ := IA ⊗∆ : C → A⊗R C ⊗R C � C ⊗A C, ε := IA ⊗ ε : C → A.
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(2) If C = A ⊗R C is an A-coring with coproduct ∆ = IA ⊗ ∆ and counit
ε = IA ⊗ ε, then (A,C)ψ is an entwining structure by

ψ : C ⊗R A→ A⊗R C, c⊗ a �→ (1⊗ c)a.

(3) If C = A⊗R C is the A-coring associated to (A,C)ψ as in (1), then the
category of (A,C)ψ-entwined modules is isomorphic to the category of
right C-comodules.

Proof. (1) It is obvious that A⊗RC is a left A-module with the specified
action. The following calculations, performed for any a, a′, a′′ ∈ A, c ∈ C,

(a⊗ c)(a′a′′) =
∑
α a(a

′a′′)α ⊗ cα =
∑
α,β aa

′
αa

′′
β ⊗ cαβ

=
∑
α (aa

′
α ⊗ cα)a′′ = ((a⊗ c)a′)a′′, and

(a⊗ c)1 =
∑
α a1α ⊗ cα = a⊗ c,

prove that A ⊗R C is a right A-module. Note how the left pentagon was
used to derive the first equality and the left triangle to obtain the second one.
Thus C is an (A,A)-bimodule.

Next one has to check that ε and ∆ are (A,A)-bimodule maps. Clearly
they are left A-linear. Take any a, a′ ∈ A, c ∈ C and compute

ε((a⊗ c)a′) =
∑
α ε(aa

′
α ⊗ cα) =

∑
α aa

′
αε(c

α) = aa′ε(c) = ε(a⊗ c)a′,

where the right triangle was used for the penultimate equality. Furthermore,

∆((a⊗ c)a′) =
∑
α aa

′
α ⊗ cα1 ⊗ cα2 =

∑
α,β aa

′
αβ ⊗ c1

β ⊗ c2
α

=
∑
α (a⊗ c1)a

′
α ⊗ c2

α =
∑
(a⊗ c1)⊗A (1⊗ c2)a

′

= ∆(a⊗ c)a′.

Here the second equality follows from the right pentagon. Thus ε and ∆
are (A,A)-bimodule morphisms, as required. Now, the coassociativity of ∆
follows immediately from the coassociativity of ∆, while the counit property
of ε is an immediate consequence of the fact that ε is a counit of C.

(2) Let C = A ⊗R C be an A-coring with structure maps given in the
hypothesis. Denote ψ(c⊗ a) = (1⊗ c)a =

∑
α aα ⊗ cα. Since ψ is defined in

terms of the right action, one finds ψ(1⊗ c) = c⊗ 1, the left triangle, and

ψ(c⊗ aa′) = (1⊗ c)aa′ = ((1⊗ c)a)a′ =
∑
α (aα ⊗ cα)a′

=
∑
α aα(1⊗ cα)a′ =

∑
α,β aαa

′
β ⊗ cαβ

the left pentagon. Furthermore, ε is right A-linear, and hence∑
α aαε(c

α) =
∑
α ε(aα ⊗ cα) = ε((1⊗ c)a) = ε(1⊗ c)a = ε(c)a
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the right triangle. Finally, ∆ is also right A-linear; thus∑
α,β aαβ ⊗ c1

β ⊗ c2
α =

∑
α (1⊗ c1)aα ⊗ c2

α =
∑
α (1⊗ c1)⊗A aα ⊗ c2

α

=
∑
(1⊗ c1)⊗ (1⊗ c2)a

= ∆(1⊗ c)a = ∆((1⊗ c)a)

=
∑
α∆(aα ⊗ cα) =

∑
α aα ⊗ cα1 ⊗ cα2

the right pentagon. Therefore ψ is an entwining map, as claimed.
(3) The key observation here is that ifM is a right A-module, thenM⊗RC

is a right A-module with the multiplication (m ⊗ c)a =
∑
αmaα ⊗ cα. The

statement “M is an (A,C)ψ-entwined module” is equivalent to the statement
that �M is a right A-module map. By the canonical identification M ⊗R C �
M ⊗A A ⊗R C = M ⊗A C, one can view a right C-coaction as a right A-
module map M → M ⊗A C, that is, as a right C-coaction. Conversely, a
right C-coaction can be viewed as a right A-module map �M :M →M ⊗RC,
thus providing a right C-comodule with the structure of an (A,C)ψ-entwined
module. �

The isomorphism of categories in 32.6 allows one to derive various proper-
ties of entwined modules from general properties of the comodules of a coring.
For example, 18.13(2) (cf. 18.10) implies the existence of the following

32.7. Induction functor for entwined modules. Let (A,C)ψ be an en-
twining structure. The assignment − ⊗R C : M �→ M ⊗R C for any right
A-module M defines a covariant functor −⊗R C :MA →MC

A(ψ) that is the
right adjoint of the forgetful functor MC

A(ψ)→MA.

Proof. This follows by identifications −⊗A C = −⊗AA⊗RC � −⊗RC.
�

The self-duality of entwining structures explained in 32.5, allows one also
to study the functor forgetting the A-action (−)C : MC

A(ψ) → MC . This
functor can be understood as a coinduction functor associated to a particular
morphism in the category of corings.

32.8. The functor forgetting action. Let C = A ⊗R C be the A-coring
associated to an entwining structure (A,C)ψ. Let α : R→ A be the unit map
α = ι and let γ : C → C be an R-linear map given by γ : c �→ 1⊗ c. Then:

(1) (γ : α) : (C : R)→ (C : A) is a pure morphism of corings.

(2) For any M ∈ MC, M ⊗R A is an (A,C)ψ-entwined module with the
obvious right A-multiplication and the coaction

�M⊗RA :M ⊗R A→M ⊗R A⊗R C, m⊗ a �→
∑

m0 ⊗ ψ(m1 ⊗ a).
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(3) The functor − ⊗R A : MC → MC
A(ψ) is left adjoint to the forgetful

functor (−)C :MC
A(ψ)→MC.

Proof. (1) By definition, α = ι is an algebra map and γ is an R-module
map. Let χ : C ⊗R C → C ⊗A C be the canonical projection. Then, for all
c ∈ C,

χ(γ ⊗R γ)∆(c) =
∑
(1⊗R c1)⊗A (1⊗R c2) =

∑
1⊗ c1 ⊗ c2 = ∆(1⊗ c)

and ε ◦ γ(c) = ιε(c) = α ◦ ε(c). This proves that (γ : α) : (C : R) → (C : A)
is a morphism of corings.

Take an (A,C)ψ-entwined module or, equivalently, a right C-comoduleM .
Then the coinduced module G(M) defined in 24.7 comes out as

G(M) =M✷C(A⊗R C) =M✷CC = Im (�M),

where �M : M → M ⊗R C is the C-coaction. Thus, to prove that (γ : α) :
(C : R) → (C : A) is a pure morphism of corings, we need to show that
Im (�M)⊗R C is equal to the equaliser of the maps tM ⊗ IC = �M ⊗ IC ⊗ IC
and bM ⊗ IC = IM ⊗∆⊗ IC (cf. 24.8). The coassociativity of �M immediately
implies that Im (�M) ⊗R C is in the equaliser. Conversely, if the element∑
im

i ⊗ ci ⊗ c̃i ∈M ⊗R C ⊗R C is in this equaliser, then∑
im

i
0 ⊗mi

1 ⊗ ci ⊗ c̃i =
∑
im

i ⊗ ci1 ⊗ ci2 ⊗ c̃i.

Applying IM ⊗ IC ⊗ ε⊗ IC , we obtain∑
im

i
0 ⊗mi

1ε(c
i)⊗ c̃i =

∑
im

i ⊗ ci ⊗ c̃i,

that is,
∑
im

i ⊗ ci ⊗ c̃i ∈ Im (�M), as required.
(2) One immediately checks that the induction functor F associated to

the coring morphism (γ : α) (cf. 24.6) comes out as −⊗R A.
(3) Note that Im (�M) � M in MC , so that G(M) = M , and G = (−)C .

Therefore (−)C has the left adjoint −⊗R A by 24.11. �

32.9. The dual ring of a coring associated to an entwining. Let
(A,C)ψ be an entwining structure and let C = A ⊗R C be the associated A-
coring. Then the R-algebra ∗C is anti-isomorphic to the ψ-twisted convolution
algebra Homψ(C,A). The latter is isomorphic to HomR(C,A) as an R-module
and has the product defined by

(f ∗ψ f ′)(c) =
∑

α
f(c2)αf

′(c1α),

for all f, f ′ ∈ HomR(C,A) and the unit ι ◦ ε.
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Proof. There is a canonical isomorphism of R-modules,

∗C = AHom(A⊗R C,A)→ HomR(C,A), ξ �→ [c �→ ξ(1⊗ c)],

with the inverse f �→ [a ⊗ c �→ af(c)]. Using this isomorphism, for any
ξ, ξ′ ∈ ∗C define f, f ′ ∈ HomR(C,A) via

ξ(a⊗ c) = af(c), ξ′(a⊗ c) = af ′(c), for all a ∈ A, c ∈ C,

and compute

(ξ ∗l ξ′)(a⊗ c) =
∑
ξ((a⊗ c1)ξ

′(1⊗ c2)) =
∑
ξ((a⊗ c1)f

′(c2))

=
∑
α ξ(af

′(c2)α ⊗ c1
α) =

∑
α af

′(c2)αf(c1α).

Furthermore, ε(1 ⊗ c) = 1ε(c). All this establishes that the isomorphism of
R-modules extends to an anti-isomorphism of the corresponding algebras. �

The identification of a dual ring with the ψ-twisted convolution algebra
allows one to derive various properties of the latter from general properties
of the former. Thus, for example, using 19.3, 19.6 and 32.6, we obtain

32.10. Modules over ψ-twisted convolution algebras. Let (A,C)ψ be
an entwining structure and A⊗R C the corresponding A-coring.

(1) If C is a locally projective R-module, then the category MC
A(ψ) is iso-

morphic to the category σ[(A ⊗R C)Homψ(C,A)] of right Homψ(C,A)-
modules subgenerated by A⊗R C.

(2) If C is a finitely generated projective R-module, thenMC
A(ψ) is isomor-

phic to the category MHomψ(C,A) of right Homψ(C,A)-modules.

As yet another application of the results discussed in this section we obtain
the following categorical interpretation of a twisted convolution algebra [131].

32.11. Twisted convolution algebra as endomorphism ring. For an
entwining structure (A,C)ψ, let F = (−)R : MC

A → MR be the forgetful
functor. Then the R-algebra of endomorphisms of F , Nat(F, F ) with the
product given by φφ′ = φ′ ◦ φ is isomorphic to the ψ-twisted convolution
algebra Homψ(C,A).

Proof. This follows from 18.29 combined with 32.9 and 32.6. �
Next we derive a number of properties of entwining structures from general

coring theory developed in preceding chapters. For the rest of this section
(A,C)ψ denotes an entwining structure over R with the associated A-coring
C = A⊗R C.
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32.12. Integral maps for entwining structures. C is a coseparable A-
coring if and only if there exists an R-linear map θ : C ⊗R C → A inducing
the following three commutative diagrams:

C ⊗R C ⊗R A
IC⊗ψ ��

θ⊗IA
��

C ⊗R A⊗R C
ψ⊗IC �� A⊗R C ⊗R C

IA⊗θ
��

A⊗R A
µ �� A A⊗R A,

µ��

C
∆ ��

ε

��

C ⊗R C
θ
��

R
ι �� A,

C ⊗R C
∆⊗IC ��

IC⊗∆

��

C ⊗R C ⊗R C
IC⊗θ �� C ⊗R A

ψ
��

C ⊗R C ⊗R C
θ⊗IC �� A⊗R C,

where µ is the product in A. Such a map θ is called a normalised integral
map in (A,C)ψ.

Proof. In this case, C ⊗A C � A ⊗R C ⊗R C. Using the natural iso-
morphism of R-modules, AHom(A⊗R C ⊗R C,A) � HomR(C ⊗R C,A), we
identify the cointegral δ, which, in particular, is a left A-module map, with
the mapping θ : C ⊗R C → A. Thus θ(c ⊗ c′) = δ(1 ⊗ c ⊗ c′). Recall from
32.6 that the right multiplication of C by A is given by (a⊗ c)a′ = aψ(c⊗a′),
while the coproduct and counit are IA⊗∆ and IA⊗ε, respectively. In view of
these definitions, the fact that δ is also a right A-module map is equivalent to
the first diagram. Then the conditions required for a cointegral δ in 26.1(b)
are equivalent to the second and third diagrams. �

32.13. Maschke-type theorem for entwined modules. The forgetful
functor (−)A : MC

A(ψ) → MA is separable if and only if there exists a nor-
malised integral map in (A,C)ψ. In this case, any monomorphism of (A,C)ψ-
entwined modules that splits as a morphism of right A-modules also splits as
a morphism of (A,C)ψ-entwined modules.

Proof. This follows from 32.12 combined with 26.1 and 32.6. �

32.14. Integrals in entwining structures. C is cosplit if and only if there
exists e =

∑
i ai ⊗ ci ∈ A⊗R C such that∑

iaiε(ci) = 1 and
∑
iaai ⊗ ci =

∑
i aiψ(ci ⊗ a),

for all a ∈ A. Such an element e is called a normalised integral in an entwining
structure (A,C)ψ.
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32.15. Twisted convolution algebra as a split extension. If there exists
an integral in an entwining structure (A,C)ψ, then

iL : A→ Homψ(C,A), a �→ [c �→ ε(c)a],

is a split extension.

Proof. This follows from 32.14 combined with 26.13 and 32.9. �

32.16. Characterisation of grouplike elements. C has a grouplike ele-
ment if and only if A is an (A,C)ψ-entwined module. The grouplike element
is g = �A(1), where �A is the right coaction of C on A.

Proof. By 32.6 there is a one-to-one correspondence between (A,C)ψ-
entwined modules and C-comodules, so that the assertion follows immediately
from 28.2. The proof of the latter also confirms the form of g. �

32.17. Characterisation of g-coinvariants. Let g = �A(1) =
∑
10⊗ 11 be

a grouplike element in C. Then

AcoCg = {b ∈ A | �A(b) =
∑
b10 ⊗ 11}

= {b ∈ A | for all a ∈ A, �A(ba) = b�A(a)}.

For M ∈MC
A(ψ), these g-coinvariants are denoted simply by M

coC, and the
corresponding functor MC

A(ψ)→MAcoC is denoted by (−)coC.

Proof. The first description of AcoCg is simply the definition of g-coin-
variants. Only the second description requires a justification. Suppose that
b ∈ A is such that, for all a ∈ A, �A(ba) = b�A(a). Then, in particular, taking
a = 1, �A(b) = b�(1) = bg, that is, b ∈ AcoCg . Conversely, if b ∈ AcoCg , then,
using the fact that A is an (A,C)ψ-entwined module, for all a ∈ A,

�A(ba) =
∑
b0ψ(b1 ⊗ a) =

∑
b10ψ(11 ⊗ a) = b�A(1a) = b�A(a),

as required. �

32.18. Algebra structure. Suppose that A is an (A,C)ψ-entwined module.
Then A⊗R C is an R-algebra with the product given by the formula

(a⊗ c) � (a′ ⊗ c′) = ε(c)aa′ ⊗ c′ + ε(c′)aψ(c⊗ a′)−
∑

ε(c)ε(c′)aa′0 ⊗ a′1

and the unit
∑
10 ⊗ 11 = �A(1).
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Proof. This is a special case of 28.16. The first two terms in the
product formula clearly follow from the definition of the left and right A-
module structure of A ⊗R C in 32.6. To obtain the last term we note that
g =

∑
10 ⊗ 11, and, since A is an (A,C)ψ-entwined module, we find for all

a ∈ A, �A(a) = �A(1a) =
∑
α 10aα ⊗ 11

α =
∑
(10 ⊗ 11)a, as expected (cf.

32.16). �

32.19. The Amitsur complex. Suppose that A is an (A,C)ψ-entwined
module. Then the Amitsur complex of C has the following explicit form: the
n-cochains are Ωn(C) = A⊗R C⊗Rn, and the coboundary is

dn(a⊗ c1 ⊗ . . .⊗ cn) =
∑

a0 ⊗ a1 ⊗ c1 ⊗ . . .⊗ cn

+
n∑
i=1

(−1)ia⊗ c1 ⊗ . . .⊗∆(ci)⊗ . . .⊗ cn

+(−1)n+1
∑

α1,...,αn

a10αn...α1
⊗ cα1

1 ⊗ . . .⊗ cαnn ⊗ 11.

Note that the product in Ω(C) reads

(a⊗ c1 ⊗ . . .⊗ cm)(a
′ ⊗ cm+1 ⊗ . . .⊗ cm+n)

=
∑

α1,...,αm

aa′αm...α1
⊗ cα1

1 ⊗ . . .⊗ cαmm ⊗ cm+1 ⊗ . . .⊗ cm+n.

Proof. Only the last term in the expression for dn might require some
explanation. This term is obtained by the following chain of identifications:∑

(a⊗R c1)⊗A (1⊗R c2)⊗A . . .⊗A (1⊗A cn)⊗A 10 ⊗R 11
=

∑
αn

(a⊗R c1)⊗A (1⊗R c2)⊗A . . .⊗A 10αn ⊗R c
αn
n ⊗R 11

=
∑

αn−1,αn

(a⊗R c1)⊗A (1⊗R c2)⊗A . . .⊗A 10αnαn−1
⊗R cαn−1

n−1 ⊗R cαnn ⊗R 11

· · ·
=

∑
α1,...,αn

a10αn...α1
⊗ cα1

1 ⊗ . . .⊗ cαnn ⊗ 11.

A similar chain leads to the product in Ω(C). �
Thus various properties of entwined modules can be obtained from the

properties of the comodules of the corresponding coring. This allows a signif-
icant simplification of the theory of entwined modules, in addition to provid-
ing a better conceptual understanding of the latter. On the other hand, the
knowledge of some specific properties of entwining structures might lead to
new results in the theory of corings. In brief, there is a two-way interaction
between corings and entwining structures. The following two examples serve
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as an illustration how, in view of 32.6, (obvious) C-comodules can produce
nontrivial entwined modules, and then how the self-duality property (cf. 32.5)
applied to entwined modules obtained in this way can produce nontrivial co-
modules of a coring.

32.20. C-tensored entwined modules. M = A ⊗R C⊗Rn is an (A,C)ψ-
entwined module with coaction �M = IA⊗ I⊗n−1

C ⊗∆ and right multiplication

(a′ ⊗ c1 ⊗ . . .⊗ cn)a =
∑

α1,...,αn

a′aαn...α1 ⊗ cα1
1 ⊗ . . .⊗ cαnn .

Proof. M = C⊗An is a right C-comodule via �M = I⊗An−1
C ⊗A∆C. Taking

C = A⊗R C and using the natural identification

C⊗An = A⊗R C ⊗A A⊗ C ⊗A . . .⊗A A⊗R C � A⊗R C⊗Rn,

one obtains the (A,C)ψ-entwined module structure on A⊗RC⊗Rn, as stated.
�

32.21. A-tensored entwined modules. M = C ⊗R A⊗Rn is a right C-
comodule with the right A-multiplication �M = IC ⊗ I⊗n−1

A ⊗ µ and the right
C-coaction

�M : C ⊗R A⊗Rn −→ C ⊗R A⊗Rn ⊗A C � C ⊗R A⊗Rn ⊗ C,

c⊗ a1 ⊗ . . . an �−→
∑

α1,...,αn

c1 ⊗ a1α1
⊗ . . .⊗ anαn ⊗ c2

α1...αn .

Proof. This is an exercise in the self-duality of the notions of an entwin-
ing structure and an entwined module explained in 32.5. By 32.20 we know
that A⊗RC⊗Rn is an (A,C)ψ-entwined module. By duality, C⊗RA⊗Rn is also
an (A,C)ψ-module with the stated structure maps. This is most easily seen
if one writes the right A-multiplication in 32.20 as a chain of maps and then
reverses the order of composition and makes all the interchanges required for
duality. In this way one obtains the map

(IC ⊗ I⊗n−1
A ⊗ψ) ◦ (IC ⊗ I⊗n−2

A ⊗ψ⊗ IA) ◦ . . . ◦ (IC ⊗ψ⊗ I⊗n−1
A ) ◦ (∆⊗ I⊗nA ),

which is precisely the asserted coaction. By 32.6, C ⊗R A⊗Rn is a right C-
comodule, as required. �

32.22. Flat connection in a C-tensored module. Suppose that A is
an (A,C)ψ-entwined module. Then A ⊗R C⊗Rn, n = 1, 2, . . . , has a flat
connection

∇(a⊗c1⊗. . .⊗cn) = a⊗c1⊗. . .⊗∆(cn)−
∑

α1,...,αn

a10αn...α1
⊗cα1

1 ⊗. . .⊗cαnn ⊗11.
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Proof. This follows immediately from the fact that A ⊗R C⊗Rn is a
right C-comodule (or, equivalently, an (A,C)ψ-entwined module) with the
structure described in 32.20. �

32.23. Flat connection in an A-tensored module. Suppose that A is
an (A,C)ψ-entwined module. Then C ⊗R A⊗Rn, n = 1, 2, . . . , has a flat
connection

∇(c⊗a1⊗. . .⊗an) =
∑

α1,...,αn

c1⊗a1α1
⊗. . .⊗anαn⊗c2

α1...αn−
∑

c⊗a1⊗. . .⊗an10⊗11.

Proof. The assertion follows from the fact that C ⊗R A⊗Rn is a right C-
comodule (or, equivalently, an (A,C)ψ-entwined module) with the structure
described in 32.21. On the other hand, the result can be deduced from 32.22
by the duality arguments explained in 32.5. We encourage the reader to write
out these arguments explicitly in this case. �

32.24. The ψ-equivariant cohomology of entwining structures. The
ψ-equivariant cohomology Hψ−e(C) of an entwining structure (A,C)ψ is de-
fined as the Cartier cohomology of the corresponding coring C = A ⊗R C
with values in C, that is, Hn

ψ−e(C) = Hn
Ca(A⊗R C). Using the identifications

of homomorphisms of (A,A)-bimodules with the R-submodules of homomor-
phisms of R-modules, we thus obtain that the n-cochains are given by

Cnψ−e(C) = {f ∈HomR(C,A⊗R C⊗Rn) | ∀a∈A, c∈C,
∑
α

aαf(c
α) = f(c)a},

where the right action of A on the R-module A⊗RC⊗Rn is given by 32.20. By
30.8, Cψ−e(C) is a comp algebra, and consequentlyHψ−e(C) is a Gerstenhaber
algebra. The composition comes out as

f +i g =
{
(µi ⊗ I⊗m+n−i−1

C ) ◦ (IA ⊗ I⊗iC ⊗ g ⊗ I⊗m−i−1
C ) ◦ f if 0 ≤ i < m

0 otherwise,

for f ∈ Cmψ−e(C), g ∈ Cnψ−e(C). Here µi : A ⊗R C⊗Ri ⊗R A → A ⊗R C⊗Ri

denotes the right A-multiplication described in 32.20. The distinguished ele-
ments are π : c �→ 1⊗∆(c), u : c �→ 1⊗ c and 1 = ε.

The ψ-equivariant cohomology of entwining structures was introduced in
[72] (in the dual setup) without reference to corings. Its realisation as a
cohomology of a coring leads to significant simplifications.

References. Brzeziński [69, 71, 72]; Brzeziński and Majid [80]; Caene-
peel, Militaru and Zhu [9]; Hobst and Pareigis [131]; Takeuchi [195].
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33 Entwinings and Hopf-type modules

In this section we collect examples of entwining structures and entwined mod-
ules (and thus of corings and comodules) that come from the theory of Hopf-
type modules.

33.1. Bialgebra entwining and Hopf modules. Let B be an R-algebra
and an R-coalgebra. Consider an R-linear map

ψ : B ⊗R B → B ⊗R B, b′ ⊗ b �→
∑

b1 ⊗ b′b2.

(1) ψ entwines B with B if and only if B is a bialgebra. This entwining
structure is known as a bialgebra entwining.

(2) An entwined module corresponding to a bialgebra entwining is a right
B-module, right B-comodule M such that for all m ∈M and b ∈ B,

�M(mb) =
∑

m0b1 ⊗m1b2,

that is, the category of entwined modules MB
B(ψ) is the same as the

category MB
B of Hopf modules studied in Section 14.

(3) If B is a bialgebra, then C = B ⊗R B is a B-coring with coproduct
∆ = IB ⊗∆, counit ε = IB ⊗ ε, and the (B,B)-bimodule structure

b(b′ ⊗ b′′)c =
∑

bb′c1 ⊗ b′′c2,

for b, b′, b′′, c ∈ B; that is, as a right B-module, C = B ⊗bR B (cf. 13.4).

Proof. Suppose (B,B)ψ is an entwining structure. We need to show
that the coproduct ∆ and the counit ε of B are algebra maps. Evaluating
the left pentagon identity at 1B ⊗ b ⊗ b′ for all b, b′ ∈ B, we immediately
conclude that ∆ is a multiplicative map. Also, evaluating the left triangle at
1B⊗1B, we obtain ∆(1B) = 1B⊗1B. Thus ∆ is an algebra map, as required.
Furthermore, the right triangle reads in this case

∑
b1ε(b

′b2) = ε(b′)b. Now
applying ε we deduce that the counit is a multiplicative map, as required.

Conversely, if B is a bialgebra, then B is a right B-module algebra via
the coproduct. Thus the above entwining is a special case of the entwinings
in 33.2 and 33.4 and follows from the latter.

The identification MB
B(ψ) =M

B
B and the description of the coring struc-

ture of C are immediate. �
The above example shows that, in a certain sense, an entwining structure

is a generalisation of a bialgebra in which the coalgebra structure is sepa-
rated from the algebra structure. Furthermore, in view of 32.6 and 33.1, the
properties of Hopf modules described in Section 14 are simply special cases
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of general properties of comodules of corings described in Chapters 3 and
4. As an illustration of this look at the properties of comodules of a coring
described in Section 18 to realise that 14.3 is a corollary of 18.9, 14.5 is a
corollary of 18.13 and 18.10, and 14.6 is a corollary of 18.14 and 18.17. The
reader is advised to search for other similar connections between Section 14
and Chapters 3 and 4 (for example, try and see how the theory of coinvari-
ants of Hopf modules follows from the theory of coinvariants of corings with
a grouplike element).

33.2. Relative entwining and relative modules. Let B be an R-bialgebra
and let A be a right B-comodule algebra, that is, an R-algebra and a right
B-comodule such that the coaction �A : A→ A⊗RB is an algebra map (when
A⊗R B is viewed as an ordinary tensor algebra). Define an R-linear map

ψ : B ⊗R A→ A⊗R B, b⊗ a �→
∑

a0 ⊗ ba1,

where
∑
a0 ⊗ a1 = �A(a) as usual. Then:

(1) (A,B)ψ is an entwining structure.

(2) M is an (A,B)ψ-entwined module if and only if it is a right A-module
and a right B-comodule such that, for all m ∈M and a ∈ A,

�M(ma) =
∑

m0a0 ⊗m1a1.

Such a module is known as a relative Hopf module.

(3) C = A⊗RB is an A-coring with coproduct ∆ = IA⊗∆, counit ε = IA⊗ε,
and the (A,A)-bimodule structure, for a, a′, a′′ ∈ A and b ∈ B,

a′′(a⊗ b)a′ =
∑

a′′aa′0 ⊗ ba′1.

Note that A itself is an (A,B)ψ-entwined or relative Hopf module via the
product and the B-coaction �A. The corresponding grouplike element in C
comes out as �A(1) =

∑
10 ⊗ 11.

Proof. This example is a special case of the situation to be considered
in 33.4 and hence follows from the latter. �

Using the natural left-right symmetry for modules, comodules, and so
on, one can immediately associate a left-left entwining structure to a left
comodule algebra of a bialgebra B. This is left for the reader as an exercise.

Using the self-duality of an entwining structure explained in 32.5, one
obtains a dual version of 33.2 (and all other examples discussed later, for
that matter).
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33.3. A dual-relative entwining and [C,A]-Hopf modules. Let A be an
R-bialgebra and let C be a right A-module coalgebra, that is, an R-coalgebra
and a right A-module such that the A-multiplication �C : C ⊗R A → C is a
coalgebra map (when C ⊗R A is viewed as an ordinary tensor coalgebra as in
2.12). Define an R-linear map

ψ : C ⊗R A→ A⊗R C, c⊗ a �→
∑

a1 ⊗ ca2.

(1) (A,C)ψ is an entwining structure.

(2) M is an (A,C)ψ-entwined module if and only if it is a right A-module
and a right C-comodule such that, for all m ∈M and a ∈ A,

�M(ma) =
∑

m0a1 ⊗m1a2.

Such a module is called a [C,A]-Hopf module.

(3) C = A⊗RC is an A-coring with coproduct ∆ = IA⊗∆, counit ε = IA⊗ε,
and the (A,A)-bimodule structure, for a, a′, a′′ ∈ B and c ∈ C,

a′′(a⊗ c)a′ =
∑

a′′aa′1 ⊗ ca′2.

Note that C itself is an (A,C)ψ-entwined or [C,A]-Hopf module via the co-
product and the A-action.

The above examples are all special cases of the following construction.

33.4. Doi-Koppinen entwinings and Hopf modules. Let B be an R-
bialgebra. Let A be a right B-comodule algebra and let C be a right B-module
coalgebra. Define an R-linear map

ψ : C ⊗R A→ A⊗R C, c⊗ a �→
∑

a0 ⊗ ca1,

where
∑
a0 ⊗ a1 = �A(a) ∈ A⊗R B as usual. Then:

(1) (A,C)ψ is an entwining structure.

(2) M is an (A,C)ψ-entwined module if and only if it is a right A-module
and a right C-comodule such that, for all m ∈M and a ∈ A,

�M(ma) =
∑

m0a0 ⊗m1a1.

Modules satisfying the above condition are known as Doi-Koppinen or
unifying Hopf-modules.

(3) C = A⊗RC is an A-coring with coproduct ∆ = IA⊗∆, counit ε = IA⊗ε,
and the (A,A)-bimodule structure, for a, a′, b ∈ A and c ∈ C,

a′(a⊗ c)b =
∑

a′ab0 ⊗ cb1.
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(4) HomR(C,A) is an associative algebra with the product ∗ψ given by

(f ∗ψ f ′)(c) =
∑

f(c2)0f
′(c1f(c2)1),

for all c ∈ C, and unit ι ◦ ε. This algebra structure is also known as
Koppinen’s smash product.

Proof. (1) This is shown by direct calculations. For the proof of the left
pentagon take a, a′ ∈ A and c ∈ C and compute∑

α (aa
′)α ⊗ cα =

∑
(aa′)0 ⊗ (aa′)1 =

∑
a0a

′
0 ⊗ ca1a

′
1

=
∑
α aαa

′
0 ⊗ cαa′1 =

∑
α,β aαa

′
β ⊗ cαβ,

where we used the fact that the right coaction of B on A is an algebra map.
Similarly, to prove that the left triangle commutes, we compute for all c ∈ C,∑

α 1α ⊗ cα =
∑
10 ⊗ c11 = 1⊗ c,

since the assumption that A is a right B-comodule algebra implies that
�A(1A) = 1A ⊗ 1B. To prove the commutativity of the right pentagon, com-
pute∑

α aα ⊗ cα1 ⊗ cα2 =
∑
a0 ⊗ (ca1)1 ⊗ (ca1)2 =

∑
a0 ⊗ c1a1 ⊗ c2a2

=
∑
a00 ⊗ c1a01 ⊗ c2a1 =

∑
α a0α ⊗ c1

α ⊗ c2a1

=
∑
α,β aβα ⊗ c1

α ⊗ c2
β,

using the fact that the right multiplication of C by B is a coalgebra map.
Finally, ∑

α aαε(c
α) =

∑
a0ε(ca1) =

∑
a0ε(c)ε(a1) = aε(c),

since the assumption that C is a right B-module coalgebra implies that
ε(cb) = ε(c)ε(b) for all c ∈ C and b ∈ B. This shows that the right tri-
angle commutes and thus completes the proof of (1).

Assertions (2), (3) and (4) can be seen immediately by explicitly writing
out the condition for an entwined module, the structure of the corresponding
coring from 32.6, and the dual algebra from 32.9. �

33.5. Doi-Koppinen datum. A triple (A,B,C) satisfying the conditions
of 33.4 is known as a (right-right) Doi-Koppinen datum or a Doi-Koppinen
structure, and the corresponding entwining structure is known as an entwining
structure associated to a Doi-Koppinen datum.

The investigation of Doi-Koppinen structures and Doi-Koppinen Hopf
modules was initiated independently in Doi [106] and Koppinen [144]. Doi-
Koppinen data as a separate entity first appeared in [87], and then they were
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given a separate name in [85] (incidentally, they were called Doi-Hopf data).
Various properties and applications of Doi-Koppinen structures are studied
in the recent monograph [9]. Finally, the entwining structure associated to a
Doi-Koppinen datum was first introduced in [69]. Now, in view of 32.6, nu-
merous properties of Doi-Koppinen Hopf modules described in the literature
on the subject (cf. [9] for a review and references) are consequences of the
structure theorems for comodules of a coring in 33.4.

Another example of an entwining structure comes from the representation
theory of quasi-triangular Hopf algebras (quantum groups).

33.6. Yetter-Drinfeld entwinings and crossed modules. Let H be a
Hopf algebra over R and consider an R-linear map

ψ : H ⊗R H → H ⊗R H, h′ ⊗ h �→
∑

h2 ⊗ (Sh1)h′h3,

where S is the antipode in H. Then:

(1) (H,H)ψ is an entwining structure.

(2) M is an (H,H)ψ-entwined module if and only if it is a right H-module
and a right H-comodule such that, for all m ∈M and h ∈ H,

�M(mh) =
∑

m0h2 ⊗ (Sh1)m1h3.

Such modules M are known as Yetter-Drinfeld or crossed modules (in-
troduced in [217], [179]).

(3) C = H ⊗R H is an H-coring with coproduct ∆ = IH ⊗ ∆, counit ε =
IH ⊗ ε, and the H-bimodule structure, for all h, h′, h′′, k ∈ H,

k(h′′ ⊗ h′)h =
∑

kh′′h2 ⊗ (Sh1)h′h3.

Proof. This is a special case of an entwining structure associated to a
Doi-Koppinen datum, as in 33.4. The relevant datum is given by the triple
(A = H,B = Hop ⊗ H,C = A), where the right multiplication by Hop ⊗ H
is given by h(h′ ⊗ h′′) = h′hh′′, and the right coaction of Hop ⊗ H on H is
�H(h) =

∑
h2 ⊗ Sh1 ⊗ h3. �

33.7. An alternative Doi-Koppinen entwining. Let B be an R-
bialgebra. Let A be a left B-module algebra, that is, an R-algebra and a
left B-module such that the multiplication and unit in A are left B-module
maps, where B ⊗R A is a B-module by the diagonal action (cf. 13.4) and R
is a B-module via the counit. Explicitly, we require

b(aa′) =
∑
(b1a)(b2a

′), b1A = ε(b)1A, for all a, a′ ∈ A, b ∈ B.
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Dually, let C be a left B-comodule coalgebra. Define an R-linear map

ψ : C ⊗R A→ A⊗R C, c⊗ a �→
∑

c−1a⊗ c0,

where
∑
c−1 ⊗ c0 =

C�(c) ∈ B ⊗R C is the left coaction of B on C. Then:

(1) (A,C)ψ is an entwining structure.

(2) M is an (A,C)ψ-entwined module if and only if it is a right A-module
and a right C-comodule such that, for all m ∈M and a ∈ A,

�M(ma) =
∑

m0(m1−1a)⊗m10.

Note that the first Sweedler indices describe the right C-coaction on M ,
while the second correspond to the left B-coaction on C.

(3) C = A⊗RC is an A-coring with coproduct ∆ = IA⊗∆, counit ε = IA⊗ε,
and the (A,A)-bimodule structure, for a, a′, a′′ ∈ A and c ∈ C,

a′′(a⊗ c)a′ =
∑

a′′ac−1a
′ ⊗ c0.

Proof. This is proven by a direct calculation (cf. 33.4). �
A triple (A,B,C) satisfying the conditions of 33.7 is called an alternative

Doi-Koppinen datum. Although Doi-Koppinen and alternative Doi-Koppinen
data provide a rich source of entwining structures, they do not exhaust all
possibilities. An example of an entwining structure that does not come from
Doi-Koppinen data is described in Exercise 33.8.

33.8. Exercise.
([184]) In this exercise R = F is a field. Take any entwining structure (A,C)ψ

over F , and for c ∈ C and ξ ∈ C∗ define a map Tc,ξ : A→ A, a �→
∑
α aαξ(c

α).
(i) Let (A,C)ψ be a Doi-Koppinen entwining associated to a Doi-Koppinen da-

tum (A,B,C) as in 33.4. Fix c ∈ C and ξ ∈ C∗. Use the Finiteness Theo-
rem 3.16 to show that any element of A is contained in a finite-dimensional
Tc,ξ-invariant subspace of A.

(ii) Now let C be an F -coalgebra spanned as a vector space by e and t with
the coproduct ∆(e) = e ⊗ e, ∆(t) = e ⊗ t + t ⊗ e and the counit ε(e) = 1,
ε(t) = 0. Let A be a free algebra with generators xi, i ∈ Z. Define a linear
map ψ : C ⊗R A→ A⊗R C by

ψ(e⊗ a) = a⊗ e, ψ(t⊗ xi1xi2 · · ·xin) = xi1+1xi2+1 · · ·xin+1 ⊗ t,

for all a ∈ A. Show that (A,C)ψ is an entwining structure.
(iii) In the setting of (ii), take c = t and ξ ∈ C∗ such that ξ(t) = 1. Show that

the Tt,ξ-invariant subspace of A generated by X0 is infinite-dimensional, and
deduce from (i) that (A,C)ψ is not a Doi-Koppinen entwining.
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(iv) Modify (ii)–(iii) by taking a coalgebra spanned by a grouplike element e, and
ti with ∆(ti) = e⊗ ti + ti ⊗ e, i ∈ Z. Construct an entwining that is neither
a Doi-Koppinen nor an alternative Doi-Koppinen entwining.

References. Brzeziński [69, 71, 72]; Brzeziński and Majid [80]; Cae-
nepeel, Militaru and Zhu [9, 85]; Doi [105, 106]; Hobst and Pareigis [131];
Koppinen [144, 145]; Radford and Towber [179]; Schauenburg [184]; Takeuchi
[195]; Yetter [217].
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34 Entwinings and Galois-type extensions

Further examples of entwining structures, and thus of corings not related to
Doi-Koppinen data in general, are provided by coalgebra-Galois extensions.
In this section we describe such extensions as a generalisation of the Hopf-
Galois theory (noncommutative affine schemes of a torsor or a principal fibre
bundle). To any coalgebra-Galois extension an entwining structure, hence a
coring, is associated. This coring turns out to be a Galois coring (cf. 28.18),
and, in particular, the Galois Coring Structure Theorem 28.19 can be used
to recover structure theorems for Hopf-Galois extensions and also the Fun-
damental Theorem of Hopf algebras 15.5. By this means the unifying and
simplifying powers of the coring theory are illustrated. We also introduce
the notion dual to a coalgebra-Galois extension, termed an algebra-Galois
coextension, and describe the corresponding entwining structure and coring.

34.1. Coalgebra-Galois extensions. Let C be an R-coalgebra and A an R-
algebra and a right C-comodule with coaction �A : A→ A⊗RC. Let B be the
subalgebra of coinvariants of A, B :={b∈A | for all a∈A, �A(ba) = b�A(a)}.
The extension B ↪→ A is called a coalgebra-Galois extension (or a C-Galois
extension) if the canonical left A-module, right C-comodule map

can : A⊗B A→ A⊗ C, a⊗ a′ �→ a�A(a′),

is bijective. A C-Galois extension B ↪→ A is denoted by A(B)C .

The notion of coalgebra-Galois extensions in the presented form was in-
troduced in [77], following their appearance as generalised principal bundles
in [80] (cf. [79] for the quantum group case) and an earlier appearance in the
special case of quotients of Hopf algebras in [188]. The need for principal bun-
dles with coalgebras playing the role of a structure group and coming from
problems in noncommutative geometry based on quantum groups was a main
geometric motivation for the introduction of the notion of a coalgebra-Galois
extension. On an algebraic level, a coalgebra-Galois extension is a general-
isation of the notion of a Hopf-Galois extension introduced by Kreimer and
Takeuchi in [147] (cf. 34.7 below) and later intensively studied in particular
by Doi, Takeuchi and Schneider in a series of papers [107], [108], [186], [187],
[188] (cf. [37] and [13] for reviews). On the one hand, a Hopf-Galois extension
brings the Galois theory in a realm of noncommutative rings. In fact, the in-
troduction of Hopf-Galois extensions was motivated by the work of Chase and
Sweedler on Galois theory [12]. On the other hand, a Hopf-Galois extension
is a noncommutative generalisation of an affine group scheme corresponding
to a torsor or a principal bundle.

A typical example of a coalgebra-Galois extension is provided by coideal
subalgebras of Hopf algebras, also known as quantum homogeneous spaces.
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34.2. Coideal subalgebras. Let A be a Hopf R-algebra with coproduct ∆,
counit ε, antipode S, and AR flat. Let A1 be a left A-coideal subalgebra,
that is, a subalgebra of A such that ∆(A1) ⊂ A⊗RA1 (an A-homogeneous
quantum space). Let A+

1 be the augmentation ideal, A+
1 = Ke ε ∩ A1. Define

the quotient coalgebra C = A/(A+
1 A). There is a natural right coaction of C

on A given as �A = (IA⊗ π) ◦∆, where π : A→ C is the canonical coalgebra
surjection. Let B = AcoC = {b ∈ A | for all a ∈ A, �A(ba) = b�A(a)}.
Then B ↪→ A is a coalgebra-Galois extension, A(B)C. Furthermore, if A is
a faithfully flat left A1-module, then A1 = B.

Proof. First observe that C is a quotient coalgebra, that is, A+
1 A is a

coideal in A. Indeed, take any a ∈ A+
1 and a

′ ∈ A, and compute

∆(aa′) =
∑
(aa′)1 ⊗ (aa′)2 =

∑
a1a

′
1 ⊗ a2a

′
2

=
∑

a1a
′
1 ⊗ (a2 − ε(a2))a

′
2 +

∑
aa′1 ⊗ a′2.

Since A1 is a left coideal subalgebra, the above calculation shows that

∆(A+
1 A) ⊂ A+

1 A⊗R A+ A⊗R A+
1 A,

that is, A+
1 A is a coideal, as required (see 2.4).

We need to construct the inverse for the canonical map can. This is given,
for all a ∈ A and c ∈ C, by

can−1(a⊗ c) =
∑

aS(a′1)⊗ a′2, a′ ∈ π−1(c).

To prove that this map is well defined (does not depend on the choice of a′),
first note that A+

1 is an ideal in A1. This implies that A
+
1 A is a left A1-module,

so that it immediately follows from its definition that �A is a left A1-linear
map. Therefore, A1 ⊆ B. Take any a ∈ A and a′ ∈ A+

1 . Since A1 is a left
comodule subalgebra of A and S is an antialgebra map, we can compute∑

S(a′a)1 ⊗ (a′a)2 =
∑

S(a1)S(a
′
1)⊗ a′2a2

=
∑

S(a1)S(a
′
1)a

′
2 ⊗ a2

=
∑

S(a1)ε(a
′)⊗ a2 = 0,

where we used the fact that A1 is a left A-coideal subalgebra of A to obtain
the second equality. Since any element of π−1(0) is necessarily an R-linear
combination of products a′a, with a′ ∈ A+

1 , we conclude that the map can−1

is well defined. Furthermore, it is the inverse to can since, on one hand, for
all a, a′ ∈ A,

can−1(can(a⊗ a′)) =
∑

can−1(aa′1 ⊗ π(a′2))

=
∑

aa′1Sa′2 ⊗ a′3 = a⊗ a′,
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while on the other, for all a ∈ A and c = π(a′),

can(can−1(a⊗ c)) =
∑

can(aSa′1 ⊗ a′2) =
∑

aS(a′1)a′2 ⊗ π(a′3)

= a⊗ π(a′) = a⊗ c.

Clearly can−1 is a left A-module map. It is also a right C-comodule map
since, for all c ∈ C, a ∈ A and a′ ∈ π−1(c),∑

can−1(a⊗ c1)⊗ c2 =
∑

can−1(a⊗ π(a′)1)⊗ π(a′)2

=
∑

can−1(a⊗ π(a′1))⊗ π(a′2)

=
∑

aS(a′1)⊗ a′2 ⊗ π(a′3)

= (IA ⊗ �A)(can−1(a⊗ c)),

where the second equality is a consequence of the fact that π is a coalgebra
map. Therefore there is a coalgebra-Galois extension A(B)C , as claimed.

We have already observed that A1 ⊆ B. Thus, to prove the second state-
ment, we need to show that this inclusion is in fact an equality provided A is
a faithfully flat left A1-module. This follows from the faithfully flat descent.
Note that the coinvariants can also be described as

B = {b ∈ A | b1 ⊗ π(b2) = b⊗ π(1)}.

Indeed, if b ∈ B, then taking a = 1 in the definition of coinvariants one
immediately obtains

∑
b1⊗π(b2) = b⊗π(1). Conversely, since A+

1 A is a right
A-module, so is C. Thus π is a right A-module map, that is, π(aa′) = π(a)a′.
Therefore, if b ∈ A satisfies

∑
b1 ⊗ π(b2) = b⊗ π(1), then for all a ∈ A,

�A(ba) =
∑

b1a1 ⊗ π(b2a2) =
∑

b1a1 ⊗ π(b2)a2

=
∑

ba1 ⊗ π(1)a2 =
∑

ba1 ⊗ π(a2) = b�A(a),

that is, b is in the subalgebra of coinvariants. Now there is the following
commutative diagram:

0 �� A1
��

��

A ��

=

��

A⊗A1 A

can

��
0 �� B �� A �� A⊗R C,

where the maps in the top row are the obvious inclusion and the assignment
a �→ 1 ⊗A1 a − a ⊗A1 1, and the maps in the bottom row are the obvious
inclusion and a �→

∑
a1 ⊗ π(a2) − a ⊗ π(1). The top row is exact by the
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faithfully flat descent, and the bottom row is exact by the above argument
on the form of the coinvariants (it can be viewed as a defining sequence for
coinvariants). Since can is bijective, we conclude that A1 = B. �

Another construction of a similar kind that uses coideals in a dual of a
Hopf algebra is presented in [163, Theorem 2.2].

34.3. The translation map. Consider a coalgebra-Galois extension A(B)C .
From the geometric point of view, the map

τ : C → A⊗B A, c �→ can−1(1⊗ c),

can be understood as a generalisation of the translation function [21], which
is crucial for the definition of a principal fibre bundle (cf. [67] for the quantum
principal bundle case). Thus τ is termed the translation map of a C-Galois
extension A(B)C . To denote the action of τ on elements of C we use the
Sweedler-like notation

τ(c) =
∑

c1̃ ⊗ c2̃ ∈ A⊗B A,

where summation is understood over a (undisplayed) finite index set. For
future reference we gather basic properties of τ .

34.4. Translation Map Lemma. Let B ↪→ A be a C-Galois extension,
A(B)C. The corresponding translation map τ has the following properties.
For all a ∈ A, c ∈ C,

(1)
∑
c1̃c2̃0 ⊗ c2̃1 = 1⊗ c.

(2)
∑
c1̃c2̃ = ε(c)1.

(3)
∑
a0a1

1̃ ⊗ a1
2̃ = 1⊗ a.

(4)
∑
c1̃ ⊗ c2̃0 ⊗ c2̃1 =

∑
c1

1̃ ⊗ c1
2̃ ⊗ c2.

(5)
∑
c1

1̃ ⊗ c1
2̃c2

1̃ ⊗ c2
2̃ =

∑
c1̃ ⊗ 1⊗ c2̃.

Proof. Assertion (1) follows directly from the definition of the translation
map. Assertion (2) follows from (1) by applying IA ⊗ ε. Again using (1), we
obtain for all a ∈ A,∑

can(a0a1
1̃ ⊗ a1

2̃) =
∑

a0a1
1̃a1

2̃
0 ⊗ a1

2̃
1

=
∑

a0 ⊗ a1 = can(1⊗ a).

Thus, applying can−1, we obtain assertion (3). Again making use of (1), we
compute for all c ∈ C,∑

can(c1̃ ⊗ c2̃0)⊗ c2̃1 =
∑

c1̃c2̃0 ⊗ c2̃1 ⊗ c2̃2

=
∑

1⊗ c1 ⊗ c2

=
∑

c1
1̃c1

2̃
0 ⊗ c1

2̃
1 ⊗ c2

=
∑

can(c1
1̃ ⊗ c1

2̃)⊗ c2,
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and hence (4) follows. Finally, applying IA ⊗ can−1 to (4) we derive for all
c ∈ C, ∑

c1̃ ⊗ c2̃0c
2̃
1
1̃ ⊗ c2̃1

2̃ =
∑

c1
1̃ ⊗ c1

2̃c2
1̃ ⊗ c2

2̃.

Now, using (3) on the left-hand side, we immediately obtain assertion (5). �

34.5. Translation map as a morphism of corings. The translation map
of a coalgebra-Galois extension A(B)C is an object in the category of repre-
sentations Rep(C : R | A⊗B A : A).

Proof. This follows immediately from 25.7 and 34.4(2) and 34.4(5). �

34.6. Canonical entwining for a coalgebra-Galois extension. Let A
be a C-Galois extension of B. Then there exists a unique entwining map
ψ : C ⊗RA→ A⊗R C such that A ∈MC

A(ψ) by the structure maps µ and �
A.

The map ψ is called the canonical entwining map associated to a C-Galois
extension B ↪→ A.

Proof. Assume that B ↪→ A is a coalgebra-Galois extension and let
τ : C → A⊗B A, τ(c) = can−1(1⊗ c), be the corresponding translation map.
We use the notation τ(c) =

∑
c1̃ ⊗ c2̃ (cf. the translation map lemma 34.4).

Define a map ψ : C ⊗RA→ A⊗R C by

ψ = can ◦ (IA ⊗ µ) ◦ (τ ⊗ IA), ψ : c⊗ a �→
∑

c1̃(c2̃a)0 ⊗ (c2̃a)1 . (∗)

We show that ψ entwines C and A. By the definition of the translation map
(cf. 34.4(1)),

ψ(c⊗ 1) =
∑

c1̃c2̃0 ⊗ c2̃1 = 1⊗ c.

Thus the left triangle in the bow-tie diagram commutes. Furthermore, by
property 34.4(2) of the translation map,

(IA ⊗ ε) ◦ ψ(c⊗ a) =
∑

c1̃(c2̃a)0 ⊗ ε((c2̃a)1) =
∑

c1̃c2̃a = ε(c)a,

that is, the right triangle in the bow-tie diagram commutes, too. Next we
compute

(µ⊗ IC) ◦ (IA ⊗ ψ) ◦ (ψ ⊗ IA)(c⊗ a⊗ a′)

= (µ⊗ IC) ◦ (IA ⊗ ψ)(
∑

c1̃(c2̃a)0 ⊗ (c2̃a)1 ⊗ a′)

=
∑

c1̃(c2̃a)0(c
2̃a)1

1̃((c2̃a)1
2̃a′)0 ⊗ ((c2̃a)12̃a′)1

=
∑

c1̃(c2̃aa′)0 ⊗ (c2̃aa′)1 = ψ ◦ (IC ⊗ µ)(c⊗ a⊗ a′),
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where we used the property 34.4(3) of the translation map to derive the third
equality. Hence the left pentagon in the bow-tie diagram commutes. Similarly
for the right pentagon,

(ψ ⊗ IC) ◦ (IC ⊗ ψ) ◦ (∆⊗ IA)(c⊗ a)

= (ψ ⊗ IC)(
∑

c1 ⊗ c2
1̃(c2

2̃a)0 ⊗ (c2̃a)1)

=
∑

c1
1̃(c1

2̃c2
1̃(c2

2̃a)0)0 ⊗ (c12̃c21̃(c22̃a)0)1 ⊗ (c22̃a)1
=

∑
c1̃(c2̃0c

2̃
1
1̃(c2̃1

2̃a)0)0 ⊗ (c2̃0c2̃11̃(c2̃12̃a)0)1 ⊗ (c2̃12̃a)1
=

∑
c1̃((c2̃a)0)0 ⊗ ((c2̃a)0)1 ⊗ (c2̃a)1

=
∑

c1̃(c2̃a)0 ⊗ (c2̃a)1 ⊗ (c2̃a)2 = (IA ⊗∆) ◦ ψ(c⊗ a).

We used property 34.4(4) of the translation map to derive the third equality
and then property 34.4(3) to derive the fourth one. Hence C and A are
entwined by ψ, as required. Now, again by 34.4(3), for all a, a′ ∈ A,∑

a0ψ(a1 ⊗ a′) =
∑

a0a1
1̃(a1

2̃a′)0 ⊗ (a12̃a′)1
=

∑
(aa′)0 ⊗ (aa′)1 = �A(aa′),

that is, A is an entwined (A,C)ψ-module with structure maps µ and �
A. It

remains to prove the uniqueness of the entwining map ψ given by (∗). Suppose
that there is an entwining map ψ̃ such that A ∈MC

A(ψ̃) with structure maps
µ and �A. Then, for all a ∈ A, c ∈ C,

ψ(c⊗ a) =
∑

c1̃(c2̃a)0 ⊗ (c2̃a)1 =
∑

c1̃c2̃0ψ̃(c
2̃
1 ⊗ a) = ψ̃(c⊗ a),

using the definition of the translation map to obtain the last equality. �

34.7. Canonical entwining associated to a Hopf-Galois extension.
Let H be a Hopf algebra and let B ↪→ A be a Hopf-Galois extension, that is,
A is a right H-comodule algebra, B = AcoH = {b ∈ A | �A(b) = b⊗ 1H}, and
the canonical map

can : A⊗B A→ A⊗R H, a⊗ a′ �→ a�A(a′),

is bijective. The canonical entwining structure (A,H)ψ associated to B ↪→ A
is given by

ψ : H ⊗R A→ A⊗R H, h⊗ a �→
∑

a0 ⊗ ha1

and thus coincides with the one described in 33.2. The category of right
comodules of the corresponding A-coring C = A ⊗R H is isomorphic to the
category of (A,H)-relative Hopf modules in 33.2.
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34.8. Canonical entwining associated to a coideal subalgebra. Let
A(B)C be a coalgebra-Galois extension associated to a left coideal subalgebra
of a Hopf algebra A with AR flat as described in 34.2. Let π : A→ C be the
canonical surjection. The translation map in this case is τ(c) =

∑
Sa′1⊗ a′2,

where a′ ∈ π−1(c). Therefore the canonical entwining structure (A,C)ψ comes
out as

ψ(c⊗ a) =
∑

S(a′1)(a′2a)1 ⊗ π((a′2a)2)

=
∑

S(a′1)a′2a1 ⊗ π(a′3a2) =
∑

a1 ⊗ π(a′a2).

Now note that A is a right A-comodule algebra via the coproduct. Fur-
thermore, C is a right A-module with the multiplication ca = π(a′a), where
a′ ∈ π−1(c). Thus we can write

ψ(c⊗ a) =
∑

a1 ⊗ ca2.

Since π is a coalgebra map, C is a right A-module coalgebra. Thus there
is a Doi-Koppinen datum (A,A,C), and the canonical entwining structure
is an entwining associated to this Doi-Koppinen datum as in 33.4. Right
comodules of the corresponding coring A ⊗R C are therefore Doi-Koppinen
modules as considered in 33.4.

34.9. Canonical entwining corings vs. Sweedler corings. Let B ↪→ A
be a coalgebra-Galois extension A(B)C, and let ψ : C ⊗R A→ A⊗R C be the
canonical entwining map. View A⊗B A as the Sweedler A-coring associated
to the extension B ↪→ A, and view A ⊗R C as an A-coring associated to the
entwining structure (A,C)ψ as explained in 32.6. Then the canonical map
can : A⊗B A→ A⊗R C is an isomorphism of A-corings.

Proof. By the definition of a C-Galois extension, the canonical map is
bijective. By construction, it is a left A-module map. Thus we need to show
that can is also a right A-module map with respect to the prescribed right
multiplications and that it respects coring structures. Take any a, a′, a′′ ∈ A,
and use the fact that A is an (A,C)ψ-entwined module to compute

can(a⊗ a′a′′) = a�A(a′a′′) =
∑

α
aa′0a′′α ⊗ a′1α

=
∑
(aa′0 ⊗ a′1)a′′ = can(a⊗ a′)a′′,

where ψ(c⊗ a) =
∑
α aα ⊗ cα is the α-notation for an entwining map. From

this we conclude that can is a right A-module map. Next, since A is an
(A,C)ψ-entwined module,

�A(a) = �A(1a) =
∑

10aα ⊗ 11α.
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This formula then facilitates the following calculation for all a, a′ ∈ A:

can(a⊗ 1)⊗A can(1⊗ a′) =
∑
(a10 ⊗ 11)⊗A a′0 ⊗ a′1

=
∑
(a10 ⊗ 11)a′0 ⊗ a′1

=
∑

α
a10a

′
0α

⊗ 11α ⊗ a′1

=
∑

aa′0 ⊗ a′1 ⊗A 1⊗ a′2

= ∆A⊗C ◦ can(a⊗B a′).

Finally, εA⊗C ◦ can(a⊗ a′) =
∑
aa′0ε(a′1) = aa′ = εA⊗BA(a⊗ a′).

This completes the proof that can is a coring map. Since it is bijective,
can−1 is also an A-coring morphism, thus proving the proposition. �

34.10. A⊗R C as a Galois coring. Let (A,C)ψ be an entwining structure
over R, and let C = A⊗R C be the associated A-coring as in 32.6. Then C is
a Galois A-coring if and only if (A,C)ψ is the canonical entwining structure
of a C-Galois extension B ↪→ A.

Proof. If C corresponds to the canonical entwining structure of a C-
Galois extension B ↪→ A, then A is an (A,C)ψ-entwined module, and thus
C has a grouplike element g = �A(1) by 32.16 and B = AcoCg by 32.17. By
34.9, A ⊗B A � A ⊗R C as A-corings via the canonical map can. Note that
can(1⊗ 1) = �A(1) = g. Hence (C, g) is a Galois coring. Conversely, if (C, g)
is a Galois coring, then A is a right C-comodule, and by the correspondence
in 32.6 it is an (A,C)ψ-module. The corresponding grouplike in C is g =
�A(1) =

∑
10 ⊗ 11. Furthermore, AcoCg = {b ∈ A |�A(b) =

∑
b10 ⊗ 11} = B,

since A ∈MC
A(ψ) (cf. 32.17). For the same reason the A-coring isomorphism

canA : A⊗B A→ A⊗R C (see 28.18) explicitly reads

canA(a⊗B a′) = a(
∑

10 ⊗ 11)a′ =
∑

α
a10a

′
α ⊗ 11α =

∑
aa′0 ⊗ a′1

and thus coincides with the canonical map can. This proves that B ↪→ A is a
C-Galois extension and, by the uniqueness of the canonical entwining struc-
ture (cf. 34.6), (A,C)ψ must be the canonical entwining structure associated
to B ↪→ A. �

34.11. Structure theorem for coalgebra-Galois extensions. For an
entwining structure (A,C)ψ over R, with C flat as an R-module, the following
are equivalent:

(a) A(B)C is a C-Galois extension with the canonical entwining map ψ and
A is faithfully flat as a left B-module.
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(b) A ∈ MC
A(ψ) and the induction functor − ⊗B A : MB → MC

A(ψ) is an
equivalence of categories.

Proof. This follows immediately from 28.19 and 34.10 �
Theorem 34.11 shows that 28.19 is the origin of an important structure

theorem in Hopf-Galois and coalgebra-Galois extensions theory. As a special
case of 34.11 we obtain a

34.12. Structure theorem of Hopf-Galois extensions. Let H be a Hopf
algebra, and let C = H/I be a quotient coalgebra and a right H-module (cf.
Example 34.2). Let π : H → C denote the canonical surjection. Let A be a
right H-comodule algebra with coaction � : A→ A⊗RH and view it as a right
C-comodule via �A = (IA⊗ π) ◦ �. Thus (A,H,C) is a Doi-Koppinen datum,
and we denote by MC

A(H) the corresponding category of Doi-Koppinen Hopf
modules (cf. Example 33.4). Let B = {b ∈ A | �A(b) = b⊗ π(1)} and suppose
that C is R-flat. Then the following are equivalent:

(a) A is a faithfully flat left B-module and A is a coalgebra-Galois extension
of B by C.

(b) The induction functor − ⊗B A : MB → MC
A(H) is an equivalence of

categories.

To any coalgebra-Galois extension A(B)C one can associate a B-coring,
provided certain flatness-type conditions are satisfied. This coring can be
viewed as a generalisation of a gauge or Ehresmann groupoid that is associated
to a principal fibre bundle (cf. [32]).

34.13. The Ehresmann coring. Given a C-Galois extension B ↪→ A with
translation map τ , consider a (B,B)-bimodule

C = {
∑

i
ai ⊗ ãi ∈ A⊗R A |

∑
i
ai0 ⊗ τ(ai1)ã

i =
∑

i
ai ⊗ ãi ⊗B 1}.

If A is faithfully flat as a left B-module, then C is a B-coring with the co-
product and counit

∆(
∑

i
ai ⊗ ãi) =

∑
i
ai0 ⊗ τ(ai1)⊗ ãi, ε(

∑
i
ai ⊗ ãi) =

∑
i
aiãi.

The B-coring C is called the Ehresmann or gauge coring and is denoted by
E(A(B)C).

Proof. Clearly, C is a (B,B)-bimodule. Directly from the definitions
one finds that ∆ and ε are both B-bilinear (in the case of ∆ one uses that
�A is left B-linear by the construction of B). First we need to show that ∆
is well defined.
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Let ψ be the canonical entwining map associated to A(B)C . Then, for
any (B,B)-bimodule M , one can view M ⊗B A⊗RA as an (A,C)ψ-entwined
module with right coaction �M⊗BA⊗RA(m⊗ a⊗ a′) =

∑
m⊗ a0 ⊗ ψ(a1 ⊗ a′)

and A-multiplication (m ⊗ a ⊗ a′)a′′ = m ⊗ a ⊗ a′a′′. By applying IA ⊗ can
to the defining relation of C and using the definition of ψ in terms of τ , one
easily finds that

C = (A⊗R A)coC

= {
∑
i a

i ⊗ ãi ∈ A⊗R A |
∑
i a

i
0 ⊗ ψ(ai1 ⊗ ãi) =

∑
i a

i ⊗ ãi�A(1)}.

Since A is a faithfully flat left B-module, 28.19 and 34.10 imply that the
functors −⊗BA, (−)coC are inverse equivalences. In particular, the morphism
in MC

A(ψ),

θM :M⊗BA⊗RA→ (M⊗BA⊗RA)coC⊗BA, m⊗a⊗a′ �→
∑

m⊗a0⊗τ(a1)a′,

is an isomorphism with the inverse
∑
im

i ⊗ ai ⊗ ãi ⊗ a �→
∑
im

i ⊗ ai ⊗ ãia.
Clearly this is also a left B-module isomorphism. Choosing M = B, we
obtain the isomorphism C ⊗B A � A ⊗R A. The form of θB immediately
confirms that for all c ∈ C, ∆(c) ∈ C ⊗B A ⊗R A. Next note that in fact
∆(c) ∈ (C ⊗B A⊗R A)coC since, for all c =

∑
i a
i ⊗ ãi,∑

i a
i
0 ⊗ ai1

1̃ ⊗ ai1
2̃
0 ⊗ ψ(ai1

2̃
1 ⊗ ãi) =

∑
i a
i
0 ⊗ τ(ai1)⊗ ψ(ai2 ⊗ ãi)

=
∑
i a
i
0 ⊗ τ(ai1)⊗ ãi�A(1),

where we used 34.4(4) to derive the second equality. Now take M = C and
use θC and θB to derive the following chain of isomorphisms in MC

A(ψ):

(C ⊗B A⊗R A)coC ⊗B A � C ⊗B A⊗R A � C ⊗B C ⊗B A.

Since BA is a faithfully flat module we conclude that (C ⊗B A ⊗R A)coC �
C ⊗B C, that is, ∆(C) ⊆ C ⊗B C, as required.

Now it remains to be proven that ∆ is coassociative and that ε is a counit.
For the former take c =

∑
i a
i ⊗ ãi ∈ C as before and compute

(∆⊗ IC) ◦∆(c) =
∑
i∆(a

i
0 ⊗ ai1

1̃)⊗ ai1
2̃ ⊗ ãi

=
∑
i a
i
0 ⊗ ai1

1̃ ⊗ ai1
2̃ ⊗ ai2

1̃ ⊗ ai2
2̃ãi

=
∑
i a
i
0 ⊗ τ(ai1)⊗ τ(ai2)⊗ ãi.

On the other hand,

(IC ⊗∆) ◦∆(c) =
∑
i a
i
0 ⊗ ai1

1̃ ⊗∆(ai12̃ ⊗ ãi)

=
∑
i a
i
0 ⊗ ai1

1̃ ⊗ ai1
2̃
0 ⊗ ai1

2̃
1
1̃ ⊗ ai1

2̃
1
2̃ ⊗ ãi

=
∑
i a
i
0 ⊗ τ(ai1)⊗ τ(ai2)⊗ ãi,
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where 34.4(4) was used to derive the last equality. This proves the coasso-
ciativity of ∆. The counit property of ε is verified by the following simple
calculations, which use 34.4(3) and 34.4(2), respectively:

(ε⊗ IC) ◦∆(c) =
∑

i
ai0a

i
1
1̃ ⊗ ai1

2̃ ⊗ ãi =
∑

i
ai ⊗ ãi = c,

where we used that c =
∑
i a
i ⊗ ãi is in C, and

(IC ⊗ εC) ◦∆(c) =
∑

i
ai0⊗ ai1

1̃ai1
2̃ãi =

∑
i
ai0ε(a

i
1)⊗ ãi =

∑
i
ai⊗ ãi = c.

This completes the proof of the theorem. �
In the case of a Hopf-Galois extension, the Ehresmann coring of 34.13 is

in fact a bialgebroid (see 31.6 for the definition of a bialgebroid).

34.14. The Ehresmann-Schauenburg bialgebroid. Let H be a Hopf al-
gebra and let B ↪→ A be a Hopf-Galois extension (cf. 34.7). Suppose that A
is a faithfully flat left B-module and let E(A(B)H) be the associated Ehres-
mann coring (cf. 34.13). Then E(A(B)H) is a subalgebra of Ae, and it is a B-
bialgebroid with the source map s : a �→ a⊗1 and the target map t : a �→ 1⊗ ā.

Proof. In view of 34.7, the right coaction of H on A ⊗R A comes out
as ρA⊗RA(a ⊗ a′) =

∑
a0 ⊗ a′0 ⊗ a1a

′
1. Since the right coaction of H on A

is an algebra map, one easily checks that the coinvariants (A⊗R A)coH are a
subalgebra of Ae. Then clearly s and t make E(A(B)H) into an Ae-ring, and
condition 31.6(3) is checked by a routine calculation. �

The notion of a coalgebra-Galois extension can be dualised. As a result,
one obtains the notion of an algebra-Galois coextension to which one can
associate a unique, canonical entwining and thus also a coring. We now
describe this construction following [77]. In the rest of this section, R = F
is a (commutative) field and all algebras, coalgebras, and so on, are over F .
Any unadorned tensor product of vector spaces is also over F .

34.15. Coalgebra coextensions. Let A be an F -algebra, and let C be an
F -coalgebra and a right A-module with A-multiplication �C : C ⊗ A → C.
Denote C∗ = HomF (C,F ). Let J be a subspace of C defined as

J = span{
∑
(ca)1ξ((ca)2)−

∑
c1ξ(c2a) | a ∈ A, c ∈ C, ξ ∈ C∗}.

Let B = C/J and π : C → B/J be the canonical surjection. Then:

(1) J is a coideal in C, and hence B is a coalgebra.

(2) View C as a left B-comodule with coaction C� = (π ⊗ IC) ◦∆ and view
C ⊗A as a left C comodule via C�⊗ IA. Then �C is a left C-comodule
map.
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(3) Im ((IC ⊗ �C) ◦ (∆⊗ IA)) ⊆ C✷BC.

Proof. (1) By 6.3(4), it suffices to prove thatD := {ζ ∈ C∗ | ζ(J) = 0} is
a subalgebra of the dual algebra C∗ (cf. 1.3 for the definition of the convolution
product and dual algebra). Note that ε ∈ D. Furthermore,

D = {ζ ∈ C∗ | (ζ ∗ ξ)(ca) =
∑

ζ(c1)ξ(c2a), for all a ∈ A, c ∈ C, ξ ∈ C∗}.

If ζ, ζ ′ ∈ D, then for all a ∈ A, c ∈ C and ξ ∈ C∗,

((ζ ∗ ζ ′) ∗ ξ)(ca) = (ζ ∗ (ζ ′ ∗ ξ))(ca) =
∑

ζ(c1)(ζ
′ ∗ ξ)(c2a)

=
∑

ζ(c1)ζ
′(c2)ξ(c3a) =

∑
(ζ ∗ ζ ′)(c1)ξ(c2a).

Hence ζ ∗ ζ ′ ∈ D, and D is a subalgebra of C∗, as needed.
(2) Choose a ∈ A, c ∈ C. The fact that �C is a morphism of left B-

comodules can be written as
∑
π((ca)1) ⊗ (ca)2 =

∑
π(c1) ⊗ c2a, which is

equivalent to the condition∑
π((ca)1)ξ((ca)2) =

∑
π(c1)ξ(c2a), for all ξ ∈ C∗.

This proves the assertion.
(3) Observe that this assertion can be stated as∑

c1 ⊗ π(c2)⊗ c3a =
∑

c1 ⊗ π((c2a)1)⊗ (c2a)2.

This is true by the left B-colinearity argument in part (2) of the proposition
applied to the last two tensorands. �

34.16. Algebra-Galois coextensions. Let A be an algebra, C a coalgebra
and right A-module with the A-multiplication �C , and B = C/J , where J is
the coideal of 34.15. We say that C is a (right) algebra-Galois coextension (or
A-Galois coextension) of B if and only if the canonical left C-comodule right
A-module map

can = (IC ⊗ �C) ◦ (∆⊗ IA) : C ⊗A→ C✷BC

is bijective. An A-Galois coextension C → B is denoted by C(B)A.

Notice that the map can is well defined by 34.15.

34.17. Entwining structures and algebra-Galois coextensions. Let C
be an A-Galois coextension of B, C(B)A. Then there exists a unique map
ψ : C ⊗ A → A ⊗ C entwining C with A, such that C ∈ MC

A(ψ) with the
structure maps ∆ and �C. The map ψ is called the canonical entwining map
associated to an A-Galois coextension C → B.
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Proof. This is shown by dualising the proof of 34.6, details are left to
the reader. We only mention that, for any A-Galois coextension C → B,
one can define a cotranslation map τ̌ : C✷BC → A, τ̌ = (ε ⊗ IA) ◦ can−1.
By dualising the properties of the translation map listed in the Translation
Map Lemma 34.4 (or directly from the definition of τ̌), one can establish the
following properties of the cotranslation map:

(i) τ̌ ◦∆ = ι ◦ ε.
(ii) �C ◦ (IC ⊗ τ̌) ◦ (∆⊗ IC) = ε⊗ IC on C✷BC.

(iii) τ̌ ◦ (IC ⊗ �C) = µ ◦ (τ̌ ⊗ IA) on C✷BC ⊗ A.

These can be used to prove that a map ψ : C ⊗A→ A⊗C given by

ψ = (τ̌ ⊗ IC) ◦ (IC ⊗∆) ◦ can, ψ(c⊗ a) =
∑

τ̌(c1, (c2a)1)⊗(c2a)2 ,

is the required entwining. �
Thus, in view of 32.6 and 34.17, given an algebra-Galois coextension

C(B)A there is an associated A-coring C = A ⊗ C. The (A,A)-bimodule
structure in C is given by

a(a′ ⊗ c)a′′ =
∑

aa′τ̌(c1, (c2a′′)1)⊗(c2a′′)2,

where τ̌ is the cotranslation map. The coproduct and counit are IA ⊗∆ and
IA ⊗ ε, respectively.

34.18. Algebra-Galois coextension and coideal subalgebras. Let C be
a Hopf algebra with coproduct ∆, counit ε, and the antipode S. Let A be a right
C-coideal subalgebra of C, that is, a subalgebra of C such that ∆(A) ⊆ A⊗C.
View C as a right A-module via the product in C, and suppose that A is a
faithfully flat right A-module. Consider the coideal J ⊂ C as defined in 34.15
and the corresponding quotient coalgebra B = C/J . Then C → B is an
A-Galois coextension, and the canonical entwining map is

ψ(c⊗ a) =
∑

a1 ⊗ ca2, for all a ∈ A, c ∈ C,

that is, it coincides with the entwining constructed in 33.2 (note that A is a
right C-comodule algebra here, since ∆ is an algebra map).

Proof. First note that J = CA+, where A+ = A∩Ke ε is the augmenta-
tion ideal. Indeed, taking ξ = ε in the definition of J , and using the fact that
the coproduct and counit in C are algebra maps, one immediately concludes
that CA+ ⊆ J . Conversely, any element of J is an F -linear combination
of elements x =

∑
(ca)1ξ((ca)2) −

∑
c1ξ(c2a), for some a ∈ A, c ∈ C and

ξ ∈ C∗. By the counit property of ε, this x can also be written as

x =
∑
(ca)1ξ((ca)2)−

∑
c1ε((c2a)1)ξ((c2a)2).
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Since C is a Hopf algebra, both ∆ and ε are multiplicative maps, so that

x =
∑

c1a1ξ(c2a2)−
∑

c1ε(c2a1)ξ(c3a2)

=
∑

c1a1ξ(c2a2)−
∑

c1ε(c2)ε(a1)ξ(c3a2)

=
∑

c1(a1 − ε(a1))ξ(c2a1).

Since ∆(A) ⊂ A ⊗ C, we conclude that x ∈ CA+, as needed. Thus B =
C/(CA+). In particular, the canonical coalgebra surjection π : C → B is a
left C-module map. If C is a faithfully flat right A-module, then by the same
argument as in 34.2, we obtain the identification

A = coBC = {a ∈ C |
∑
π(a1)⊗ a2 = π(1C)⊗ a}.

We claim that the canonical map can, which in this case is of the form can :
c⊗ a �→

∑
c1 ⊗ c2a, has the inverse

can−1 : C✷BC → C ⊗ A,
∑

i
ci ⊗ c̃i �→

∑
i
ci1 ⊗ S(ci2)c̃

i.

First note that can−1 is well defined since, for all x =
∑
i c
i ⊗ c̃i ∈ C✷BC,

(IC ⊗ π ⊗ IC)(IC ⊗∆)can−1(x) =
∑
i c
i
1 ⊗ π((S(ci2)c̃

i)1)⊗ (S(ci2)c̃i)2
=

∑
i c
i
1 ⊗ π(S(ci3)c̃

i
1)⊗ S(ci2)c̃

i
2

=
∑
i c
i
1 ⊗ S(ci3)π(c̃

i
1)⊗ S(ci2)c̃

i
2

=
∑
i c
i
1 ⊗ S(ci3)π(c

i
4)⊗ S(ci2)c̃

i

=
∑
i c
i
1 ⊗ π(S(ci3)c

i
4)⊗ S(ci2)c̃

i

=
∑
i c
i
1 ⊗ π(1C)⊗ S(ci2)c̃

i,

where we used the fact that π is a left C-module map to derive the third and
fifth equalities, and the fact that x ∈ C✷BC to obtain the fourth equality.
This means that

can−1(C✷BC) ⊆ C ⊗ coBC = C ⊗ A,

as required. Clearly can−1 is a right A-module and a left C-comodule map.
Furthermore, for all a ∈ A and c ∈ C,

can−1(can(c⊗ a)) = can−1(
∑
c1 ⊗ c2a) =

∑
c1 ⊗ S(c2)c3a = c⊗ a,

and for all x =
∑
i c
i ⊗ c̃i ∈ C✷BC,

can(can−1(x)) = can(
∑
i c
i
1 ⊗ S(ci2)c̃

i) =
∑
i c
i
1 ⊗ ci2S(c

i
3)c̃

i = x.
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Therefore can−1 is the inverse of the canonical map can, as claimed. Note
that the cotranslation map reads

τ̌(
∑
i c
i ⊗ c̃i) =

∑
i ε(c

i
1)S(c

i
2)c̃

i =
∑
i S(c

i)c̃i.

Applying this formula to the definition of the canonical entwining map ψ in
the proof of 34.17, we obtain, for all a ∈ A and c ∈ C,

ψ(c⊗ a) =
∑
τ̌(c1 ⊗ c2a1)⊗ c3a2 =

∑
S(c1)c2a1 ⊗ c3a2 =

∑
a1 ⊗ ca2,

as asserted. �
Thus to any left coideal subalgebra of a Hopf algebra one can associate a

coalgebra-Galois extension by 34.2, and to any right coideal subalgebra one
can associate an algebra-Galois coextension by 34.18, provided some faithful
flatness conditions are met. It has been observed in [68] that in many ex-
amples of particular interest in quantum geometry, such as quantum spheres,
left and right coideal subalgebras are actually isomorphic one to the other.
This results in the isomorphism of quotient coalgebras and thus gives one
two geometric interpretations for a coideal subalgebra. One can interpret
such a subalgebra either as a base manifold or else as a fibre of corresponding
principal bundles with isomorphic total spaces.

34.19. Exercises

(1) Suppose that R = F is a field, and let A(B)C be a coalgebra-Galois extension
associated to a coideal subalgebra A1 of a Hopf algebra A, as described in
34.2. Suppose that A is a faithfully flat left A1-module (thus, in particular
A1 = B = AcoC). Show that the Ehresmann coring E(A(B)C) (cf. 34.13) is
isomorphic to the B-coring C = A ⊗F B. A (B,B)-bimodule structure on
A⊗F B is given by

b(a⊗ b′)b′′ =
∑

b1a⊗ b2b
′b′′, for all b, b′, b′′ ∈ B, a ∈ A,

and the coproduct and counit are

∆(a⊗ b) =
∑

a1 ⊗ a2 ⊗ b, ε(a⊗ b) = ε(a)b,

for all a ∈ A, b ∈ B. Here the natural identification A ⊗F B ⊗B A ⊗F B =
A ⊗F A ⊗F B has been used. (Hint: the isomorphism is θ : C → E(A(B)C),
a⊗ b �→

∑
a1 ⊗ S(a2)b, and its inverse is θ−1 :

∑
i a
i ⊗ ãi �→

∑
i a
i
1 ⊗ ai2ã

i.)
(2) Use the properties of the cotranslation map to prove that the map ψ defined

in the proof of 34.17 satisfies the bow-tie diagram conditions.

References. Brzeziński [67, 68, 73]; Brzeziński and Hajac [77]; Brzeziński
and Majid [79, 80]; Chase and Sweedler [12]; Doi and Takeuchi [107, 108];
Husemoller [21]; Kreimer and Takeuchi [147]; Mackenzie [32]; Montgomery
[37]; Müller and Schneider [163]; Schauenburg [183]; Schneider [186, 187, 188];
Takeuchi [198].



Chapter 6

Weak corings and entwinings

This chapter is devoted to a generalisation of corings in which it is not as-
sumed that a coring is a unital (A,A)-bimodule. Such generalised corings
are known as weak corings. Various parts of the theory of corings can be
transferred to this more general situation. We discuss this transfer. Weak
corings can be seen as a natural algebraic framework for a generalisation of
bialgebras known as weak bialgebras. We derive weak bialgebras from weak
corings and study their properties. Finally, we consider examples of weak
corings coming from a modification of entwining structures.

35 Weak corings

Usually modules over associative algebras A are assumed to be unital. It
turns out, however, that there are (A,A)-bimodules C that satisfy all the
conditions for corings except unitality, that is, the multiplication with 1A is
no longer the identity map in C. Such algebraic structures are called weak
A-corings, and these together with their weak comodules are the subject of
this section. In particular, we study when A itself is a weak comodule and
define Galois weak A-corings. Applications to weak Hopf algebras and weak
entwining structures are subjects of the following sections.

As before, A is an R-algebra with unit 1A (often written as 1).

35.1. Nonunital modules. By M̃A (resp. AM̃) we denote the category of all
(not necessarily unital) right (left)A-modules with the usual homomorphisms.

M̃A (resp. AM̃) contains unital modules as a full subcategory.

For an R-algebra B, AM̃B denotes the category of (A,B)-bimodules,
which need not be unital either on the left or on the right; that is, for any
M ∈ AM̃B and m ∈M , a ∈ A, b ∈ B, (am)b = a(mb) but possibly m1B �= m

and 1Am �= m. For M,N ∈ AM̃B, the set of bimodule morphisms M → N
will be denoted by AHomB(M,N). Again unital bimodules AMB form a full

subcategory of AM̃B.
For any M ∈ M̃A there is a splitting A-epimorphism,

−⊗ 1A :M →M ⊗A A, m �→ m⊗ 1A,

which is injective (bijective) if and only if M is a unital A-module. The
canonical isomorphisms M ⊗A A→MA, m⊗ a �→ ma, and HomA(A,M)→

357
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MA, f �→ f(1A), are used to identify M ⊗A A and HomA(A,M) with MA.
In particular, MA =M1A.

For any A-module morphism f : M → N , the map f ⊗ IA : M ⊗A A →
N ⊗A A can be identified with the restriction f |MA: MA → NA, which is
also denoted by f . Since MA is a unital module, there is a functor

−⊗A A : M̃A →MA ⊂ M̃A, M �→M ⊗A A, f �→ f ⊗ IA,

which is left (right) adjoint to itself; that is, for any M,N ∈ M̃A,

HomA(M ⊗A A,N) � HomA(M ⊗A A,N ⊗A A) � HomA(M,N ⊗A A).

In particular, this implies HomA(M,A) � HomA(MA,A).
Similar constructions and properties hold for A⊗A− and left A-modules.

For any M ∈ AM̃A, this induces a splitting (A,A)-morphism,

1A ⊗−⊗ 1A :M → A⊗AM ⊗A A � AMA, m �→ 1A ⊗m⊗ 1A = 1Am1A,

and isomorphisms AHomA(M,A) � AHomA(MA,A) � AHomA(AMA,A).

35.2. Weak A-corings. A bimodule C ∈ AM̃A is called a weak A-coring
provided there are two (A,A)-bilinear maps

∆ : C → C ⊗A A⊗A C, ε : C → A,

the weak coproduct and weak counit, rendering commutative the diagrams

C
∆ ��

∆

��

C ⊗A A⊗A C
IC⊗IA⊗∆

��
C ⊗A A⊗A C

∆⊗IA⊗IC �� C ⊗A A⊗A C ⊗A A⊗A C,

and

C
∆

��$$$
$$$

$$$
$$ ∆

��%%
%%%

%%%
%%%

1A⊗− −⊗1A

��

C ⊗A A⊗A C

ε⊗IAC
��%%

%%%
%%%

%%%
%%

C ⊗A A⊗A C

ICA⊗ε
��$$$

$$$
$$$

$$$
$

C.
Writing ∆(c) =

∑
c1 ⊗ 1A ⊗ c2 for c ∈ C, these conditions are expressed by∑

c11 ⊗ 1A ⊗ c12 ⊗ 1A ⊗ c2 =
∑

c1 ⊗ 1A ⊗ c21 ⊗ 1A ⊗ c22,∑
ε(c1)c2 = 1Ac1A =

∑
c1ε(c2).
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A weak A-coring C is said to be right (left) unital provided C is unital as a
right (left) A-module, and clearly C is an A-coring provided C is unital both as
a left and right A-module. Notice that ∆ need not split as an (A,A)-bimodule
morphism unless C is left and right unital.

For the rest of the section (C,∆, ε) denotes a weak A-coring.
35.3. Corings and weak corings.

(1) (CA,∆, ε) is a (right unital) weak A-coring;
(2) (AC,∆, ε) is a (left unital) weak A-coring;
(3) (ACA,∆, ε) is an A-coring.
There are various types of duals of C, and we use 35.1 to derive the

canonical isomorphisms

C∗ := HomA(C, A) � HomA(CA,A),
(AC)∗ := HomA(AC, A) � HomA(ACA,A),

∗C := AHom(C, A) � AHom(AC, A),
∗(CA) := AHom(CA,A) � AHom(ACA,A),
∗C∗ := AHomA(C, A) � AHomA(ACA,A) = ∗C ∩ C∗.

35.4. Dual algebras.

(1) C∗ is an algebra (without a unit) by the product f ∗rg(c) =
∑
g(f(c1)c2),

for f, g ∈ C∗, c ∈ C. The weak counit ε is a central idempotent in C∗,
and (AC)∗ = ε ∗r C∗.

(2) ∗C is an algebra (without a unit) by the product f ∗lg(c) =
∑
f(c1g(c2)),

for f, g ∈ C∗, c ∈ C. The weak counit ε is a central idempotent in ∗C,
and ∗(CA) � ∗C ∗l ε.

(3) ∗C∗ is an algebra by the product f ∗ g(c) =
∑
f(c1)g(c2), for f, g ∈ ∗C∗,

c ∈ C, with unit ε.
Proof. Most of the assertions have the same proofs as for corings. For

example, to prove the centrality of ε in assertion (1), take any f ∈ C∗, c ∈ C
and compute

f ∗r ε(c) =
∑
ε(f(c1)c2) =

∑
f(c1)ε(c2) =

∑
f(c1ε(c2)) = f(1c1), and

ε ∗r f(c) =
∑
f(ε(c1)c2) = f(1c1). �

35.5. Weak comodules. A module M ∈ M̃A is called a right weak C-
comodule provided there is an A-linear map �M :M →M⊗AA⊗AC rendering
commutative the diagrams

M

�M

��

�M �� M ⊗A AC
I⊗∆

��
M ⊗A AC

�M⊗I �� M ⊗A AC ⊗A AC,

M
�M ��

−⊗1 ����
���

���
���

M ⊗A AC
I⊗ε
��

M ⊗A A.
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With the notation �M(m) =
∑
m0 ⊗ 1 ⊗m1, for all m ∈ M , the conditions

stated above are equivalent to the equalities∑
m0 ⊗ 1A ⊗∆(m1) =

∑
�M(m0)⊗ 1A ⊗m1, m1A =

∑
m0 ε(m1).

Left weak C-comodules are defined in a symmetric way.

Notice that any weak A-coring C has a left and a right coaction (by ∆)
which, however, need not be weakly counital. On the other hand, it is easy
to see that the obvious right C-coaction on AC is weakly counital, that is, AC
is a right weak C-comodule. Similarly, CA is a left weak C-comodule.

35.6. Weak comodules and comodules. Let M be a right weak C-
comodule.

(1) MA is a weak comodule over C.
(2) MA is a weak comodule over the (left unital) weak A-coring AC.
(3) MA is a weak comodule over the (right unital) weak A-coring CA.
(4) MA is a comodule over the A-coring ACA.

Notice that the structure map �M :M →M⊗AA⊗AC of weak comodules
need not be injective even if C is a coring. For example, considering A as an
A-coring (by ∆ : A � A ⊗A A, ε = IA), every right A-module M is a weak
A-comodule by the map −⊗ 1 :M →M ⊗A A, which is not injective unless
M is unital.

35.7. Morphisms. A morphism of weak comodules f : M → N is an
A-linear map such that the diagram

M
f ��

�M

��

N

�N

��
M ⊗A AC

f⊗IAC �� N ⊗A AC

commutes, which means �N ◦f = (f⊗IAC)◦�M . The set HomC(M,N) of weak
comodule morphisms is an Abelian group, and by definition it is determined
by an exact sequence,

0→ HomC(M,N)→ HomA(M,N)
γ−→ HomA(M,N ⊗A AC),

where γ(f) := �N ◦ f − (f ⊗ IAC) ◦ �M .

The following observations are easy to verify.



35. Weak corings 361

35.8. Weak coaction and tensor products. Let X be any unital right
A-module. Then X ⊗A C is a right weak C-comodule by

IX ⊗∆ : X ⊗A C −→ X ⊗A C ⊗A AC .

For any morphism f : X → Y in MA,

f ⊗ IC : X ⊗A C → Y ⊗A C

is a morphism of weak C-comodules.
For any index set Λ, A(Λ) ⊗A C � AC(Λ) as weak comodules.

35.9. Kernels and cokernels. Let f : K → M be a morphism of weak
C-comodules. There is a commutative diagram with exact rows in M̃A,

K
f ��

�K

��

M
g ��

�M

��

N �� 0

K ⊗A AC
f⊗IAC��M ⊗A AC

g⊗IAC �� N ⊗A AC �� 0.

By the cokernel property of N in M̃A, this can be completed commutatively
by some A-linear map �N : N → N ⊗A AC. An easy check shows that this
makes N a weak C-comodule, and so f has a cokernel as a weak comodule
morphism. The existence of a kernel of f can be shown in a similar way
provided the functor −⊗AAC respects injective morphisms, that is, AC is flat
as a left A-module. The arguments are the same as for comodules (compare
3.5, 18.6).

35.10. The category M̃C. The right weak C-comodules with their morphisms
form an additive category denoted by M̃C.

(1) The category M̃C has direct sums and cokernels, and it has kernels
provided AC is flat as a left A-module.

(2) For any M ∈ M̃C, X ∈MA, the map

HomC(MA,X ⊗A C)→ HomA(MA,X), f �→ (IX ⊗ ε) ◦ f,

is an isomorphism natural inM and X. Its inverse is h �→ (h⊗IC)◦�M .
(3) The functor − ⊗A CA : MA → M̃C is right adjoint to the functor

−⊗A A : M̃C →MA.

Proof. (1) It is easy to check that coproducts in M̃A yield coproducts

in M̃C in an obvious way. The rest is clear by the preceding remarks.
(2) For all h ∈ HomA(MA,X), the composition

MA
�M ��MA⊗A C

h⊗IC �� X ⊗A C
IX⊗ε �� X
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gives back the map h. Let f ∈ HomC(MA,X ⊗A C) and put h = (IX ⊗ ε) ◦ f .
Then the compositionMA

�M−→MA⊗AC
h⊗IC−→ X⊗AC yields the map f . Thus

the given assignments are inverses to each other. Any morphism M → N
in M̃A induces a morphism MA → NA, and so it is easy to see that the
isomorphism is natural in both arguments.

(3) This follows from (2) by HomC(MA,X⊗AC) � HomC(M,X⊗ACA). �

35.11. Corollary. There are isomorphisms

EndC(ACA) � (AC)∗, CEnd(ACA) � ∗(CA),

both given by f �→ ε◦f , which are anti-ring and ring morphisms, respectively.

Proof. Set X = A and M = AC in 35.10 and perform computations as
in the proof of 18.12. �

35.12. Exactness of the HomC-functors. Let AC be flat and M,N ∈ M̃C.

(1) HomC(−, N) : M̃C →MR is left exact.

(2) HomC(M,−) : M̃C →MR is left exact.

(3) If A is right A-injective, then HomC(−, ACA) : M̃C →MR is exact.

Proof. One can follow the proofs of 3.19 and 18.17. �

35.13. A as a weak comodule. The following are equivalent:

(a) A is a right (or left) weak C-comodule;
(b) A is a right (or left) ACA-comodule;
(c) there exists a grouplike element g ∈ ACA (that is, ∆(g) = g ⊗A g and

ε(g) = 1).

If this holds, we write Ag (or gA) when A is considered as a weak right (or
left) C-comodule.

Proof. (a) ⇔ (b) Let A be a right C-comodule by �A : A → A ⊗A C.
Then Im �A ⊂ ACA and A is a right ACA-comodule. The converse is obvious.

(b) ⇔ (c) Since ACA is an A-coring, the claim follows by 28.2. For a
grouplike element g ∈ C, �A : A→ A⊗A C, a �→ 1⊗ ga, is a coaction on A. �

If A,M ∈ M̃C, any comodule morphism f : A → M is uniquely deter-
mined by the image of 1A ∈ A and one defines the

35.14. Coinvariants. Let g ∈ ACA be a grouplike element.

(1) The coinvariants of any M ∈ M̃C are defined by

M coC = {f(1A) | f ∈ HomC(Ag,M)} = {m ∈MA | �M(m) = m⊗ g}.
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(2) In particular, for M = A there is a subalgebra

AcoC = {f(1A) | f ∈ EndC(Ag)} = {a ∈ A | ga = ag} ⊂ A.

(3) The map EndC(Ag)→ AcoC, f �→ f(1A), is a ring isomorphism, and

HomC(Ag,M)→M coC, f �→ f(1A),

is a right AcoC-module isomorphism, for M ∈ M̃C.

(4) For any N ∈ M̃A there are isomorphisms

HomC(Ag, N ⊗A ACA)→ HomA(A,NA)→ NA,
f �→ (IN ⊗ ε) ◦ f �→ (IN ⊗ ε) ◦ f(1A).

(5) (AC)coC � HomC(Ag, ACA) � HomA(A,A) � A, with the maps

ϕA : Hom
C(Ag, A⊗AACA)→ HomA(A,A)→ A, f �→ε◦f �→ε(f(1A)).

Proof. With canonical morphisms in 35.1, the proofs of 28.5 apply. �
The standard Hom-tensor relation yields:

35.15. The coinvariants functor. Let g ∈ ACA be a grouplike element and
B = AcoC. There is an isomorphism

HomC(N ⊗B A,M) � HomB(N,Hom
C(Ag,M))

that is natural in N ∈MB and M ∈ M̃C. Thus the functor

(−)coC � HomC(Ag,−) : M̃C →MB, M �→M coC,

is right adjoint to the induction functor −⊗B A :MB → M̃C, where N ⊗B A
is a right C-comodule with coaction IN ⊗ �A.

Furthermore, if AC is flat, then (−)coC is exact if and only if A is a pro-

jective object in M̃C.

35.16. Galois weak A-corings. Let g ∈ ACA be a grouplike element and
B = AcoC. Then (C, g) is said to be a Galois weak coring if Ag (equivalently
gA) is a Galois comodule over ACA, that is, there is an isomorphism

HomC(Ag, AC)⊗B Ag → ACA, f ⊗ a �→ f(a).

By the morphisms in 35.1, the arguments of 28.18 (resp. 18.26) prove:
If g ∈ ACA is a grouplike element, then the following are equivalent:

(a) (C, g) is a Galois weak A-coring;



364 Chapter 6. Weak corings and entwinings

(b) there is an isomorphism canA : A⊗B A→ ACA, a⊗ b �→ a�A(1)b;

(c) (ACA, g) is a Galois A-coring.

With the results observed so far the proof of 28.19 yields:

35.17. The Galois weak coring structure theorem. Let g ∈ ACA be a
grouplike element and B = AcoC.

(1) The following are equivalent:

(a) (C, g) is Galois weak coring and A is flat as a left B-module;

(b) AC is flat as a left A-module and A is a generator in MACA;
(c) AC is flat as a left A-module, and, for any M ∈ MACA, there is

an isomorphism

M coC ⊗B A→M, m⊗ a �→ ma.

(2) The following are equivalent:

(a) (C, g) is a Galois weak coring and BA is faithfully flat;

(b) AC is flat as a left A-module and Ag is a projective generator in
MACA, that is, HomC(Ag,−) :MACA →MB is an equivalence.

Comodules over corings are closely related to modules over the dual alge-
bras of corings. To a certain extent this can be transferred to weak corings.

35.18. α-condition for weak corings. We say that C satifies the left α-
condition if the map

αN,C : N ⊗A AC → HomR(
∗C, NA), n⊗ c �→ [f �→ nf(c)],

is injective for every right A-module N . By 19.3, this is satisfied if and only
if AC is locally projective as a left A-module.

The right α-condition is defined and characterised similarly.

35.19. Weak C-comodules and ∗C-modules. Let M,N ∈ M̃C.

(1) The left action

⇀ : ∗C ⊗RM →M, f ⊗m �→ (IMA ⊗ f) ◦ �M(m),

defines a left ∗C-module structure on M .

(2) HomC(M,N) ⊆ ∗CHom(M,N), and equality holds for all M,N ∈ M̃C if
and only if AC is locally projective as a left A-module.

Proof. Modulo the canonical maps for nonunital modules, the proof of
19.3 (resp. 4.3) applies. �

Left weak comodules are related to right C∗ modules in a similar way.
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35.20. ∗C- and C∗-actions on C. For any weak A-coring C there are actions

⇀ : ∗C ⊗R C → CA, f ⊗ c �→ (ICA ⊗ f) ◦∆(c),
↼ : C ⊗R C∗ → AC, c⊗ g �→ (g ⊗ IAC) ◦∆(c) .

For any c ∈ C, c↼ε = 1Ac1A = ε⇀c. Furthermore,

(1) for all f ∈ ∗C, g ∈ C∗, (f⇀c)↼g = f⇀(c↼f);

(2) for all f ∈ ∗C, h ∈ ∗C∗, f ∗l h(c) = h(f⇀c) = f(c↼h).

Proof. This is proved by direct computation. �

35.21. The category of weak comodules. Let C satisfy the left α-
condition.

(1) M̃C is a full subcategory of ∗CM̃.

(2) For every M ∈ M̃C, M ⊗A AC is generated, and MA is subgenerated,
by the right C-comodule AC.

(3) For every M ∈ M̃C, finitely generated ∗C-submodules of MA are finitely
generated as (right) A-modules.

(4) If ACA is finitely generated as a right C∗-module (left A-module), then
∗(ACA) ∈ M̃C.

Proof. (1) This is clear by 35.19.
(2) There is an epimorphism A(Λ) → M ⊗A A of right A-modules. By

35.8, this yields an epimorphism in M̃C,

(A⊗A C)(Λ) � A(Λ) ⊗A C →M ⊗A AC.

Notice that �M is a comodule morphism but need not be injective. However,
the restriction to MA ⊂ M is injective and hence MA is a subcomodule of
M ⊗A AC.

(3) For k ∈ MA, consider the cyclic submodule K := ∗C⇀k ⊂ MA. By
35.19, there exists a weak coaction �K : K → K ⊗A AC, and let �K(k) =∑r
i=1 ki ⊗ ci, where ki ∈ K, ci ∈ C. Hence, for any f ∈ ∗C, f⇀k =∑r
i=1 kif(ci), that is, K is a finitely generated right A-module.
(4) Let ACA be a finitely generated right C∗-module (or left A-module)

with generators a1, . . . , ar ∈ ACA. Consider the map
∗(ACA)→ ∗(ACA) (a1, . . . , ar) ⊂ (ACA)r ⊂ (AC)r, f �→ f⇀(a1, . . . , ar).

Since ∗(ACA) acts faithfully on ACA, this is a monomorphism of left ∗(ACA)-
modules. So ∗(ACA) is a submodule of the weak comodule (AC)r and hence
is a right weak C-subcomodule (by 35.19). �

Reference. Wisbauer [212].
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36 Weak bialgebras

Weak bialgebras were introduced in mathematical physics as a means for
studying some types of integrable Hamiltonian systems and as symmetries
of certain quantum field theories. They can be viewed as a generalisation
of bialgebras in which the coproduct is required to be a multiplicative but
not necessarily unit-preserving map. In this section we describe the basic
properties of and present a conceptual framework for weak bialgebras.

Throughout, (B, µ,∆) denotes an R-module B that is an R-algebra with
multiplication µ and unit 1 as well as a coalgebra with comultiplication ∆
and counit ε, such that

∆(ab) = ∆(a)∆(b), for all a, b ∈ B.

In explicit formulae we often need two copies of ∆(1), and hence we write∑
11 ⊗ 12 and

∑
11′ ⊗ 12′ for ∆(1)

With the twist map tw we can form another product µtw := µ ◦ tw and
coproduct ∆tw := tw ◦ ∆ for B, and the resulting structures (B, µtw,∆tw),
(B, µtw,∆) and (B, µ,∆tw) are again algebras and coalgebras with multi-
plicative coproducts. Based on any of these data, B ⊗R B is, canonically, an
algebra with unit 1⊗1 as well as a coalgebra with counit ε⊗ε (cf. 2.12). The
question we want to study is, when is B ⊗R B a weak B-coring?

36.1. Comultiplications on B⊗RB. Given (B, µ,∆), consider B⊗RB as
a (B,B)-bimodule with multiplications

a′(a⊗ b) · c = (a′a⊗ b)∆(c) =
∑

a′ac1 ⊗ bc2, for all a, a′, b, c ∈ B .

(1) For (B, µ,∆) define the maps

∆ : B ⊗R B → (B ⊗R B)⊗B (B ⊗R B) � (B ⊗R B) · 1⊗R B,
a⊗ b �→

∑
(a⊗ b1)⊗B (1⊗ b2) �→

∑
a11 ⊗ b112 ⊗ b2,

ε : B ⊗R B → (B ⊗R B) · 1
IB⊗ε−→ B ,

a⊗ b �→ (a⊗ b) · 1 �−→
∑
a11ε(b12).

(2) For (B, µtw,∆tw) consider the maps

∆tw : a⊗ b �→
∑
(a⊗ b2)⊗B (1⊗ b1),

twεtw : a⊗ b �→
∑

12aε(11b).

The module B ⊗R B with these maps is denoted by B ⊗oR B.
(3) For (B, µtw,∆) consider the maps

∆ : a⊗ b �→
∑
(a⊗ b1)⊗B (1⊗ b2), εtw : a⊗ b �→

∑
11aε(12b).
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(4) For (B, µ,∆tw) consider the maps

∆tw : a⊗ b �→
∑
(a⊗ b2)⊗B (1⊗ b1),

twε : a⊗ b �→
∑

a12ε(b11).

Then all the ∆ are (B,B)-bilinear weak coproducts on B⊗RB and all the
ε are left B-linear with

(a⊗ b) · 1 = (IB ⊗ ε) ◦∆(a⊗ b), for all a, b ∈ B.

Proof. (1) Clearly ∆ is a left B-module morphism. For b, c ∈ B,

∆((1⊗ b) · c) =
∑
(c1 ⊗ (bc2)1)⊗B (1⊗ (bc2)2)

=
∑

c111 ⊗ b1c2112 ⊗ b2c22 =
∑

c1 ⊗ b1c2 ⊗ b2c3

=
∑
(1⊗ b1)⊗B (c1 ⊗ b2c2)

=
∑
(1⊗ b1)⊗B (1⊗ b2) · c = ∆(1⊗ b) · c.

This shows that ∆ is right B-linear. The coassociativity of ∆ follows easily
from the coassociativity of ∆. Clearly ε is left B-linear. Moreover, for a, b ∈
B,

(IB ⊗ ε) ◦∆(a⊗ b) =
∑
(a⊗ b1)⊗B 11ε(b212) =

∑
a11 ⊗ b112ε(b213)

=
∑

a11 ⊗ b12 = (a⊗ b) · 1.

The proofs for (2), (3) and (4) follow the same pattern. �
In general, the properties of ∆ and ε observed in 36.1 are not sufficient

to make B ⊗R B a coring, in particular, neither ε is right B-linear nor holds
(ε⊗ IB) ◦∆(a⊗ b) = (a⊗ b) · 1. To ensure these properties we have to pose
additional conditions on ε and ∆. We say that (B, µ,∆) induces a (weak)
coring structure on B ⊗R B if the latter is a (weak) B-coring with the maps
defined in 36.1. Recall that (B, µ,∆) is a bialgebra provided ∆ and ε are
unital algebra morphisms.

36.2. B ⊗R B as a B-coring. The followig are equivalent:
(a) (B, µ,∆) is a bialgebra;

(b) (B, µ,∆) induces a coring structure on B ⊗R B;
(c) (B, µtw,∆tw) induces a coring structure on B ⊗R B;
(d) (B, µtw,∆) induces a coring structure on B ⊗R B;
(e) (B, µ,∆tw) induces a coring structure on B ⊗R B.

Proof. The equivalence of (a) and (b) follows from 33.1 via the corre-
spondence between corings and entwinings. The remaining assertions follow
by symmetry and are easy to verify. �

Part of the symmetry is lost in the case of weak corings.
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36.3. B ⊗R B as a weak B-coring.
(1) The following are equivalent:

(a) (B, µ,∆) induces a weak coring structure on B ⊗R B;
(b) (B, µtw,∆tw) induces a weak coring structure on B ⊗R B;
(c) (w.1) ε(abc) =

∑
ε(ab2)ε(b1c), for a, b, c ∈ B;

(w.2) (IB ⊗∆) ◦∆(1) = (1⊗∆(1))(∆(1)⊗ 1)
(=

∑
11 ⊗ 11′12 ⊗ 12′).

(2) The following are equivalent:

(a) (B, µ,∆tw) induces a weak coring structure on B ⊗R B;
(b) (B, µtw,∆) induces a weak coring structure on B ⊗R B;
(c) (wtw.1) ε(abc) =

∑
ε(ab1)ε(b2c), for a, b, c ∈ B;

(wtw.2) (IB ⊗∆) ◦∆(1) = (∆(1)⊗ 1)(1⊗∆(1))
(=

∑
11 ⊗ 1211′ ⊗ 12′).

Proof. (1) (a) ⇒ (c) If B ⊗R B is a weak B-coring, then ε is right
B-linear and

ε((1⊗ a) · b · c) = ε((1⊗ a) · b)c =
∑

b1ε(ab2)c

= ε((1⊗ a) · (bc)) =
∑
(bc)1ε(a(bc)2).

Now apply ε to obtain∑
ε(ab2)ε(b1c) =

∑
ε((bc)1)ε(a(bc)2) =

∑
ε(aε((bc)1)(bc)2)) = ε(abc).

Since ε is a weak counit, we obtain

(1⊗ a) · 1 =
∑
ε(1⊗ a1)⊗ a2 =

∑
11ε(a112)⊗ a2.

Setting a to be either 11′ or 1 yields

(1⊗ 11′)∆(1) =
∑
11ε(11′112)⊗ 11′2, and

∆(1) =
∑
11ε(11′11′2)⊗ 12′ .

Finally, evaluation of IB ⊗∆ at the second equality yields

(IB ⊗∆) ◦∆(1) =
∑
11ε(11′12)⊗ 12′ 1 ⊗ 12′ 2

=
∑
11ε(11′112)⊗ 11′2 ⊗ 12′ =

∑
11 ⊗ 11′12 ⊗ 12′ .

(c)⇒ (a) Suppose that (w.1) and (w.2) are satisfied. Then, for all a, b ∈
B,

ε((1⊗ a) · 1 · b) =
∑
(IB ⊗ ε)(11b1 ⊗ a12b2) =

∑
11b1 ε(a12b2)

(w.1) =
∑
11b1 ε(a13) ε(12b2)

(w.1) =
∑
11b1 ε(a14) ε(13) ε(12b2)

=
∑
11b ε(a12) = ε(1⊗ a)b ,
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that is, ε is right B-linear. By (w.2), for all a ∈ B,∑
ε(1⊗ a1)⊗ a2 =

∑
ε(1⊗ (a1)1)⊗ (a1)2

=
∑
(IB ⊗ ε)(11 ⊗ a111′12)⊗ a212′

(w.2) =
∑
(IB ⊗ ε)(11 ⊗ a112)⊗ a213

=
∑
11ε(a112)⊗ a213 =

∑
11 ⊗ (ε⊗ IB)∆(a12)

=
∑
11 ⊗ a12 = (1⊗ a)∆(1) = (1⊗ a) · 1 .

This shows that ε is weakly counital.
(b)⇔ (c) is shown with a similar computation.
(2) The proof is similar to the proof of (1). �

36.4. Grouplike elements. Assume that (B, µ,∆) induces a weak coring
structure on B⊗RB. Then ∆(1) and ∆tw(1) are grouplike elements for B⊗RB
and B ⊗oR B, respectively.
(1) B is a right B ⊗R B-comodule, and, for any M ∈ M̃B⊗RB, the coin-

variants are

M co(B⊗RB) = {m ∈MB | �M(m) =
∑

m11 ⊗ 12)}, and
Bco(B⊗RB) = {a ∈ B | ∆(a) =

∑
a11 ⊗ 12}.

(2) B is a right B⊗oRB-comodule, and, for any N ∈ M̃B⊗oRB, the coinvari-
ants are

N co(B⊗oRB) = {n ∈ NB | �N(n) =
∑

n12 ⊗ 11}, and
Bco(B⊗oRB) = {a ∈ B | ∆(a) =

∑
12a⊗ 11}.

Proof. ∆(1) is a grouplike element for B ⊗R B since

∆(∆(1)) =
∑
(11 ⊗ 121)⊗B (1⊗ 122) =

∑
(111 ⊗ 112)⊗B (1⊗ 12)

=
∑
∆(1)⊗B (11 ⊗ 12) = ∆(1)⊗B ∆(1) , and

ε(∆(1)) = (IB ⊗ ε)(∆(1) · 1) =
∑
11 ε(12) = 1.

Similarly one can show that ∆tw(1) is a grouplike element for B ⊗oR B.
(1) By 35.13, B is a right B⊗RB-comodule and 35.14(1) yields the given

characterisation of the coinvariants.
(2) The proof is analogous to the proof of part (1). �
An algebra and coalgebra B with a multiplicative coproduct is called a

weak R-bialgebra provided (B, µ,∆), (B, µtw,∆tw), (B, µtw,∆) and (B, µ,∆tw)
all induce weak coring structures on B ⊗R B. This is the most symmetric
definition of a weak bialgebra, which immediately implies that if B is a weak
bialgebra, so are all possible twists Bop, Bcop and (Bop)cop. Some of the
requirements listed above, however, are redundant, since from 36.3 we obtain:
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36.5. Weak bialgebras. Let B be an algebra and a coalgebra with a multi-
plicative coproduct. Then the following are equivalent:

(a) B is a weak bialgebra;

(b) (B, µ,∆) and (B, µ,∆tw) induce weak coring structures on B ⊗R B;
(c) (B, µtw,∆tw) and (B, µtw,∆) induce weak coring structures on B⊗RB;
(d) the conditions (w.1), (w.2), (wtw.1) and (wtw.2) in 36.3 are satisfied.

In case (B ⊗R B,∆, ε) is a B-coring, the condition b ⊗ 1 = ∆(b) implies
b = ε(b)1, which means Bco(B⊗RB) = R1B and R is an R-direct summand in
B. This is no longer true in the weak case, but some results in this direction
still hold.

36.6. Coinvariants in weak bialgebras. Let B be a weak bialgebra.

(1) For any a ∈ B the following are equivalent:

(a) ∆(a) =
∑

a11 ⊗ 12 (that is, a ∈ Bco(B⊗RB));

(b) ∆(a) =
∑
11a⊗ 12;

(c) a =
∑

ε(a11)12;

(d) a =
∑

ε(11a)12.

(2) For any a ∈ B the following are equivalent:

(a) ∆(a) =
∑
11 ⊗ 12a (that is, a ∈ Bco(B⊗oRB));

(b) ∆(a) =
∑
11 ⊗ a12;

(c) a =
∑
11ε(12a);

(d) a =
∑
11ε(a12).

Proof. (1) (a)⇒ (c), (b)⇒ (d) Apply ε⊗ IB to the equality in (a) and
(b), respectively.

(c)⇒ (a), (b) Assume a =
∑

ε(a11)12. Then

∆(a) =
∑

ε(a11)12 ⊗ 13
(wtw.2)
=

∑
ε(a11)1211′ ⊗ 12′ =

∑
a11 ⊗ 12 ,

(w.2)
=

∑
ε(a11)11′12 ⊗ 12′ =

∑
11a⊗ 12 .

(d)⇒ (a) is shown similarly.
(2) The proof goes along the lines of the proof of (1). �
Recall that, for any R-module B that is an R-coalgebra and an R-algebra,

the convolution product f ∗ g = µ◦ (f ⊗ g)◦∆, for all f, g ∈ EndR(B), makes
(EndR(B), ∗) an associative R-algebra with unit ι◦ε, that is, ι◦ε(b) = ε(b)1B,
for any b ∈ B (see 15.1). Besides the unit for ∗ there are two other maps that
are of particular interest for weak bialgebras.
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36.7. The counital source maps. Assume that (B, µ,∆) induces a weak
coring structure on B ⊗R B. Define the maps

R : B 1⊗−−→ B ⊗R B
ε−→ B, b �→

∑
11ε(b12),

L : B 1⊗−−→ B ⊗R B
twεtw−→ B, b �→

∑
ε(11b)12,

which obviously satisfy L ∗ IB = IB = IB ∗ R. For all a, b ∈ B:

(1) (i)
∑

b1 ⊗ L(b2) =
∑
11b⊗ 12;

(ii) aL(b) =
∑

L(a1b)a2 (=
∑
ε(a1b)a2);

(iii) f ∗ L(b) =
∑
f(11b)12, for any f ∈ EndR(B);

(iv) L ◦ L = L;
(v) ε(ab) = ε(aL(b)) and L(ab) = L(aL(b));
(vi) L(a)L(b) = L(L(a)b).
So BL := L(B) is a subalgebra of B and L is left BL-linear.

(2) (i)
∑

R(b1)⊗ b2 =
∑
11 ⊗ b12;

(ii) R(b)a =
∑
a1R(ba2) (=

∑
a1ε(ba2));

(iii) R ∗ g(b) =
∑
11g(b12), for any g ∈ EndR(B);

(iv) R ◦ R = R;
(v) ε(ab) = ε(R(a)b) and R(ab) = R(R(a)b);
(vi) R(a)R(b) = R(aR(b)).
So BR := R(B) is a subalgebra of B and R is right BR-linear.

The maps L, R are known as left, resp. right, counital source maps.

Proof. (1) (i), (ii) follow directly from (w.1) and (w.2); (iii) is a conse-
quence of (i).

(iv) and (v) follow from the computations

L(L(a)) =
∑

ε(ε(11a)11′12)12′ =
∑

ε(11a) ε(11′12)12′

(w.1) =
∑

ε(11′a)12′ = L(a) , and

ε(aL(b)) =
∑

ε(aε(11b)12)

(w.1) =
∑

ε(a12)ε(11b) = ε(ab).

(vi) ∆(L(a)) =
∑
11 L(a)⊗ 12, and hence by (ii),

L(L(a)L(b)) =
∑

ε(11L(a)b)12 = L(L(a)b).

(2) If (B, µ,∆) induces a weak coring structure on B ⊗R B, then so does
(B, µtw,∆tw) (see 36.3), and the proof is similar to the proof of (1). �
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36.8. The base algebra of a weak bialgebra. For any weak bialgebra B,

(1) Bco(B⊗RB) = BL and BL is a direct summand of B as a left BL-module;

(2) Bco(B⊗oRB) = BR and BR is a direct summand of B as a right BR-
module;

(3) BR and BL are commuting subalgebras of B;

(4) BL and BR are separable and Frobenius as R-algebras.

Proof. (1) and (2) follow by 36.4, 36.6 and 36.7.
(3) Let x ∈ BL, y ∈ BR. Then, by (w.2) and (wtw.2),

xy =
∑

ε(11x)1211′ε(y12′) =
∑

ε(11x)11′12ε(y12′)

=
∑
11′ε(y12′)12ε(11x)12 = yx.

(4) We prove the assertion for BL =: A by showing that

e =
∑

L(11)⊗ 12 ∈ A⊗R A

is a separability idempotent and a Frobenius element, and that ε induces a
Frobenius homomorphism E := ε|A. By 36.7(1)(i), ∆(1) =

∑
11 ⊗ L(12) ∈

B ⊗R A, and, consequently, e =
∑

L(11)⊗ L(12) ∈ A⊗R A. Explicitly,

e =
∑
i ai ⊗ ãi =

∑
ε(11′11)12′ ⊗ 12.

Now, take any b ∈ B and compute∑
iE(L(b)ai)ãi =

∑
ε(11′11)ε(L(b)12′)12 =

∑
ε(11L(b))12

=
∑
ε(11′b)ε(12′11)12 =

∑
ε(11b)ε(12)13 = L(b),

where we used (w.1) to obtain the second equality and then (wtw.2) to obtain
the penultimate one. Similarly,∑

i aiE(ã
iL(b)) =

∑
ε(11′11)ε(12L(b))12′

=
∑
ε(11L(b))12 = L(L(b)) = L(b).

Here the second equality follows from (wtw.1), while the last equality is the
consequence of (1)(v) in 36.7. This shows that A is a Frobenius algebra with a
Frobenius element e and Frobenius homomorphism E. It also implies that for
all a ∈ A, ae = ea. Furthermore, the multiplicativity of ∆ and the definition
of the counit immediately imply that

∑
i aiã

i =
∑
ε(1111′)1212′ = 1. So e is

a separability idempotent and A is a separable Frobenius algebra. �
By the definition, given a weak bialgebra B, B ⊗R B is a weak B-coring.

It turns out that B itself is a coring. Even more, B is a bialgebroid (cf. 31.6)
with the subalgebra BL as a base algebra.
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36.9. Bialgebroid structure of weak bialgebras. Let B be a weak bial-
gebra with coproduct ∆, counit ε, and let A = Im(L) as in 36.8. Then B is
an A-bialgebroid with source and target s, t : A→ B given by

s(a) = a, t(a) =
∑

ε(12a)11,

and comultiplication ∆ : B → B ⊗A B and counit ε : B → A given by

∆(b) = (χ ◦∆)(b) =
∑

b1 ⊗ b2, ε(b) = L(b),

where χ : B ⊗R B → B ⊗A B is the canonical projection.

Proof. First note that t is the restriction to A of a more general map
t : B → B, b �→

∑
11ε(12b). Now, (w.2) and (w

tw.2) imply for all b, b′ ∈ B,

L(b)t(b′) =
∑
ε(11b)1211′ε(12′b

′) =
∑
ε(11b)11′12ε(12′b

′) = t(b′)L(b), (∗)

and hence, for all a, a′ ∈ A, s(a)t(a′) = t(a′)s(a), as required for the source
and target maps.

Observe that, for a weak bialgebra B, its co-opposite Bcop (B with flipped
comultiplication) is also a weak bialgebra, and t is a left counital source map
for Bcop. Thus the corresponding statements 36.7(1)(i)–(vi) hold for t, in
particular t(bb′) = t(bt(b′)) and t(b)t(b′) = t(t(b)b′) for all b, b′ ∈ B. Using
these relations as well as equation (∗), we obtain for all b, b′ ∈ B,

t(L(b)b′) = t(L(b)t(b′)) = t(t(b′)L(b)) = t(b′)t(L(b)).

This immediately implies that t is an anti-algebra map.
Again, since t is a left counital source map for Bcop, there is a version of

36.7(1)(i) for t, in particular,
∑
t(11) ⊗ 12 =

∑
11 ⊗ 12. Furthermore, note

that t ◦ L = t, since, by (w.1), for all b ∈ B,

t ◦ L(b) =
∑
11ε(12L(b)) =

∑
11ε(1212′)ε(11′b) =

∑
11ε(12b) = t(b),

as required. Since
∑

L(11)⊗ 12 is a separability element for A,

a
∑

L(11)⊗ 12 =
∑

L(11)⊗ 12a,

for all a ∈ A. Now, applying t ⊗ IB to this equality and using the above
results (including the fact that t is an anti-algebra map), we deduce that∑

11t(a)⊗ 12 =
∑
11 ⊗ 12a, for all a ∈ A.

Therefore, for all b ∈ B and a ∈ A,∑
b1 ⊗ b2s(a) =

∑
b111 ⊗ b212a =

∑
b111t(a)⊗ b212 =

∑
b1t(a)⊗ b2,
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that is, ∆(b) ∈ B ×A B. Finally, using (wtw.1), note that for all b, b′ ∈ B,

L(bt(b′)) =
∑
ε(11b11′)ε(12′b

′)12 =
∑
ε(11bb

′)12 = L(bb′), (∗∗)

so that
ε(bb′) = L(bb′) = L(bL(b′)) = L(bs(ε(b′))),

= L(bt(b′)) = L(bt(ε(b′))),
as required for a counit of a bialgebroid. Note that we used 36.7(1)(v) to
derive the first conclusion, and (∗∗) together with the fact that t = t ◦ L to
obtain the second conclusion. This completes the proof. �

36.10. Antipodes. An element S ∈ EndR(B) is called a left antipode if
S ∗ IB = R and S ∗ L = S. Explicitly, this means that for all b ∈ B,∑

(Sb1) b2 =
∑
11ε(b12) and

∑
S(11b)12 = S(b).

S is called a right antipode provided IB ∗ S = L and R ∗ S = S, that is,∑
b1(Sb2) =

∑
ε(11b)12 and

∑
11S(b12) = S(b).

S is called an antipode if it is both a left and a right antipode, that is, the
following identities hold:

S ∗ IB = R, S ∗ IB ∗ S = S, IB ∗ S = L.

A weak bialgebra B with an antipode is called a weak Hopf algebra.

It is straightforward to see that the antipode of a weak bialgebra has
the usual properties of the antipode in case B is a bialgebra (then L and
R coincide with ι ◦ ε). On the other hand, the essential properties of the
antipodes can also be shown for the weak case.

36.11. Antipode and source maps. Let B be a weak Hopf algebra with
antipode S. Then, for any a, b ∈ B:

(1)
∑
ε(S(b)11)12 = L(b) =

∑
S(11)ε(12b).

(2)
∑
11ε(12S(b)) = R(b) =

∑
ε(b11)S(12).

(3) L ◦ R = L ◦ S = S ◦ R and R ◦ L = R ◦ S = S ◦ L.
(4) L(aL(b)) =

∑
a1L(b)S(a2) and R(R(a)b) =

∑
S(b1)R(a)b2.

(5) S(BL) = BR and S(BR) = BL.

Proof. Let b ∈ B. The first equality in (1) follows by the computation

L(b) =
∑
ε(11L(b))12

36.6 =
∑
ε(L(b)11)12 =

∑
ε(b1S(b2)11)12

36.7(2) =
∑
ε(R(b1)S(b2)11)12

36.10 =
∑
ε(S(b)11)12.
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The first equality in (2) results from an analogous calculation. For the first
equality in (3) compute (again referring to 36.6, 36.7 and 36.10)

L ◦ S(b) =
∑
ε(11S(b))12 =

∑
ε(11S(b1)b2S(b3))12

=
∑
ε(11S(b1)L(b2))12 =

∑
ε(11S(b1)b2)12 = L ◦ R(b),

and an analogous computation proves R ◦ S = R ◦ L.
As an intermediate result we show

∑
S(b)1 ⊗ S(b)2 =

∑
11S(b2)⊗ 12S(b1) (∗)

by the computation

∆ ◦ S(b) =
∑
∆(S(b1)b2S(b3)) =

∑
∆(S(b1)L(b2))

=
∑
S(b1)1L(b2)⊗ S(b1)2 =

∑
S(b1)1b2S(b3)⊗ S(b1)2

=
∑
S(b1)1b2 ε(11b3)S(b4)⊗ S(b1)212

=
∑
S(b1)1b2S(b4)⊗ S(b1)2L(b3)

=
∑
S(b1)1b2S(b5)⊗ S(b1)2b3S(b4)

=
∑
[S(b1)b2]1S(b4)⊗ [S(b1)b2]2S(b3)

=
∑
11S(b3)⊗ 12R(b1)S(b2) =

∑
11S(b2)⊗ 12S(b1).

The equality (∗) is then used to show

L ◦ S(b) =
∑
S(b)1S(S(b)2) =

∑
11S(b2)S(12(S(b1))

=
∑
11(S(12R(b)) = 11(S(R(b)12) = S ◦ R(b);

R ◦ S(b) =
∑
S(S(b)1)S(b)2 =

∑
S(11S(b2))12(S(b1)

=
∑
S2(b2)S(b1) = S ◦ L(b).

The preceding results allow one to prove the second equality in (1),

∑
ε(12b)S(11) =

∑
ε(12b)S ◦ R(11) =

∑
ε(12b)L ◦ S(11)

=
∑
ε(12b) ε(11′S(11))12′ =

∑
ε(12b) ε(11′11)12′

=
∑
ε(11′b)2′ = L(b),

and the second equality in (2) is shown with a similar proof. The statements
in (4) are easily derived from (1) and 36.6. The assertions in (5) follow
immediately from the equalities in (1), (2) and (3). �
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36.12. Properties of the antipode. Let B be a weak Hopf algebra with
antipode S. Then for any a, b ∈ B:

(1) S(ab) = S(b)S(a), that is, S is an algebra anti-morphism. Furthermore,
∆(S(b)) = S ⊗ S(∆tw(b)), that is, S is a coalgebra anti-morphism.

(2) S(1B) = 1B and ε ◦ S = ε, that is, unit and counit are S-invariant.

(3)
∑
b1 ⊗ S(b2)b3 =

∑
b11 ⊗ S(12) and

∑
b1S(b2)⊗ b3 =

∑
S(11)⊗ 12b.

Proof. To show that S is an anti-morphism of algebras we compute

S(ab) =
∑
S(a1b1)a2b2S(a3b3) =

∑
S(a1b1)L(a2L(b2))

=
∑
S(a1b1)a2L(b2)S(a3) =

∑
R(R(a1)b1)S(b2)S(a2)

=
∑
S(b1)R(a1)b2S(b3)S(a3)

=
∑
S(b1)b2S(b3)S(a1)a2S(a3) = S(b)S(a).

To show that S is an anti-morphism of coalgebras we first compute∑
S(11)⊗ S(12) =

∑
12′ ε(11′S(11))⊗ S(12)

=
∑
12′ ⊗ S(12)ε(11′11)

=
∑
12′ ⊗ R(11′) =

∑
12 ⊗ 11.

Now equation (∗) in the proof of 36.11 yields∑
S(b)1 ⊗ S(b)2 =

∑
11S(b2)⊗ 12S(b1)

=
∑
S(11)S(b2)⊗ S(11)S(b1) =

∑
S(b2)⊗ S(b1).

For the claims in (2) observe that S(1) = S(R(1)) = L(R(1)) = 1, and

ε(S(b)) =
∑
ε(S(b1)b2S(b3)) =

∑
ε(S(b1)L(b2))

=
∑
ε(S(b1)b2) = ε(R(b)) = ε(b).

(3) The assertions follow by the computations∑
b1 ⊗ S(b2)b3 =

∑
b1 ⊗ ε(b211)S(12)

=
∑
b111′ ⊗ ε(b212′11)S(12)

=
∑
b111 ⊗ ε(b212)S(13) =

∑
b11 ⊗ S(12),∑

b1S(b2)⊗ b3 =
∑
S(11) ε(12b1)⊗ b2

=
∑
S(11) ε(1211′b1)⊗ 12′b2

=
∑
S(11)⊗ ε(12b1)13b2 =

∑
S(11)⊗ 12b.

�
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36.13. Galois corings. Let B be a weak bialgebra. Then the weak B-coring
B ⊗R B is said to be Galois if there is an isomorphism (see 35.16)

canB : B ⊗BL B → (B ⊗R B) · 1, a⊗ b �→ (a⊗ 1)∆(b).

Obviously, canB is a left B-module morphism.

36.14. Existence of antipodes. Let B be a weak bialgebra. Then:

(1) B has a right antipode if and only if canB has a left inverse in BM.

(2) canB is an isomorphism if and only if B has an antipode.

Proof. (1) (⇐) To simplify notation put canB = γ. If β is a left inverse
of γ, then 1⊗BL b = β ◦γ(1⊗BL b) = β(∆b), and application of IB⊗L yields
L(b) = (IB ⊗ L) ◦ β(∆b). The composition

S : B
1⊗−−→ B ⊗R B −·1−→ (B ⊗R B) · 1

β−→ B ⊗BL B
IB⊗�L−→ B

is a right antipode since

µ ◦ (id⊗ S) ◦∆(b) =
∑
b1((IB ⊗ L)β(11 ⊗ b212))

= (IB ⊗ L) ◦ β(∆b) = L(b), and
R ∗ S(b) =

∑
11S(b12) =

∑
(IB ⊗ L) ◦ β(11 ⊗ b12) = S(b).

(⇒) Let S : B → B be a right antipode and consider the map

β : B ⊗R B → B ⊗BL B, a⊗ b �→
∑

aS(b1)⊗BL b2.

By the property

β((a⊗ b)∆(1)) =
∑
a11S(b1121e)⊗BL b2122

(w.2) =
∑
a11S(b111′12)⊗BL b212′

=
∑
aS(b111′)⊗BL b212′ = β(a⊗ b)

it induces a map β : (B ⊗R B) · 1 → B ⊗BL B, which is a left inverse of γ
since, for any b ∈ B,

β ◦ γ(1⊗BL b) = β(∆b) =
∑

b1S(b21)⊗BL b22 =
∑

b11eS(b12)⊗BL b2
=

∑
L(b1)⊗BL b2 = 1⊗BL b .

(2) (⇒) Assume that γ is bijective. By (1), there exists a right antipode
S, and hence IB ∗ S ∗ IB = L ∗ IB = IB. Any element in (B ⊗B) · 1 can be
written as

∑
i ai∆ci, for some ai, ci ∈ B, and∑

i µ ◦ (IB ⊗ (S ∗ IB − εB))(ai∆ci) =
∑
i ai(IB ∗ S ∗ IB − IB ∗ εB)(ci) = 0.
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This implies for (1⊗ b)∆(1) ∈ (B ⊗B) · 1, where b ∈ B,

R(b) =
∑
11ε(b12) =

∑
11 S ∗ IB(b12) =

∑
11 S(b1121) b2122

(w.2) =
∑
11 S(b111′12) b212′

=
∑

S(b111′) b212′ = S ∗ IB(b).

Moreover, R ∗ S = S ∗ IB ∗ S = S ∗ L = S, showing that S is an antipode.
(⇐) We know for β defined in (1) that β◦γ is the identity map on B⊗BLB.

Furthermore, for any a, b ∈ B,

γ ◦ β((a⊗ b) · 1) =
∑
(aS(b1)⊗ 1)∆(b2) =

∑
aS(b1)b21 ⊗ b22

=
∑

aS(b11)b12 ⊗ b2 = a
∑

R(b1)⊗ b2

36.7(1)(i) = a(1⊗ b) · 1 = (a⊗ b) · 1 ,

showing that γ ◦ β is the identity on (B⊗RB) · 1. So γ is an isomorphism. �

36.15. Weak Hopf modules. Let B be a weak bialgebra. Then weak right
B⊗RB-comodules are called weak Hopf modules and their category is denoted
by M̃B⊗RB. They have the following properties.

(1) B is a right (and left) weak Hopf module with a grouplike element
∆(1B) =

∑
11 ⊗ 12.

(2) The coinvariants of any M ∈ M̃B⊗RB are

M co(B⊗RB) = {m ∈M | �M(m) = m⊗B ∆B(1B)}.

(3) For any N ∈ M̃B, the coinvariants of N ⊗B (B ⊗R B) are

HomB⊗RB(B,N ⊗B (B ⊗R B)) � NB.

In particular, Bco(B⊗RB) = BL and (B ⊗R B)co(B⊗RB) � B.

(4) For any m ∈M ∈ M̃B⊗RB, m · 1 =
∑
m0R(m1).

Proof. By 36.4, ∆(1B) is a grouplike element and the assertions (2) and
(3) follow from 35.14. The coinvariants of B are considered in 36.6. Finally,
(4) follows from the counitality of M and the definition of R. �

36.16. Fundamental theorem for weak Hopf algebras. For a weak
R-bialgebra B, the following are equivalent:

(a) B is a weak Hopf algebra;

(b) B ⊗R B is a Galois weak coring;

(c) HomB⊗RB(B,−) : M(B⊗RB)·1 → MBL is an equivalence with inverse
−⊗BL B;
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(d) for every M ∈M(B⊗RB)·1, ϕM : M co(B⊗RB) ⊗BL B → M, n⊗ b �→ nb,
is an isomorphism.

Proof. (a)⇔ (b) is shown in 36.14.
(b)⇒ (d) First observe that, for any m ∈M ,

�M(m0S(m1)) =
∑
(m00 ⊗m01)(S(m1)1 ⊗ S(m1)2)

=
∑
m0S(m3)⊗m1S(m2)

36.12(3) =
∑
m0S(12m1)⊗ S(11) =

∑
m0S(m1)11 ⊗ 12,

that is,
∑
m0S(m1) ∈M co(B⊗RB). Now define a map

β :M →M co(B⊗RB) ⊗BL B, m �→
∑

m0S(m1)⊗m2.

This is the inverse to ϕ since, on the one hand, for any m ∈M ,

ϕ ◦ β(m) =
∑

ϕ(m0S(m1)⊗m2) =
∑

m0R(m1) = m,

and on the other hand, for any n ∈M co(B⊗RB), b ∈ B,

β ◦ ϕ(n⊗ b) = β(nb) = β(n)b =
∑
n11S(12)⊗ 13b

=
∑
n⊗ 11S(2)13b = n⊗ b.

(c)⇔ (d) This follows from the commutative diagram

HomB⊗RB(B,M)⊗BL B ��

�
��

M

=

��
M co(B⊗RB) ⊗BL B ��M.

(d)⇒ (b) This follows from the observation that canB = ϕ(B⊗RB)·1. �
Recall that the category of comodules over a weak coring B ⊗R B is

a Grothendieck category provided B ⊗R B is flat as a left B-module (see
35.10). It follows from 36.7(3) that any weak bialgebra B has BL as a direct
summand, which means that B is flat as a left BL-module if and only if it is
faithfully flat. Hence the characterisation of a ring as a generator for related
comodules in 35.17 immediately implies the

36.17. Structure theorem for weak Hopf algebras. For any weak R-
bialgebra B, the following are equivalent:

(a) B is a weak Hopf algebra, and B is flat as a left BL-module;

(b) B ⊗R B is flat as a left B-module and

(i) B is a weak Hopf algebra, or
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(ii) B is a (projective) generator in M(B⊗RB)·1, or

(iii) HomB⊗RB(B,−) :M(B⊗RB)·1 →MBL is an equivalence, or

(iv) for every M ∈ M(B⊗RB)·1, M coB ⊗BL B → M, m ⊗ b �→ mb, is
an isomorphism.

Proof. First note that the equivalence of all the assertions in (b) follows
from 36.16.

(a)⇒ (b.i) If B is flat as left BL-module, then B⊗BL B � B⊗R B is flat
as left B-module.

(b.ii) ⇒ (a) By the flatness condition, monomorphisms in M(B⊗RB)·1 are
injective, and hence the module-theoretic proof (see 43.12) works to show
that the generator B is flat over its endomorphism ring BL. �

36.18. Remarks.

(1) The description of weak bialgebras in 36.5 shows that the definition
we use here is equivalent to the original definition in [65], which is stated in
terms of conditions (w.1), (w.2), (wtw.1) and (wtw.2). The only difference is
that no assumptions on R or the dimension of B are made here. Most of the
computations can be found in [65].

Since B ⊗R B is flat (projective) as a left B-module provided B is flat as
an R-module, the conditions of 36.17 hold for any weak Hopf algebra over a
field, and for this case the statements are shown in [65, Theorem 3.9].

The antipodes satify in particular S ∗ IB ∗ S = S and IB ∗ S ∗ IB = IB,
the conditions used by Fang Li in [114] to define his “weak Hopf algebras”.

(2) The relationship between weak bialgebras and bialgebroids described
in 36.9 was first established in [113], under the stronger assumption that a
weak bialgebra is a weak Hopf algebra with a bijective antipode. The fact
that it suffices to take a weak bialgebra to produce a bialgebroid was realised
by Schauenburg in [185]. Furthermore, in [113] the following refinement of
36.9 is proven:

If H is a weak Hopf algebra, then the corresponding bialgebroid over A is a
Hopf algebroid.

On the other hand, the following converse to 36.9 is proven in [138] (cf.
[185]):

Over a field F , if A is a Frobenius-separable algebra (that is, a Frobenius and
separable algebra for which a Frobenius element coincides with the separability
idempotent), then any A-bialgebroid is a weak bialgebra over F .

We note that a Frobenius-separable algebra is termed a Frobenius index-1
algebra in [138].
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(3) There are several examples of weak Hopf algebras that come from
mathematical physics. In particular, weak Hopf algebras appear as symme-
tries of partition functions of the IRF-type integrable models ([128]) and also
as algebraic structures related to the dynamical Yang-Baxter equation (cf.
[113]). Other examples of weak Hopf algebras include the generalised Kac
algebras introduced in [216]. On the other hand, examples of weak Hopf
algebras were obtained as a generalisation of Ocneanu’s paragroup [172] in-
troduced in the context of depth-2 subfactors of von Neumann algebras. In
view of 36.18, as a corollary of 31.15 one obtains that, given a depth-2 Frobe-
nius algebra extension B → D, with the centraliser A = DB, which is a
Frobenius-separable algebra, the endomorphisms space H = BEndB(D) is a
weak Hopf algebra [138].

References. Böhm, Nill and Szlachányi [65]; Böhm and Szlachányi
[66]; Brzeziński, Caenepeel and Militaru [76]; Brzeziński and Militaru [81];
Caenepeel and DeGroot [82]; Etingof and Nikshych [113]; Fang Li [114]; Hi-
rata [130]; Kadison [137]; Kadison and Szlachányi [138]; Lu [154]; Nakajima
[164]; Nill [169]; Schauenburg [183, 185]; Sweedler [192]; Takeuchi [196]; Wis-
bauer [212]; Xu [215]; Yamanouchi [216].
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37 Weak entwining structures

In this section A denotes an R-algebra with product µ and unit (map) ι,
and C an R-coalgebra with coproduct ∆ and counit ε. We have seen in 32.6
that entwining structures are in one-to-one correspondence with A-coring
structures on A⊗R C. Now a natural question arises. Suppose that A⊗R C
is a weak coring. What is the relationship between A and C? This leads to
the introduction of

37.1. Weak entwining structures. A triple (A,C, ψ) is said to be a (right-
right) weak entwining structure (over R) if ψ : C ⊗RA → A⊗R C is an
R-module map satisfying the following four conditions for all a, b ∈ A, c ∈ C,
where the α-notation ψ(c⊗ a) =

∑
α aα ⊗ cα from 32.3 is used:

(we.1)
∑
α(ab)α ⊗ cα =

∑
α aαbβ ⊗ cαβ.

(we.2)
∑
α aαψ(c

α
1 ⊗ 1)⊗ cα2 =

∑
α,β aαβ ⊗ c1

β ⊗ c2
α.

(we.3)
∑
α aαε(c

α) =
∑
α ε(c

α)1αa.

(we.4)
∑
α 1α ⊗ cα =

∑
α ε(c1

α)1α ⊗ c2.

In comparison with the definition of an entwining structure in 32.1, one
sees that this generalisation is obtained by keeping the left pentagon equation
but weakening the right pentagon equation and replacing the triangle equal-
ities by hexagon equalities. Note that the right pentagon equation implies
(we.2).

Weak entwining structures are in bijective correpondence with canonical
weak coring structures on A⊗R C.
37.2. Weak corings and weak entwining structure. Consider A ⊗R C
as a left A-module canonically.

(1) If (A,C, ψ) is a weak entwining structure, then A ⊗R C is a right A-
module by

(a⊗ c) · b = aψ(c⊗ b), for a, b,∈ A, c ∈ C,

and A⊗R C is a left unital weak A-coring with coproduct and counit

∆ : A⊗R C → (A⊗R C)⊗A (A⊗R C) � (A⊗R C) · 1⊗R C,
a⊗ c �→

∑
(a⊗ c1)⊗A (1⊗ c2) �→

∑
(a⊗ c1) · 1⊗ c2,

ε : A⊗R C → (A⊗R C) · 1 → A ,
a⊗ c �→ (a⊗ c) · 1 �→ (I ⊗ ε)((a⊗ c) · 1).

(2) Assume that A ⊗R C is an A-coring with ∆ and ε as defined in (1).
Then the R-linear map

C ⊗R A→ A⊗R C, c⊗ a �→ (1⊗ c) · a,

is a weak entwining map for A and C.
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Proof. Clearly both ∆ and ε are left A-linear. The equalities

(1⊗ c) · ab =
∑
(ab)α ⊗ cα, (1⊗ c) · a · b =

∑
aαbβ ⊗ cαβ,

show that (we.1) implies that A ⊗R C is a (nonunital) right A-module. By
definition,

∆(1⊗ c) · a =
∑
(1⊗ c1)⊗A (1⊗ c2) · a =

∑
(1⊗ c1)⊗A (

∑
aα ⊗ c2

α)

=
∑
aαβ ⊗ c1

β ⊗ c2
α, and

∆((1⊗ c) · a) = ∆(
∑
aα ⊗ cα) =

∑
(aα ⊗ cα1) · 1⊗ cα2

=
∑
aαψ(c

α
1 ⊗ 1)⊗ cα2,

and hence (we.2) implies that ∆ is right A-linear.
The remaining conditions are related to properties of ε. The equalities

ε((1⊗ c) · a) = IA ⊗ ε((1⊗ c) · a) =
∑
aαε(c

α), and

ε((1⊗ c) · 1) · a = (IA ⊗ ε((1⊗ c) · 1)) · a =
∑
ε(cα)1αa

show that ε is a right A-module morphism provided (we.3) holds, and by

(1⊗ c) · 1 =
∑
1α ⊗ cα, and

(ε⊗ IC) ◦∆(1⊗ c) = IA ⊗ ε⊗ IC(
∑
1α ⊗ c1

α ⊗ c2) =
∑
ε(c1

α)1α ⊗ c2,

we see that ε is weakly counitary provided that (we.4) is satisfied.
(2) If A ⊗R C is a weak A-coring with the given maps, the reverse con-

clusions show that the map defined by the right multiplication yields a weak
entwining between A and C. �

Immediately from the definition of a weak bialgebra (cf. 36.5) and 37.2
one obtains the following example of a weak entwining structure (cf. 33.1):

37.3. Weak bialgebra entwining. Given a weak bialgebra B, the triple
(B,B, ψ) with

ψ : B ⊗R B → B ⊗R B, b′ ⊗ b �→
∑
b1 ⊗ b′b2.

is a weak entwining structure.

As pointed out in 35.3, associated to any weak coring C there is a coring
ACA. This yields in our situation:
37.4. A coring associated to a weak entwining structure. Let (A,C, ψ)
be a weak entwining structure. With the right A-module structure defined by
ψ (see 37.2), the product C = (A⊗RC) ·A is an A-coring with coproduct and
counit

∆ : C → C ⊗A C, (1⊗ c) · 1 �→
∑
α,β 1αβ ⊗ c1

β ⊗ c2
α,

ε : C → A , (1⊗ c) · 1 �→
∑
α 1αε(c

α).
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Proof. This follows from 35.3 with explicit formulae taken from 37.2. �

37.5. Weak entwined modules. For a weak entwining structure (A,C, ψ),
right weak comodules over the canonical weak coring A⊗R C are called weak
(A,C, ψ)-entwined modules . In this context, the category M̃A⊗RC is denoted
by M̃C

A(ψ).

For M ∈ M̃A⊗RC and m ∈ M , write �M(m) =
∑
m0 ⊗m1, where m0 ∈

MA and m1 ∈ C, and coassociativity is given by the commutative diagram

M
�M ��

�M

��

M ⊗A (A⊗R C)
IM⊗∆

��
M ⊗A (A⊗R C)

�M⊗IA⊗RC ��M ⊗A (A⊗R C)⊗A (A⊗R C),

corresponding to the identity∑
m0 ⊗A (1⊗Rm11)⊗A (1⊗Rm12) =

∑
m00 ⊗A (1⊗Rm01)⊗A (1⊗Rm1).

Expressing the right multiplication by A in terms of ψ, this gives∑
m0ψ(m11 ⊗R 1)⊗R m12 =

∑
m00ψ(m01 ⊗R 1)⊗R m1

in MA⊗R C ⊗R C. A-linearity of �M is expressed by the relation

�M(ma) =
∑

m0ψ(m1 ⊗R a) in MA⊗R C.

For example, any unital right A-module with a coassociative right C-coaction
is a weak (A,C, ψ)-entwined module provided it satisfies the latter compati-
bility condition.

As in the case of a bialgebra entwining in 33.1, modules for a weak bial-
gebra entwining in 37.3 are simply the weak Hopf modules in 36.15.

37.6. Dual algebra and smash product. Let A⊗R C be a weak A-coring
(as in 37.2). Then the isomorphism AHom(A⊗RC,A) � HomR(C,A) induces
an associative algebra structure on HomR(C,A) with the product

f ∗l g(c) =
∑
g(c2)ψf(c1

ψ), for all f, g ∈ HomR(C,A), c ∈ C.

This algebra is called the smash product of A and C and is denoted by
#(C,A). Although #(C,A) has no unit, it has a central idempotent e,

e(c) := ε(1⊗ c) = IA ⊗ ε((1⊗ c) · 1), for c ∈ C.
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If C is locally projective as an R-module, then:

(1) The category M̃A⊗RC of right weak A⊗R C-comodules is a full subcat-
egory of M#(C,A).

(2) A ⊗R C subgenerates all weak right A ⊗R C-comodules that are unital
right A-modules.

(3) If C is finitely generated as R-module, then #(C,A) ∗l e ∈ M̃A⊗RC.

Proof. For f̃ , g̃ ∈ AHom(A⊗R C,A) = ∗(A⊗R C) (cf. 35.4),

f̃ ∗l g̃ =
∑
f̃((1⊗ c1) · g̃(1⊗ c2))

=
∑
f̃(g̃(1⊗ c2)ψ ⊗ c ψ1 ) =

∑
g̃(1⊗ c2)ψ f̃(1⊗ c ψ1 ),

and this induces the multiplication stated. Since ε is a central idempotent
in ∗(A⊗R C) (see 35.4) and e is the image of ε under the isomorphism

AHom(A ⊗R C,A) → HomR(C,A), e is a central idempotent in #(C,A).
If C is locally projective as an R-module, then A⊗R C is a locally projective
A-module and hence it satisfies the α-condition. So (1) and (2) are special
cases of 35.21. Moreover, if C is finitely generated as an R-module, then
A⊗R C is finitely generated as an A-module, and so is its homomorphic im-
age (A⊗RC) ·A. Now 35.21(4) implies that ∗((A⊗RC) ·A) � ∗(A⊗R C) ∗l ε
is in M̃A⊗RC , and this ring is isomorphic to #(C,A) ∗l e. �

37.7. The existence of a grouplike element. Let (A,C, ψ) be a weak
entwining structure. Then the associated A-coring A ⊗R C (see 36.5) has
a grouplike element g ∈ (A ⊗R C) · A if and only if A is an (A,C, ψ)-weak
entwined module. The grouplike element is g = �A(1A), where �

A is the right
coaction of C on A.

Proof. This is a special case of 35.13. �
General examples of entwining structures come from Doi-Koppinen data.

Recall that such a datum comprises an algebra, a coalgebra and a bialgebra. A
natural question arises: is it possible to replace a bialgebra in a Doi-Koppinen
datum by a more general object, for example, by a weak bialgebra? Does such
a new weakened Doi-Koppinen datum lead to a weak entwining structure?
These questions were considered in [64] and [82] and led to the introduction
of respectively weak Doi-Koppinen data and a certain class of weak entwining
structures that we term self-dual weak entwining structures.

37.8. Self-dual weak entwining structures. A weak entwining structure
(A,C, ψ) is said to be self-dual if

(IA ⊗∆) ◦ ψ = (ψ ⊗ IC) ◦ (IC ⊗ ψ) ◦ (∆⊗ IA).
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Explicitly, we require for all a ∈ A and c ∈ C,∑
α
aα ⊗ cα1 ⊗ cα2 =

∑
abα,βaβα ⊗ c1

α ⊗ c2
β. (S)

In other words, a self-dual weak entwining structure is a weak entwining
structure that satisfies the right pentagon condition in the bow-tie diagram.
Since (we.1) in 37.1 combined with a right pentagon implies (we.2), we can
equivalently define a self-dual weak entwining structure as a triple (A,C, ψ)
in which the map ψ satisfies condition (S) and conditions (we.1), (we.3) and
(we.4) in 37.1. This can be expressed as the following bow-tie diagram:

C
∆

  ���
���

���
���

��
I⊗ι

����
���

���
���

� C ⊗ A⊗ A
ψ⊗I

����
���

���
���

�

C ⊗ C

I⊗ι⊗I

��

C ⊗ A⊗ A
I⊗µ ��

ψ⊗I
��

C ⊗ A

ψ

��

∆⊗I��

I⊗ι⊗I
�����������

C ⊗ C ⊗ A

I⊗ψ
��

A⊗ C ⊗ A

I⊗ε⊗I

��

A⊗ C ⊗ A

I⊗ψ
��

C ⊗ A⊗ C

ψ⊗I
��

C ⊗ A⊗ C

ψ⊗I ����
���

���
���

� A⊗ A⊗ C
µ⊗I �� A⊗ C

I⊗∆��

I⊗ε
����

���
���

���
� A⊗ C ⊗ C A⊗ A

µ
  &&&

&&&
&&&

&&&
&&

A⊗ C ⊗ C
I⊗ε⊗I

�����������
A

(tensor product over R). The above diagram is self-dual in the same sense as
the bow-tie diagram defining an entwining structure (cf. 32.5). Interchanging
C with A, ε with ι, ∆ with µ, and reversing all the arrows, the above diagram
stays invariant (only space rotated). This is the origin of the name of this
particular class of weak entwining structures.

One easily checks that a weak bialgebra entwining in 37.3 is self-dual.
More elaborate examples of self-dual weak entwining structures can be ob-
tained by the following construction.

37.9. A weak coalgebra-Galois extension. Let A be a right C-comodule
with coaction �A, and let

B = AcoC = {b ∈ A | for all a ∈ A, �A(ba) = b�A(a)} � EndCA(A), and

can : A⊗B A→ A⊗R C, a⊗ a′ �→ a�A(a′).

View A ⊗B A as a left A-module via µ ⊗ IA and a right C-comodule via
IA ⊗ �A. View A ⊗R C as a left A-module via µ ⊗ IC and as a right C-
comodule via IA ⊗ ∆. Now suppose that can is a split monomorphism in
the category MC

A, that is, there exists a left A-module, right C-comodule map
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σ : A ⊗R C → A ⊗B A such that σ ◦ can = IA⊗BA. Let τ : C → A ⊗B A,
c �→ σ(1⊗ c) and define

ψ : C ⊗R A→ A⊗R C, ψ = can ◦ (IA ⊗ µ) ◦ (τ ⊗ IA).

Then (A,C, ψ) is a self-dual weak entwining structure. An extension of alge-
bras B ⊂ A satisfying the above conditions is called a weak coalgebra-Galois
extension.

Proof. First we introduce a similar notation as for a translation map by
writing τ(c) =

∑
c1̃ ⊗ c2̃, for all c ∈ C. Directly from the definition of τ one

deduces the following two properties. First, from the fact that σ is a splitting
of the canonical map can, it follows that for all a ∈ A,∑

a0a1
1̃ ⊗ a1

2̃ = 1⊗ a. (∗)

Second, since σ is a right C-comodule morphism, for all c ∈ C,∑
c1̃ ⊗ c2̃0 ⊗ c2̃1 =

∑
c1

1̃ ⊗ c1
2̃ ⊗ c2. (∗∗)

Note that the equations (∗) and (∗∗) have exactly the same form as the
conditions (3) and (4) in 34.4 for the translation map (thus it makes sense to
term τ a weak translation map). These are the key properties needed to show
that ψ satisfies the pentagon identities. Similar to the case of a coalgebra-
Galois extension, for all a, a′ ∈ A and c ∈ C,

(µ⊗ IC) ◦ (IA ⊗ ψ) ◦ (ψ ⊗ IA)(c⊗ a⊗ a′)

= (µ⊗ IC) ◦ (IA ⊗ ψ)(
∑

c1̃(c2̃a)0 ⊗ (c2̃a)1 ⊗ a′)

=
∑

c1̃(c2̃a)0(c
2̃a)1

1̃((c2̃a)1
2̃a′)0 ⊗ ((c2̃a)12̃a′)1

=
∑

c1̃(c2̃aa′)0 ⊗ (c2̃aa′)1 = ψ ◦ (IC ⊗ µ)(c⊗ a⊗ a′),

where we used equation (∗) above to derive the third equality. Hence the left
pentagon in the bow-tie diagram commutes. Similarly for the right pentagon,

(ψ ⊗ IC) ◦ (IC ⊗ ψ) ◦ (∆⊗ IA)(c⊗ a)

= (ψ ⊗ IC)(
∑

c1 ⊗ c2
1̃(c2

2̃a)0 ⊗ (c2̃a)1)

=
∑

c1
1̃(c1

2̃c2
1̃(c2

2̃a)0)0 ⊗ (c12̃c21̃(c22̃a)0)1 ⊗ (c22̃a)1
=

∑
c1̃(c2̃0c

2̃
1
1̃(c2̃1

2̃a)0)0 ⊗ (c2̃0c2̃11̃(c2̃12̃a)0)1 ⊗ (c2̃12̃a)1
=

∑
c1̃((c2̃a)0)0 ⊗ ((c2̃a)0)1 ⊗ (c2̃a)1

=
∑

c1̃(c2̃a)0 ⊗ (c2̃a)1 ⊗ (c2̃a)2 = (IA ⊗∆) ◦ ψ(c⊗ a),
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where we used equation (∗) to derive the third equality and then equation
(∗∗) to derive the fourth one. It remains to show that (we.3) and (we.4) hold.
On the one hand, for all a ∈ A and c ∈ C,∑

α
aαε(c

α) =
∑

c1̃(c2̃a)0 ε((c
1̃a)1) =

∑
c1̃c2̃a

=
∑

c1̃(c2̃1)0 a ε((c
1̃1)1) =

∑
α
1αa ε(c

α),

while on the other hand, by a similar token and using equation (∗∗),∑
α
1αε(c1

α)⊗ c2 =
∑

c1
1̃c1

2̃ ⊗ c2 =
∑

c1̃c2̃0 ⊗ c2̃1

=
∑

c1̃(c2̃1)0 ⊗ (c2̃1)1 =
∑

α
1α ⊗ cα,

as required. �
Note that in 37.9, A is a weak (A,C, ψ)-entwined module with the mul-

tiplication given by the product µ of A and the C-coaction �A. Indeed, by
using equation (∗) in the proof of 37.9, one can compute for all a, a′ ∈ A,∑

a0ψ(a1 ⊗ a′) =
∑

a0a1
1̃(a1

2̃a′)0 ⊗ (a12̃a′)1
=

∑
(aa′)0 ⊗ (aa′)1 = �A(aa′).

Similarly to the case of the canonical entwining structure associated to a
coalgebra-Galois extension in 34.6, one shows that (A,C, ψ) constructed in
37.9 is the unique weak entwining structure for which A is a weak (A,C, ψ)-
entwined module via �A and multiplication in A.

37.10. The Galois property. Let (A,C, ψ) be a (self-dual) weak entwining
structure corresponding to a weak C-Galois extension B ↪→ A as described in
37.9. Then the corresponding A-coring (A ⊗R C) · A (given in 37.4) has a
grouplike element g = �A(1) and ((A⊗R C) · A, g) is a Galois coring.

Proof. It suffices to show that Im(can) = C := (A ⊗R C) · A; then can
will provide the required isomorphism of A-corings. Notice that, from the
definition of ψ in 37.9, it follows that Imψ ⊆ Im(can). Since any element of
C is an R-linear combination of typical elements of the form

∑
αa1α⊗ cα and

can is a left A-module map,
∑
αa1α ⊗ cα ∈ Im(can). Therefore C ⊆ Im(can).

On the other hand, since A is a weak entwined module, for all a ∈ A,

�A(a) = �A(a1) =
∑

α
a01α ⊗ a1

α ∈ C.

In view of the fact that can(a⊗ a′) = a�A(a′), this implies Im(can) ⊆ C. �
A motivating example of a self-dual weak entwining structure comes from

the notion of a weak Doi-Koppinen datum introduced in [64].
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37.11. Right-right weak Doi-Koppinen modules. For a weak R-bialgeb-
ra H (cf. 36.5), a triple (H,A,C) is called a (right-right) weak Doi-Koppinen
datum provided that

(1) (A, �A) is a right weak H-comodule algebra, that is, A is an R-algebra
and a right H-comodule such that, for all a, a′ ∈ A,

(i) �A(a)�A(a′) = �A(aa′);
(ii) (�A ⊗ IH) ◦ �A(1A) =

∑
1A0 ⊗ 1H11A1 ⊗ 1H2.

(2) C is a right weak H-module coalgebra, that is, C is an R-coalgebra and
a right H-module such that, for all c ∈ C, h, g ∈ H,

(i) ∆C(ch) =
∑
c1h1 ⊗ c2h2;

(ii) εC(c(gh)) =
∑
εC(cg2)εH(g1h).

A (right-right) weak Doi-Koppinen module associated to a weak Doi-
Koppinen datum (H,A,C) is a right A-module and right C-comodule M
with coaction �M , such that

�M(ma) =
∑
m0a0 ⊗m1a1, for all a ∈ A, m ∈M .

Note that �A(a) =
∑
a0⊗a1 ∈ A⊗RH and �M(m) =

∑
m0⊗m1 ∈M ⊗RC.

The category of weak Doi-Koppinen modules is denoted by M̃(H)CA.

37.12. Weak entwining associated to a weak Doi-Koppinen datum.
Let (H,A,C) be a weak Doi-Koppinen datum over a weak R-bialgebra H, and
consider the R-linear map

ψ : C ⊗R A→ A⊗R A, c⊗ a �→
∑

a0 ⊗ ca1.

Then (A,C, ψ) is a self-dual weak entwining structure and the category of

weak entwined modules M̃C
A(ψ) is isomorphic to the category of weak Doi-

Koppinen modules M̃(H)CA.

Proof. This is proven by direct calculations in a very similar fashion as
33.4 and is left to the reader as an exercise. �

In the context of weak Doi-Koppinen data, one can also consider a more
general notion of a Doi-Koppinen datum over an algebra.

37.13. Doi-Koppinen datum over an algebra. Let (H, sH, tH) be an
A-bialgebroid (cf. 31.6). Then (H, B, C)A is called a (left-left) Doi-Koppinen
datum over an algebra A if B is a left H-comodule algebra as in 31.23 and C
is a left H-module coring as in 31.21.

A (left-left) Doi-Koppinen module over A (associated to (H, B, C)A) is a
left B-module and left C-comodule M , such that, for all b ∈ B, m ∈M ,

M�(bm) =
∑

b−1m−1 ⊗ b0m0,
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where M�(m) =
∑
m−1 ⊗m0 and

B�(b) =
∑
b−1 ⊗ b0.

Note that since M is a left B-module, it is also a left A-module via the
source map sB : A → B. Note also that the right-hand side of the above
equality is well defined since Im(B�) ⊆ H×AB. The category of Doi-Koppinen
modules associated to (H, B, C)A is denoted by C

BM(H;A).
There are various examples of special cases of the category C

BM(H;A)
obtained by setting B = H, A,Ae and C = H, A,Ae. In particular, the
category of left H-modules, the category of left H-comodules or the category
of left H-bialgebroid modules in 31.16 are all special cases of the category of
Doi-Koppinen modules over an algebra A.

In 37.11 we constructed right-right weak Doi-Koppinen data and modules
as those built on a weak bialgebra. From 36.9 we know that a weak bialgebra
can be viewed as a bialgebroid. It is therefore natural to ask for the relation-
ship between weak Doi-Koppinen modules and Doi-Koppinen modules over
an algebra. To consider this relationship we need to introduce left-left weak
Doi-Koppinen data. This can be easily done, but to avoid any confusion we
display the definition explicitly.

37.14. Left-left weak Doi-Koppinen modules. A (left-left) weak Doi-
Koppinen datum is a triple (H,B,C), where H is a weak bialgebra over R
(cf. 36.5) and

(1) (B, B�) is a left weak H-comodule algebra, that is, B is an R-algebra and
a left H-comodule such that, for all b, b′ ∈ B,

(i) B�(b)B�(b′) = B�(bb′);

(ii) (IH ⊗ B�) ◦ B�(1B) =
∑
1H1 ⊗ 1B−11H2 ⊗ 1B0.

(2) C is a left weak H-module coalgebra, that is, C is an R-coalgebra and a
left H-module such that, for all c ∈ C, h, g ∈ H,

(i) ∆C(hc) =
∑
h1c1 ⊗ h2c2;

(ii) εC((gh)c) =
∑
εH(hg2)εC(g1c).

A (left-left) weak Doi-Koppinen module associated to a weak Doi-Koppi-
nen datum (H,B,C) is a left B-module and left C-comoduleM with coaction
M�, such that, for b ∈ B, m ∈M , M�(bm) =

∑
b−1m−1 ⊗ b0m0.

37.15. Doi-Koppinen data over A and weak Doi-Koppinen data. Let
H be a weak R-bialgebra with a counital source map L, and view it also as
an A-bialgebroid, where A = Im(L) as in 36.9. Then there is a one-to-one
correspondence between the weak Doi-Koppinen data with H and the Doi-
Koppinen data over A with H. Furthermore, the corresponding categories of
Doi-Koppinen modules are isomorphic.
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Proof. The proof relies on checking all axioms for weak comodule al-
gebras and weak module coalgebras as well as for module coalgebras and
comodule algebras over a bialgebroid. Details can be found in [76]; here we
will only point out the correspondences.

If B is a left comodule algebra of a weak bialgebra H, then B is an A-
ring with source map sB : A → B, L(h) �→

∑
εH(1−1h)10. The A-coring

comodule coaction for B is obtained by projecting its R-coalgebra coaction
via the canonical map H ⊗R B → H ⊗A B. The key observation here is
that condition 37.14(1)(ii) implies for all b ∈ B,

∑
1H1εH(b−11H2) ⊗R b0 =∑

1B−1⊗R b10. This equality in turn can be used to prove that, for all a ∈ A,
b ∈ B, ∑

b−1t(a)⊗A b0 =
∑

b−1 ⊗A b0sB(a),

where t is the target map t : A → H, a �→
∑
ε(12a)11. Therefore, the

A-coring coaction for B has its image in H ×A B, as required.
Conversely, view H as an A-bialgebroid, and let B be a left H-comodule

algebra. Since A is a separable Frobenius algebra by 36.8, the canonical map
H ⊗R B → H ⊗A B has a section

σ : H ⊗A B → H ⊗R B, h⊗ b �→
∑

hL(1H1)⊗ 1H2b.

With the help of σ, the left A-coring coaction B� : B → H ⊗AB can be lifted
to the R-coalgebra coaction σ ◦ B� : B → H ⊗R B.

If C is a left weak H-module coalgebra with counit εC and coproduct
∆C(c) =

∑
c1⊗Rc2, then C is an A-coring with coproduct ∆C(c) =

∑
c1⊗Ac2

and counit εC(c) =
∑
εC(c11)12.

Conversely, if C is a left module coring over an A-bialgebroid H, then its
coproduct can be lifted to the coproduct of an R-coalgebra via the section σ
above. Explicitly,

∆C : C → C ⊗R C, c �→
∑

c1L(11)⊗ 12c2,

where ∆C(c) =
∑
c1 ⊗ c2. �

37.16. Corings and Doi-Koppinen data over an algebra. Let (H, B, C)A
be a Doi-Koppinen datum over A. Then D = C ⊗A B is a B-bimodule with
right action given by the product in B and left action b(c⊗b′) =

∑
b−1c⊗b0b′,

for all b, b′ ∈ B, c ∈ C. Furthermore, D is a B-coring with comultiplication
∆D = ∆C ⊗ IB and counit εD = εC ⊗ IB, where ∆C, εC are the coproduct and
counit of the A-coring C. In this case the categories of left D-comodules and
left-left Doi-Koppinen modules over A are isomorphic to each other.

Proof. First note that the left action of B on D is well defined since the
image of the left H-coaction of B is required to be in B ×AH. The fact that
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it is an action indeed follows from the condition that B is a left H-comodule
algebra. Note also that in the definitions of ∆D and εD we use the natural
isomorphisms C⊗AB⊗BC⊗AB � C⊗AC⊗AB and A⊗AB � B, respectively.
Clearly ∆D is a right B-module map. To prove that it is left B-linear as well,
take any b, b′ ∈ B and c ∈ C, and compute

∆D(b(c⊗ b′)) =
∑
(b−1c)1 ⊗ (b−1c)2 ⊗ b0b

′ =
∑

b−11c1 ⊗ b−12c2 ⊗ b0b
′,

where we used the fact that C is a left H-module coring. On the other hand,

b∆D(c⊗ b′) =
∑

b(c1 ⊗ 1)⊗B (c2 ⊗ b′) =
∑

b−1c1 ⊗ b0(c2 ⊗ b′)

=
∑

b−11c1 ⊗ b−12c2 ⊗ b0b
′.

This proves that ∆D is right B-linear, and hence it is a (B,B)-bimodule map,
as required. The coassociativity of ∆D follows directly from the definition.

Clearly εD is right B-linear. To prove that it is also a left B-linear, take
any b, b′ ∈ B, c ∈ C, and compute

εD(b(c⊗ b′)) =
∑

εC(b−1c)(b0b
′) =

∑
εH(b−1sH(εC(c)))(b0b

′)

=
∑

εH(b−1tH(εC(c)))(b0b
′) =

∑
εH(b−1)(b0sB(εC(c))b

′)

= b0sB(εC(c))b
′ = b εD(c⊗ b′),

where we used the fact that C is a left H-module coring to obtain the second
equality and then equation 31.6(3) to derive the third one, and the fact that
the image of the left coaction of H on B is in H ×A B to obtain the fourth
equality. This proves that εD is left B-linear, and hence it is (B,B)-bilinear.
The fact that εD is a counit of D follows directly from its definition. Thus we
conclude that D is a B-coring, as stated.

To prove the isomorphism of the categories, take any left D-comodule M
and consider it as a Doi-Koppinen module via the same coaction M� : M →
C ⊗A B ⊗B M � C ⊗AM . Conversely, any Doi-Koppinen module M is also
a left D comodule via M� :M → C ⊗AM � C ⊗A B ⊗B M = D ⊗B M . �

Thus, instead of studying the structure of Doi-Koppinen Hopf modules
over an algebra on there own, we can use the already developed coring theory.

37.17. Corings and weak Doi-Koppinen data. Let (H,B,C) be a weak
Doi-Koppinen datum as considered in 37.11. Define the corresponding B-
coring C = {

∑
i 1−1c

i ⊗ 10bi | bi ∈ B, ci ∈ C} ⊆ C ⊗R B as in 37.4. View
(H,B,C) as a Doi-Koppinen datum over the algebra A = ImL by 37.15,
and let D = C ⊗A B be the corresponding coring constructed in 37.16. Then
C � D as B-corings.
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Proof. This is proven by direct computations, and the details are left to
the reader. We only indicate that the isomorphism θ : D → C and its inverse
are given explicitly by

θ : c⊗A b �→
∑

1−1c⊗R 10b, θ−1 :
∑

i
ci ⊗R bi �→

∑
i
ci ⊗A bi.

Note that the map θ is well defined by 37.18(ii). �

37.18. Exercise.
In the setting of 37.14:
(i) Show that the condition 37.14(1)(ii) implies that, for all b ∈ B,∑

1H1εH(b−11H2)⊗R b0 =
∑

1B−1 ⊗R b1B0.

(ii) Use the equality derived in (i) to prove that, for all a ∈ A, b ∈ B,∑
b−1t(a)⊗A b0 =

∑
b−1 ⊗A b0sB(a),

where t is the target map t : A→ H, a �→
∑

ε(12a)11.

References. Böhm [64]; Brzeziński [73]; Brzeziński, Caenepeel and Mil-
itaru [76]; Caenepeel and DeGroot [82]; Wisbauer [212].
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Appendix

38 Categories and functors

Basic definitions and theorems from general category theory are recalled here.
The purpose of this exposition is to provide a convenient reference to the
categorical notions used in coring and comodule theory. For more details we
refer to [40], [42], [44] and [46].

38.1. Categories. A category A is defined as a class of objects Obj(A) and
a class of morphism sets Mor(A), which satisfy the following axioms.

(i) For every ordered pair (A,B) of objects in A there is a set MorA(A,B),
the morphisms of A to B, such that

MorA(A,B) ∩MorA(A′, B′) = ∅ for (A,B) �= (A′, B′).

(ii) For any A,B,C ∈ Obj(A) there is a map

MorA(A,B)×MorA(B,C)→ MorA(A,C), (f, g) �→ g ◦ f,

called the composition of morphisms, which is associative (in an obvious
sense). Often we write g ◦ f = gf .

(iii) For every A ∈ Obj(A) there is a morphism IA ∈ MorA(A,A), such that
f ◦ IA = f and IA ◦ g = g, for any f ∈ MorA(A,B), g ∈ MorA(B,A)
and B ∈ Obj(A). IA is called the identity morphism of A.

For any categoryA the dual categoryAop has the same class of objects but
reversed morphisms, that is, MorAop(A,A′) = MorA(A

′, A), for any objects
A,A′ ∈ Obj(Aop) = Obj(A).

Given two categories A and B, the product category A × B has ordered
pairs (A,B) with A ∈ A, B ∈ B as objects and

MorA×B((A,B), (A
′, B′)) = MorA(A,A′)×MorB(B,B′)

as morphism sets.
For applications of categories (and to avoid the Russell paradox) it is

essential that the objects be a class rather than a set. Categories in which
the objects form a set are called small categories.

The category A is called preadditive if each set MorA(A,A
′) is an Abelian

group and the compositions MorA(A,A
′)×MorA(A′, A′′)→ MorA(A,A

′′) are
bilinear maps.

395
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38.2. Subcategory. A category B is called a subcategory of a category A
if Obj(B) ⊂ Obj(A), MorB(A,B) ⊂ MorA(A,B) for all A,B ∈ Obj(B), and
the composition of morphisms in B is the restriction of the composition in
A. If MorB(A,B) = MorA(A,B) for all A,B ∈ Obj(B), then B is called a
full subcategory of B. So a full subcategory of A is fully determined by its
objects.

The prototype of a category is the category of sets, denoted by Set, whose
objects are the class of sets and the morphisms are maps between sets. We
write MorSet(A,A

′) = Map(A,A′) for any sets A,A′. The motivating example
of a preadditive category is the category Ab of Abelian groups whose objects
are Abelian groups and morphisms are group homomorphisms. The usual
notation is MorAb(A,A

′) = HomZ(A,A
′), for any Abelian groups A,A′.

38.3. Functors. A covariant functor F : A→ B between categories consists
of the assignments

Obj(A)→ Obj(B), A �→ F (A),

Mor(A)→ Mor(B), [f : A→ B] �→ [F (f) : F (A)→ F (B)],

such that F (IA) = IF (A) and F (fg) = F (f)F (g) whenever fg is defined in
A. Dually, a contravariant functor F : A→ B consists of the assignments

Obj(A)→ Obj(B), A �→ F (A),

Mor(A)→ Mor(B), [f : A→ B] �→ [F (f) : F (B)→ F (A)],

such that F (IA) = IF (A) and F (fg) = F (g)F (f) when fg is defined in A.

Clearly the composition of two functors is again a functor.

38.4. Properties of functors. Let F : A → B be a functor, A ∈ Obj(A)
and f ∈ Mor(A). F is said to preserve a property of A (or f), if F (A) (resp.
F (f)) again has this property. F is said to reflect a property of A (resp. of
f) if the fact that F (A) (resp. F (f)) has this property implies that A (resp.
f) has the same property.

By definition, covariant functors preserve identities and compositions of
morphisms and commutative diagrams.

38.5. Mor-functors. For any morphism f : B → C in a category A and
A ∈ Obj(A), composition yields maps between morphism sets:

Mor(A, f) : MorA(A,B)→ MorA(A,C), u �→ fu,
Mor(f, A) : MorA(C,A)→ MorA(B,A), v �→ vf .

This defines a covariant and a contravariant functor,

Mor(A,−) : A→ Set, Mor(−, A) : A→ Set.

If A is a preadditive category, then both of these functors have values in Ab.
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38.6. Natural transformations. Given covariant functors F, F ′ : A→ B,
a natural transformation or functorial morphism η: F → F ′ is determined
by a class of morphisms ηA : F (A) → F ′(A) in B, A ∈ A, such that every
morphism f : A→ B in A induces a commutative diagram,

F (A)
F (f) ��

ηA
��

F (B)

ηB
��

F ′(A)
F ′(f) �� F ′(B) .

Natural transformations from F to F ′ are denoted by Nat(F, F ′).

Remarkably, any covariant functor F : A → Set is closely related to
Mor-functors.

38.7. Yoneda Lemma. Let F : A → Set be a covariant functor. For any
A ∈ A there is a bijective map

Y : Nat(MorA(A,−), F )→ F (A), η �→ ηA(IA) .

Y is known as the Yoneda map.

Every covariant functor F : A → B to morphisms A → A′ in A assigns
morphisms F (A)→ F (A′) in B, that is, for every pair A, A′ in Obj(A) there
is a (set) map

FA,A′ : MorA(A,A
′)→ MorB(F (A), F (A

′)).

If A and B are preadditive categories, then F is called additive provided all
the FA,A′ are homomorphisms (of Abelian groups).

In general one considers two bifunctors

MorA(−,−), MorB(F (−), F (−)) : Aop ×A→ Set,

and a functorial morphism

F : MorA(−,−)→ MorB(F (−), F (−)), f �→ F (f).

Their properties are significant for the properties of the functor F itself.

38.8. Special morphisms. A morphism f : A→ B in A is called:
monomorphism if, for g, h ∈ MorA(C,A), fg = fh implies g = h;
epimorphism if, for g, h ∈ MorA(B,D), gf = hf implies g = h;
bimorphism if f is both a mono- and an epimorphism;
retraction if there exists g ∈ MorA(B,A) with fg = idB;

coretraction or section if there exists g ∈ MorA(B,A) with gf = idA;
isomorphism if f is both a retraction and a coretraction;

left zero morphism if, for any g, h ∈ MorA(D,A), fg = fh;
right zero morphism if, for any g, h ∈ MorA(B,C), gf = hf ;

zero morphism if f is both a left and right zero morphism.
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In Set, monomorphisms are injective maps and epimorphisms are surjec-
tive maps. On the other hand, in any category A, f : A→ B is a monomor-
phism if and only if the map Mor(C, f) : MorA(C,A) → MorA(C,B) is
injective, for any C ∈ A. Furthermore, f is an epimorphism if and only if
Mor(f,D) : MorA(B,D)→ MorA(A,D) is injective, for any D ∈ A.

38.9. Special objects. An object A ∈ A is called:
initial if MorA(A,B) has just one element, for any B ∈ A;

terminal (final) if MorA(C,A) has just one element, for any C ∈ A;
zero if A is both an initial and a terminal object;

semisimple if any monomorphism B → A in A is a coretraction;
simple if any monomorphism B → A in A is an isomorphism.

38.10. Special functors. A covariant functor F : A→ B is called:
faithful if FA,A′ is injective for all A,A′ ∈ Obj(A);

full if FA,A′ is surjective for all A,A′ ∈ Obj(A);
fully faithful if F is full and faithful;
embedding if the assignment F : Mor(A)→ Mor(B) is injective;

representative if, for every B ∈ Obj(B), there exists an object A in A
such that F (A) � B.

Notice that a covariant faithful functor F reflects monomorphisms, epi-
morphisms, bimorphisms and commutative diagrams. If F is fully faithful, it
also reflects retractions, coretractions and isomorphisms. If F is fully faith-
ful and representative, it preserves and reflects mono-, epi- and bimorphisms
(retractions, coretractions, isomorphisms and commutative diagrams).

38.11. Generators and cogenerators. An object A in A is said to be a
generator in A if MorA(A,−) : A→ Set is faithful;

cogenerator in A if MorA(−, A) : A→ Set is faithful.
Notice that A is a generator if and only if

for any f �= g : B → C in A, there exists h : A→ B with fh �= gh,

and A is a cogenerator if and only if

for any f �= g : B → C in A, there exists k : C → A with kf �= kg.

38.12. Projectives and injectives. Let A,B be objects in A. A is called:
B-projective if, for any epimorphism p : B → C in A, the mapping

Mor(A, p) : MorA(A,B)→ MorA(A,C) is surjective;
projective (in A) if A is B-projective for all B ∈ A;

B-injective if, for any monomorphism i : C → B, the mapping
Mor(i, A) : MorA(C,A)→ MorA(B,A) is surjective;

injective (in A) if A is B-injective for all B ∈ A.
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38.13. Semisimple objects. An object A in A is semisimple if and only if
every object C ∈ A is A-injective.

Proof. Consider the diagram in A, B
i ��

f
��

A

C,

where i is a monomorphism. If A is semisimple, then there exists g : A→ B
with gi = IB and fg : A → C extends the diagram commutatively, that is,
C is A-injective. Conversely, assume that all C ∈ A are A-injective. Putting
B = C and f = IB, we get a morphism h : A → B with hi = IB, thus
showing that i is a coretraction. �

38.14. Equalisers and coequalisers. Let f, g : A → B be morphisms in
the category A.

A morphism k : K → A is called a difference kernel or an equaliser if
fk = gk, and for every morphism x : X → A with fx = gx, there is a unique
morphism h : X → K such that x = kh.

A morphism c : B → C is called a difference cokernel or a coequaliser if
cf = cg, and for every morphism y : B → Y with yf = yg, there is a unique
morphism h : C → Y such that y = hc.

Equalisers and coequalisers are denoted by the diagrams

K
k �� A

f ��
g

�� B, A
f ��
g

�� B
c �� C.

If A has zero morphisms, the equaliser of the pair (f, 0) is called a kernel
of f , and the coequaliser of (f, 0) is the cokernel of f . Every equaliser – and
hence every kernel – is a monomorphism, whereas coequalisers and cokernels
are epimorphisms. If A is an additive category, the (co)equaliser of f, g can
be characterised as the (co)kernel of f − g.

38.15. Products and coproducts. Let {Aλ}Λ be a family of objects in A.
An object P in A with morphisms {πλ : P → Aλ}Λ is called a product of

the Aλ if, for any family {fλ : X → Aλ}Λ, there is a unique f : X → P with
fπλ = fλ for all λ ∈ Λ. For this object P we usually write

∏
ΛAλ, and if all

Aλ = A, we put
∏

ΛAλ = AΛ.
An object Q in A with morphisms {ελ : Aλ → Q}Λ is called the coproduct

of the Aλ if, for any family {gλ : Aλ → Y }Λ, there is a unique g : Q → Y
with gελ = gλ, for all λ ∈ Λ. For this object Q we usually write

∐
ΛAλ, and

if all the Aλ = A, we put
∐

ΛAλ = A(Λ).
The product in Set is just the Cartesian product, and the universal prop-

erty of the product in A can be expressed by the isomorphism (bijection) in
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Set for any X ∈ A,

MorA(X,
∏

Λ
Aλ) −→

∏
Λ
MorA(X,Aλ), f �→ πλf,

and dually the coproduct is characterised by the isomorphism, for any Y ∈ A,

MorA(
∐

Λ
Aλ, Y ) −→

∏
Λ
MorA(Aλ, Y ), g �→ gελ.

38.16. Colimits and limits. Let Λ be a small category and L : Λ → A
a functor. A familiy of morphisms gλ : L(λ) → Y in A, λ ∈ Λ, is said to
be compatible if, for any morphism h : λ → µ in Λ, one has gµL(h) = gλ.
A colimit or inductive limit for the functor L is an object lim−→L in A with a
compatible family ελ : L(λ) → lim−→L, such that, for any compatible family
gλ, there exists a unique morphism

g : lim−→L→ Y with gλ = gελ.

Dually (projective) limits are defined for compatible families fλ : X →
L(λ) of morphisms in A .

Any quasi-ordered directed set (Λ,≤) can be considered as a category Λ.
Then the colimit of a functor L : Λ → A is called a direct limit, while the
limit of a functor L′ : Λop → A is called an inverse limit. For sets consisting
of three elements, these constructions yield pullbacks and pushouts as special
cases.

38.17. Complete, Abelian and Grothendieck categories. If, for any
small category Λ and functor L : Λ→ A the limit (colimit) exists, then A is
called a complete (cocomplete) category. Notice that a preadditive category
A is complete if and only if A has products and kernels, and A is cocomplete
if and only if it has coproducts and cokernels.

A preadditive category A with finite products (and coproducts) is called
additive and is called Abelian if every morphism has a kernel and a cokernel,
and every morphism f has a factorisation f = gh, where h is a cokernel and
g is a kernel.

In an Abelian category A, a sequence of morphisms A
f−→ A′ g−→ A′′

is called exact at A′ provided Im f = Ke g (as subobjects of A′), and any
sequence of morphisms is called exact provided it is exact at each object. In
particular, an exact sequence of the form

0 −→ A −→ A′ −→ A′′ −→ 0

is called a short exact sequence.
A cocomplete Abelian categoryA with a generator is called aGrothendieck

category if the direct limits of short exact sequences are exact.
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38.18. Separable functors. A covariant functor F : A→ B is said to be
a separable functor if

F : MorA(−,−)→ MorB(F (−), F (−))

is a functorial coretraction, that is, there exists a functorial morphism

Φ : MorB(F (−), F (−))→ MorA(−,−),

with Φ ◦ F = IMorA(−,−). Such a Φ is characterised by the properties
(1) for any f : A→ A′ in A, ΦA,A′(F (f)) = f ;

(2) for any f : A → A′, f1 : A1 → A′
1, any commutative diagram on the

left induces the commutative diagram on the right:

F (A) h ��

F (f)
��

F (A1)

F (f1)
��

A
ΦA,A1

(h)
��

f

��

A1

f1
��

F (A′)
h′

�� F (A′
1), A′

ΦA′,A′
1
(h′)

�� A′
1 .

38.19. Properties of separable functors. Let F : A → B be a separable
functor with a splitting functorial morphism Φ.

(1) Consider any diagram in A and its image in B,

A
f ��

g

��

A′ F (A)
F (f) ��

F (g)
��

F (A′)

M, F (M).

If the right-hand diagram can be completed commutatively by some h :
F (A′)→ F (M), then Φ(h) completes the first diagram commutatively.

(2) Consider any diagram in A and its image in B,

M

g

��

F (M)

F (g)

��
A

f �� A′, F (A)
F (f) �� F (A′) .

If the right-hand diagram can be completed commutatively by some h :
F (M)→ F (A), then Φ(h) completes the first diagram commutatively.

(3) F reflects retractions and coretractions.

(4) If F preserves epimorphisms, then F reflects projective objects.
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(5) If F preserves monomorphisms, then F reflects injective objects.

38.20. Composition of separable functors. Consider covariant functors
F : A→ B and G : B→ C.

(1) If F and G are separable, then GF : A→ C is separable.

(2) If GF is a separable functor, then so is F .

38.21. Adjoint functors. A pair (F,G) of covariant functors F : A → B
and G : B→ A is called an adjoint pair if there is a functorial isomorphism

Ω : MorB(F (−),−)→ MorA(−, G(−))

of functors Aop×B→ Set; that is, for each pair of objects A ∈ A and B ∈ B
there is an isomorphism ΩA,B : MorB(F (A), B) → MorA(A,G(B)), which is
natural in A and B. F is said to be left adjoint to G and G is right adjoint
to F . An adjoint pair (F,G) is characterised by the existence of functorial
morphisms

η : IA → GF, defined by ηA = ΩA,F (A)(IF (A)) : A→ GF (A), A ∈ A,
ψ : FG→ IB, defined by ψB = Ω

−1
G(B),B(IG(B)) : FG(B)→ B, B ∈ B,

such that each of the following compositions yield the identity,

F (A)
F (ηA)−→ FGF (A)

ψF (A)−→ F (A)

G(B)
ηG(B)−→ GFG(B)

G(ψB)−→ G(B) .

The transformation η is called a unit of adjunction and ψ is termed a counit
of adjunction. In terms of unit and counit, the functorial isomorphism Ω and
its inverse come out as

ΩA,B : MorB(F (A), B)→ MorA(A,G(B)), g �→ G(g) ◦ ηA,

Ω−1
A,B : MorA(A,G(B))→ MorB(F (A), B), f �→ ψB ◦ F (f).

If (F,G) is an adjoint pair, then F preserves colimits (hence also epimor-
phisms and coproducts), while G preserves limits (monomorphisms and prod-
ucts). Furthermore, if G preserves epimorphisms, then F preserves projective
objects, and if F preserves monomorphisms, then G preserves injective ob-
jects.

38.22. Equivalence of categories. An adjoint pair of covariant functors
(F,G), F : A → B and G : B → A, is called an equivalence if there are
functorial isomorphisms GF � IA and FG � IB. F and G are also called
(inverse) equivalences.

Any functor is an equivalence if and only if it is full, faithful and repre-
sentative.
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38.23. Frobenius functors. An adjoint pair (F,G) of covariant functors
F : A → B and G : B → A is called a Frobenius pair (and F , G Frobenius
functors) if (G,F ) also form an adjoint pair. Of course in this case F and G
combine the properties of left and right adjoint functors (see 38.21) and so:

A Frobenius functor F preserves limits and colimits, projective and injec-
tive objects.

38.24. Adjoint pairs and separability. Let (F,G) be an adjoint pair of
covariant functors F : A→ B, G : B→ A. Then:

(1) F is separable if and only if the unit η : IA → GF is a functorial
coretraction; that is, for each object A ∈ A, there exists a morphism
νA : GF (A) → A such that νA ◦ ηA = IA, and any f : A → A′ in A
induces a commutative diagram,

GF (A)
GF (f)��

νA

��

GF (A′)

νA′
��

A
f

�� A′ .

(2) G is separable if and only if the counit ψ : FG → IB is a functorial
retraction; that is, for each object B ∈ B, there exists a morphism
φB : B → FG(B) such that ψB ◦ φB = IB, and any g ∈ B → B′ in B
induces a commutative diagram,

B
g ��

νB
��

B′

νB′
��

FG(B)
FG(g)

�� FG(B′) .

Proof. (1) “⇒” For any object A ∈ A, the counit provides a morphism
ψF (A) : FGF (A)→ F (A). By the separability of F , there is a map

ΦGF (A),A : MorB(F (GF (A)), F (A))→ MorA(GF (A), A) ,

which induces a morphism νA := ΦGF (A),A(ψF (A)) : GF (A) → A , functorial
in A. From 38.21 we know that ψF (A) ◦ F (ηA) = IF (A). Therefore

IA = ΦA,A(IF (A)) = ΦGF (A),A(ψF (A)) ◦ ΦA,GF (A)(F (ηA)) = νA ◦ ηA .

“⇐” Assume there is a functorial morphism νA : GF (A)→ A, such that
νA ◦ ηA = IA, where A ∈ A. For any morphism h : F (A)→ F (A1) define

ΦA,A1(h) : A
ηA �� GF (A)

G(h) �� GF (A1)
νA1 �� A1 .
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The functoriality of νA implies that, for any g : A→ A1, ΦA,A1(F (g)) = g.
For morphisms f : A → A′, f1 : A1 → A′

1 in A, consider a commutative
diagram in B,

F (A) h ��

F (f)
��

F (A1)

F (f1)
��

F (A′)
h′

�� F (A′
1).

Applying G we obtain the diagram

A
ηA ��

f

��

GF (A)

GF (f)

��

G(h) �� GF (A1)
νA1 ��

GF (f1)

��

A1

f1
��

A′
ηA′

�� GF (A′)
G(h′)

�� GF (A′
1) νA′

1

�� A′
1 ,

which obviously is commutative. The top sequence defines ΦA,A1(h) while the
bottom sequence defines ΦA′,A′

1
(h′), and hence the conditions on the functor

Φ stated in 38.18 are satisfied.
(2) The proof is similar to the proof of (1). �

38.25. F -coalgebras. For a category A, let F : A→ A be a functor.
An F -coalgebra (N, �N) is an object N in A together with a morphism

�N : N → F (N). A morphism f : N → N ′ in A between two F -coalgebras
(N, �N) and (N ′, �N

′
) is called an F -coalgebra morphism provided it induces

a commutative diagram,

N
f ��

�N

��

N ′

�N
′

��
F (N)

F (f)
�� F (N ′) .

F -coalgebras together with F -coalgebra morphisms form a category that
is denoted by Coalg(F).

Proposition. Let L : Λ→ Coalg(F ) be any functor and Λ a small category.

(1) If lim−→L exists in A, then it belongs to Coalg(F ).

(2) Assume that F preserves limits. If lim←−L exists in A, then it belongs to
Coalg(F ).

Proof. (1) There is the diagram

L(λ)

�L(λ)

��

ελ �� lim−→L

F (L(λ))
F (ελ)�� F (lim−→L) ,
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where the F (ελ)◦�L(λ) obviously form a compatible family of morphisms. By
the universal property of the colimit we obtain a morphism lim−→L→ F (lim−→L).
Hence lim−→L is an F -coalgebra.

(2) This is shown with a similar proof. �
As an example one can consider the functor F = − ⊗R C : MR → MR,

where C is an (non-coassociative) R-coalgebra. In this case, F -coalgebras
are R-modules with a right C-coaction. If C is coassociative, this functor F
shows special properties that are axiomatised in the following notion. The
resulting F -coalgebras will be right C-comodules.

38.26. Comonads and their coalgebras. A comonad or a cotriple is a
triple F = (F, δ, ψ), where F : A → A is a functor and δ : F → F ◦ F ,
ψ : F → IA are natural transformations making the diagrams:

F
δ ��

δ
��

F ◦ F
Fδ
��

F ◦ F
δF

�� F ◦ F ◦ F ,

F
δ ��

δ
��

=

����
���

���
���

F ◦ F
ψF
��

F ◦ F
Fψ

�� F

commute. Explicitly, for each N ∈ A, there exist δN : F (N) → F (F (N))
and ψN : F (N) → N such that δF (N) ◦ δN = F (δN) ◦ δN and ψF (N) ◦ δN =
F (ψN) ◦ δN = IF (N). The transformation δ is called a coproduct and ψ is
called a counit of a comonad (F, δ, ψ).

An F-coalgebra is a pair (N, �N), where N ∈ Obj(A) and �N : N → F (N)
is a morphism in A such that the following diagrams:

N
�N ��

�N

��

F (N)

δN
��

N
�N ��

IN 		�
��

��
��

��
� F (N)

ψN

��
F (N)

F�N
�� F ◦ F (N) , N

commute. A morphism f : N → N ′ in A between two F-coalgebras (N, �N)
and (N ′, �N

′
) is called an F-coalgebra morphism provided it induces a com-

mutative diagram,

N
f ��

�N

��

N ′

�N
′

��
F (N)

F (f)
�� F (N ′) .

F-coalgebras together with F-coalgebra morphisms form a category that is
denoted by Coalg(F).
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38.27. F -algebras. Let F : A → A be a functor. An F -algebra (M,�M)
is an M ∈ Obj(A) together with a morphism �M : F (M) → M . Morphisms
between F -algebras are defined dually to F -coalgebra morphisms, and they
yield the category Alg(F) of F -algebras. The behaviour towards limits and
colimits is dual to coalgebras.

Proposition. Let L : Λ→ Alg(F ) be any functor and Λ a small category.

(1) If lim←−L exists in A, then it belongs to Alg(F ).

(2) Assume that F preserves colimits. If lim−→L exists in A, then it belongs
to Alg(F ).

As an example consider the functor F = A ⊗R − :MR →MR, where A
is some (nonassociative) R-algebra. If A is associative, this functor F shows
special properties that are axiomatised in the following notion. In the case of
the above example, the resulting F -algebras are simply left A-modules.

38.28. Monads and their algebras. A monad (or a triple) is a triple
F = (F, ν, η), where F : A→ A is a functor and ν : F ◦ F → F , η : IA → F
are natural transformations making the following diagrams commute:

F ◦ F ◦ F νF ��

Fν
��

F ◦ F
ν
��

F ◦ F ν
�� F ,

F
ηF ��

Fη

��

=

����
��

��
��

�� F ◦ F
ν

��
F ◦ F ν

�� F .

An F-algebra is a pair (M,�M), whereM ∈ Obj(A) and �M : F (M)→M
is a morphism in M rendering commutative the following diagrams:

F ◦ F (M) νM ��

F�M
��

F (M)

�M

��

M
ηM ��

IM ��'
''

''
''

''
F (M)

�M

��
F (M) �M

�� M , M .

Morphisms between two F-algebras are defined in an obvious way, and the
category of F-algebras is denoted by Alg(F).

General algebras and coalgebras of a functor have applications not only in
mathematics but also in computer science. Monads and comonads are related
to adjoint pairs.

38.29. (Co)monads and adjoint pairs. Let F : A→ A be a functor.

(1) If F = (F, ν, η) is a monad, then the forgetful functor Alg(F)→ A has
the left adjoint

G : A→ Alg(F), M �→ (F (M), νM : F ◦ F (M)→ F (M)).
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Explicitly, for M ∈ Obj(A), N in Alg(F), the map

MorAlg(F)(F (M), N) −→ MorA(M,N), f �→ f ◦ ηM ,

is bijective with the inverse h �→ �N ◦ F (h).
(2) If F = (F, δ, ψ) is a comonad, then the forgetful functor Coalg(F)→ A

has the right adjoint

H : A→ Coalg(F), N �→ (F (N), δN : F (N)→ F ◦ F (N)).

Explicitly, for M in Coalg(F), N ∈ Obj(A), the map

MorCoalg(F)(M,F (N))→ MorA(M,N), f �→ ψN ◦ f,

is bijective with the inverse h �→ F (h) ◦ �M .
38.30. Adjoint pairs and (co)monads. Let L : A→ B and R : B→ A be
an adjoint pair of functors with unit η : IA → RL and counit ψ : LR→ IB.

(1) RL : A → A induces a monad with product ν = RψL : RLRL → RL
and unit η : IA → RL.

(2) LR : B → B induces a comonad with coproduct δ = LηR : LR →
LRLR and counit ψ : LR→ IB.

As already suggested by the motivating examples, monads and comonads
arise most naturally in monoidal categories.

38.31. Monoidal category. A category A is called a monoidal category if
there exist a bifunctor − ⊗ − : A ×A → A, a distinguished neutral object
E in A and natural isomorphisms

α : (−⊗−)⊗− → −⊗ (−⊗−), λ : E ⊗− → IA, � : −⊗ E → IA

such that, for all objects W,X, Y, Z in A, the following two diagrams com-
mute:

((W⊗X)⊗Y )⊗Z αW,X,Y ⊗IZ ��

αW⊗X,Y,Z

��

(W⊗(X⊗Y ))⊗Z
αW,X⊗Y,Z

�����
����

����
����

�

W⊗((X⊗Y )⊗Z)

IW⊗αX,Y,Z!!((((
((((

((((
((((

(W⊗X)⊗(Y ⊗Z) αW,X,Y⊗Z ��W⊗(X⊗(Y ⊗Z)) ,

and

(X ⊗ E)⊗ Y

�X⊗IY ��%%
%%%

%%%
%%%

αX,E,Y �� X ⊗ (E ⊗ Y )

IX⊗λY��$$$
$$$

$$$
$$

X ⊗ Y.
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A monoidal category is denoted by (A,⊗, E). It is said to be strict if the
isomorphisms α, λ, � are identity morphisms.

38.32. Algebras in monoidal categories. An (associative) algebra in a
monoidal category (A,⊗, E) is an object A ∈ A and a pair of morphisms
µA : A ⊗ A → A, ιA : E → A, rendering commutative the following three
diagrams:

(A⊗ A)⊗ A

αA,A,A

��

µA⊗IA�� A⊗ A
µA

��
















A⊗ (A⊗ A)
IA⊗µA

�� A⊗ A µA
�� A ,

A⊗ A
µA �� A A⊗ A

µA �� A

A⊗ E,

IA⊗ιA
��

�A

��)))))))))
E ⊗ A.

ιA⊗IA
��

λA

""*********

Given an algebra A, the functor A ⊗ − : A → A, N �→ A ⊗ N , induces
a monad, with product ν = µA ⊗ IA : A ⊗ A ⊗ − → A ⊗ − and unit
η = (ιA ⊗ IA)λ

−1 : IA → E ⊗− → A⊗−.

38.33. Coalgebras in monoidal categories. A (coassociative) coalgebra
in a monoidal category (A,⊗, E) is an object C ∈ A and a pair of morphisms
∆C : C → C ⊗ C, εC : C → E, inducing the following three commutative
diagrams:

C

∆C ��'
''

''
''

''
∆C �� C ⊗ C

∆C⊗IC�� (C ⊗ C)⊗ C

αC,C,C

��
C ⊗ C

IC⊗∆C

�� C ⊗ (C ⊗ C) ,

C
∆C ��

λ−1
C ��+

++
++

++
++ C ⊗ C

εC⊗IC
��

C
∆C ��

�−1
C 		�

��
��

��
��

� C ⊗ C

IC⊗εC
��

E ⊗ C , C ⊗ E .

For such a coalgebra C, the functor − ⊗ C : A → A, N �→ N ⊗ C induces
a comonad with coproduct δ = IA ⊗∆C : − ⊗ C → −⊗ C ⊗ C and counit
ψ = �(IA ⊗ εC) : −⊗ C → −⊗ E → IA.

References. Borceux [3]; Caenepeel, Militaru and Zhu [9]; Gumm [19];
Hughes [134]; Mac Lane [31]; Popescu [40]; Rafael [180]; Schubert [42]; Sten-
ström [44]; Wisbauer [46].
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39 Modules and Abelian categories

Many interesting preadditive categories have in fact an additional module
structure over an associative ring. The following theorem of B. Mitchell
shows that functorial morphisms defined on the ring can be extended to the
whole module category.

39.1. Functors on MT . Let A be a cocomplete Abelian category. For a ring
T , denote by MT the category of right T -modules, and let F, F

′ : MT → A
be additive functors. Suppose that F preserves colimits. Consider T as a
subcategory (with one object) ofMT and assume that there exists a functorial
morphism ηT : F (T ) → F ′(T ) for the restricted functors F, F ′ : T → A.
Then:

(1) ηT can be extended to a functorial morphism η : F → F ′.

(2) If F ′ respects colimits, then η is a functorial isomorphism.

Proof. (1) For any free right T -module T (Λ), consider the morphism

ηT (Λ) : F (T (Λ))
� �� F (T )(Λ)

η
(Λ)
T �� F ′(T )(Λ)

πΛ �� F ′(T (Λ)),

where πΛ is defined by the canonical injections T → T (Λ) and the universal
property of the coproduct F ′(T )(Λ). For any N ∈MT , consider a presentation

T (Ω) → T (Λ) p→ N → 0. Then there is the following commutative diagram:

F (T (Ω)) ��

η
T (Ω)

��

F (T (Λ))
F (p) ��

η
T (Λ)

��

F (N) �� 0

F ′(T (Ω)) �� F ′(T (Λ))
F ′(p) �� F ′(N) ,

where the upper sequence is exact in Ab and the bottom is a zero sequence.
By the cokernel property we obtain a morphism ηN : F (N)→ F ′(N) making
the diagram commutative. To show that ηN is functorial in N , consider any
morphism f : N → N ′ in MT and the following diagram:

T (Λ)
p �� N ��

f

��

0

T (Λ′) �� N ′ �� 0,

where the top and bottom sequences are used to define η. Choosing a map
g : T (Λ) → T (Λ′) that renders the diagram commutative, we obtain two com-
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mutative diagrams:

F (T (Λ))
F (p) ��

F (g)
��

F (N)

F (f)

��

F ′(T (Λ))

F ′(g)
��

F ′(p) �� F ′(N)

F ′(f)
��

F (T (Λ′)) �� F (N ′) , F ′(T (Λ′)) �� F ′(N ′),

which are connected by η. In the resulting cube we find the square

F (N)
F (f) ��

ηN
��

F (N ′)

ηN′
��

F ′(N)
F ′(f)�� F ′(N ′) ,

and we derive the equality

F ′(f) ◦ ηN ◦ F (p) = ηN ′ ◦ F (f) ◦ F (p) .

Since F (p) is surjective, this implies the commutativity of the previous dia-
gram, showing that ηN is natural in N .

(2) If F ′ respects colimits, then ηT (Ω) and ηT (Λ) in the diagram defining ηN
(see proof of (1)) are isomorphisms, and we conclude that so is ηN . �

39.2. T -objects in a category. Let A be a cocomplete additive category
of Abelian groups and T an associative ring. An object A in A is called
a T -object if there is a ring morphism φA : T → EndA(A). A morphism
f : A→ A′ in A between T -objects is called T -linear if φA′ ◦ f = f ◦φA. The
category consisting of T -objects in A and T -linear morphisms is denoted by

TA. Any T -object A can be considered as a left T -module in a canonical way.
This yields a T -linear isomorphism inA, T⊗TA→ A, t⊗a �→ φA(t)(a) =: ta.

For any N ∈ MT with the free presentation T
(Ω) h−→ T (Λ) −→ N −→ 0

and a T -object A ∈ A, view N ⊗T A as an object in A by the commutative
exact diagram,

T (Ω) ⊗T A
h⊗IA ��

�
��

T (Λ) ⊗T A ��

�
��

N ⊗T A ��

�
��

0

A(Ω) h̃ �� A(Λ) �� Coke h̃ �� 0 ,

and obviously for any morphism g : N → N ′ in MT we obtain a morphism
g ⊗ IA : N ⊗T A→ N ′ ⊗T A in A.
39.3. Functors and T -objects. Let A,B be cocomplete additive categories
of Abelian groups, T any ring, and consider an additive covariant functor
F : A→ B.
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(1) For any A ∈ TA, F (A) lies in TB, and there is a functorial morphism

Ψ−,A : −⊗T F (A)→ F (−⊗T A) of functors MT → B .

ΨP,A is an isomorphism provided that P ∈MT is finitely generated and
projective.

(2) If F preserves coproducts, then there is a functorial morphism

Ψ : −⊗T F (−)→ F (−⊗T −) of functors MT × TA→ B .

(3) If F preserves colimits, then the ΨN,A are isomorphisms, for any objects
N ∈MT , A ∈ TA.

Proof. (1) F (A) is a T -object by the composition of ring morphisms T →
EndA(A) → EndB(F (A)). To construct the functorial morphism needed,
Ψ−,A : −⊗T F (A)→ F (−⊗T A), use the canonical isomorphisms (see above)
to define

ϕT,A : T ⊗T F (A) � �� F (A) � �� F (T ⊗T A).

For any t ∈ T (considered as an element in EndT (T )) there is a diagram

T ⊗T F (A) � ��

t⊗IF (A)

��

F (A) � ��

F (φA(t))
��

F (T ⊗T A)
F (t⊗IA)
��

T ⊗T F (A) � �� F (A) � �� F (T ⊗T A),

where the left square is commutative by the definition of the module structure
on F (A), and the right square is the image under F of a commutative dia-
gram in A. So the outer diagram is commutative, which means that Ψ−,A is
functorial with respect to internal morphisms T → T . Now apply Mitchell’s
Theorem 39.1 to extend the functorial morphism to all of MT .

(2) Assume that F preserves coproducts. It remains to show that ΨN,−
is functorial for all N ∈ MT . Consider any f : A → A′ in TA. For N = T
there is a diagram,

T ⊗T F (A) � ��

IT⊗F (f)
��

F (A) � ��

F (f)

��

F (T ⊗T A)
F (IT⊗f)
��

T ⊗T F (A′) � �� F (A′) � �� F (T ⊗T A′) ,

where the left square is commutative by the definition of the T -module struc-
ture on F (A) and F (A′) and functor properties of F , whereas the right-hand
square is the image under F of a commutative diagram (characterising f as
a T -morphism) in A.
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Since F preserves coproducts, ΨP,− is functorial for any free module P in

MT . For an arbitrary N ∈ MT , choose a free presentation P
p−→ N → 0.

Then we obtain two commutative diagrams:

P ⊗T F (A)
IP⊗F (f)��

p⊗IF (A)

��

P ⊗T F (A′)

p⊗IF (A′)
��

F (P ⊗T A)
F (IP⊗f)��

F (p⊗IA)
��

F (P ⊗T A′)

F (p⊗IA′ )
��

N ⊗T F (A)
IN⊗F (f)�� N ⊗T F (A′) , F (N ⊗T A)

F (IN⊗f)�� F (N ⊗T A′) ,

which are connected by Ψ. In the resulting cube we find the diagram

N ⊗T F (A)
IN⊗F (f)��

ΨN,A
��

N ⊗T F (A′)

ΨN,A′
��

F (N ⊗T A)
F (IN⊗f)�� F (N ⊗T A′) ,

and we derive

F (IN ⊗ f) ◦ΨN,A ◦ (p⊗ IA) = ΨN,A′ ◦ (IN ⊗ F (f)) ◦ (p⊗ IA).

Since p⊗ I is surjective, we conclude that the previous diagram is commuta-
tive, showing that ΨN,− is a functorial morphism.

(3) If F respects colimits, then so does F (− ⊗T A) for any A ∈ TA and
the assertion follows from 39.1(2). �

As a corollary we obtain the important Eilenberg-Watts Theorem:

39.4. Functors fromMT . Let B be a cocomplete additive category of Abelian
groups, T any ring, and F : MT → B an additive covariant functor that
preserves colimits. Then F (T ) is a left T -module and there is a functorial
isomorphism

F (−) � −⊗T F (T ).

Proof. Take A =MT and apply 39.3. �

39.5. Functorial morphisms and T -objects. Let A, B be cocomplete
additive categories of Abelian groups and T any ring. Consider the additive
covariant functors F, F ′ : A→ B with a functorial morphism η : F → F ′.

(1) For any A ∈ TA, the map ηA : F (A)→ F ′(A) is T -linear.
(2) For N ∈MT and A ∈ TA, consider the diagram

N ⊗T F (A)
IN⊗ηA ��

ΨN,A
��

N ⊗T F ′(A)

Ψ′
N,A

��
F (N ⊗T A)

ηN⊗TA �� F ′(N ⊗T A) ,
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where Ψ and Ψ′ denote the functorial morphisms induced by F and F ′,
respectively (cf. 39.3). The diagram is commutative provided either N
is finitely generated and projective, or both F and F ′ preserve colimits.

Proof. (1) With the canonical isomorphisms for T -objects (see 39.2)
there is a commutative diagram,

T ⊗T F (A)
IT⊗ηA��

�
��

T ⊗T F ′(A)

�
��

F (A)
ηA �� F ′(A) ,

which shows that ηA is T -linear.
(2) In the diagram

T ⊗T F (A)
IT⊗ηA ��

ΨT,A

��

�
����

���
���

��
T ⊗T F ′(A)

Ψ′
T,A

��

�
����

���
���

���

F (A)
ηA �� F ′(A)

F (T ⊗T A)
ηT⊗TA ��

�
##����������

F ′(T ⊗T A) ,

�
##�����������

all subdiagrams – except for the back rectangle – are commutative by the
definitions. This obviously implies that the back rectangle also commutes,
and from this we derive the commutativity of the diagram in (2) under the
given conditions. �

39.6. Separable functors between categories. Let F : A→ B be a sep-
arable additive functor between cocomplete additive categories whose objects
are Abelian groups with a splitting morphism

Φ : MorB(F (−), F (−))→ MorA(−,−).
Let A,A′ ∈ TA for some ring T . If g : F (A) → F (A′) is a T -linear

morphism in B, then ΦA,A′(g) : A→ A′ is a T -linear morphism in A.

Proof. If the action of T on A is given by the ring homomorphism
φA : T → EndA(A), the action on F (A) is given by F (φA) (see 39.2). Given
a T -morphism g : F (A) → F (A′), for any t ∈ T , there is the commutative
diagram on the left that – by Φ – induces the commutative diagram on the
right:

F (A)

g

��

F (φA(t)) �� F (A)

g

��

A

Φ(g)

��

φA(t) �� A

Φ(g)

��
F (A′)

F (φA′ (t))
�� F (A′) , A′

φA′ (t)
�� A′ ,
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thus showing that Φ(g) is T -linear. �
Let T be an associative ring, C a T -coring with coproduct ∆ and counit

ε, and let A be a cocomplete additive category. An object A ∈ A is called a
C-object if A is a T -object and there is a morphism A� : A→ C⊗T A inducing
the commutative diagrams in A,

A
A� ��

A�
��

C ⊗T A
∆⊗IA
��

A
A� ��

IA �� 
  

  
  

 C ⊗T A

ε⊗IA$$,,
,,
,,
,,
,

C ⊗T A
IC⊗A��� C ⊗T C ⊗T A , A.

A morphism f : A → A′ in A between C-objects A and A′ is said to be
C-colinear if f is T -linear and (IC ⊗ f) ◦ A� = A′

� ◦ f . The category consisting
of C-objects in A and C-colinear morphisms is denoted by CA.

39.7. Functors between related comodule categories. Let A,B be
cocomplete additive categories of T -modules and C any T -coring. Consider
the covariant functors F, F ′ : A→ B preserving colimits. Then:

(1) For any A in CA, F (A) lies in CB.

(2) Given a functorial morphism η : F → F ′, the map ηA : F (A)→ F ′(A)
is C-colinear, for any A in CA.

Proof. (1) By 39.3, F (A) ∈ TA and there is a functorial morphism

Ψ−,A : −⊗T F (A)→ F (−⊗T A) of functors MT × TA→ B ,

such that ΨN,A is an isomorphism for each N ∈ MT . Define a comodule
structure on F (A) by the first row in the diagram

F (A)
F (A�) ��

F (A�)
��

F (C ⊗T A)
Ψ−1
C,A ��

F (∆⊗IA)
��

C ⊗T F (A)

∆⊗IF (A)

��

F (C ⊗T A)
F (IC⊗A�) ��

Ψ−1
C,A

��

F (C ⊗T C ⊗T A)
Ψ−1
C⊗C,A

������
����

����
����

��

Ψ−1
C,C⊗A

��
C ⊗T F (A)

IC⊗F (A�)
�� C ⊗T F (C ⊗T A)

IC⊗Ψ−1
C,A

�� C ⊗T C ⊗T F (A) .

Here the top left-hand square is commutative by the coassociativity of A�. By
the functoriality of Ψ,

ΨC,C,A ◦ (∆⊗ IF (A)) = F (∆⊗ IA) ◦ΨC,A.
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Applying the corresponding inverse morphisms from the left and right, we
obtain

(∆⊗ IF (A)) ◦Ψ−1
C,A = Ψ

−1
C⊗TC,A ◦ F (∆⊗ IA).

This shows that the top right-hand quadrangle in the diagram is commutative.
Similarly, the commutativity of the bottom square is shown, and the triangle
is commutative by the properties of Ψ. From this we see that the coaction
on F (A) is coassociative and the desired property for the counit can be seen
from the commutative diagram

F (A)
F (A�) ��

IF (A) ����
���

���
��

F (C ⊗T A)
Ψ−1
C,A ��

F (ε⊗IA)
��

C ⊗T F (A)

ε⊗IF (A)��&&&
&&&

&&&
&&&

F (A).

(2) To prove that ηA is a C-colinear map, consider the diagram

F (A)
F (A�) ��

ηA
��

F (C ⊗T A)
Ψ−1
C,A ��

ηC⊗TA
��

C ⊗T F (A)
IC⊗ηA
��

F ′(A)
F (A�)

�� F ′(C ⊗T A)
Ψ′−1

C,A

�� C ⊗T F ′(A) .

Here the left-hand square is commutative by the properties of η and the right
square is commutative by 39.5 and the fact that all the Ψ’s are bijective. �

References. Gómez-Torrecillas [122]; Popescu [40]; Rafael [180].
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40 Algebras over commutative rings

Although we assume the reader to be familiar with the basics of ring and
module theory, and hence also with associative algebras, we gather here facts
and some more nonstandard properties of algebras over a commutative ring.
The aim of this presentation of the fundamentals of algebra is to provide the
reader with an intuition in what sense coalgebras and corings are dual to
algebras.

Throughout, R denotes an associative commutative ring with unit and
MR is the category of R-modules.

40.1. Tensor products. For any M ∈ MR, we will identify M ⊗R R with
M by the isomorphism ϑ : R ⊗RM → M, r ⊗m �→ rm. Let K,L,M,N be
R-modules. We fix the notation for the twist isomorphisms,

tw : M ⊗R N → N ⊗RM, m⊗ n �→ n⊗m,
tw13 : M ⊗R N ⊗R L → L⊗R N ⊗RM, (m⊗ n)⊗ l �→ l ⊗ n⊗m,

and we write twij for the permutation of position i with position j in a multiple
tensor product.

Tensor product of morphisms. For R-morphisms f :M → N , g : K → L,
there is a unique R-morphism,

f⊗g :M ⊗R K → N ⊗R L, m⊗ k �→ f(m)⊗ g(k),

called the tensor product of f and g. This induces an R-homomorphism,

HomR(M,N)⊗R HomR(K,L)→ HomR(M ⊗R K,N ⊗R L), f ⊗ g �→ f⊗g.
In particular, for N = L = R, there is an R-homomorphism,

HomR(M,R)⊗R HomR(K,R)→ HomR(M ⊗R K,R),
which is an isomorphism if M (or K) is a finitely generated projective R-
module. Usually we simply write f ⊗ g instead of f⊗g.
40.2. Algebras and their morphisms. An R-module A is an associative
R-algebra (with unit) if there exist R-linear maps, µ : A ⊗R A → A, called
the product and ι : R→ A called the unit, such that

a(bc) = (ab)c and a1A = a = 1Aa, for all a, b, c ∈ A,

where µ(a⊗ b) = ab and 1A = ι(1R). A is called commutative if ab = ba, for
all a, b ∈ A.

An R-linear map f : A → B between two R-algebras is a (unital) alge-
bra morphism, if f(ab) = f(a)f(b) for all a, b ∈ A, and f(1A) = 1B. The
identity IA : A→ A is an algebra morphism, and the composition of algebra
morphisms is again an algebra morphism. Hence the R-algebras and their
morphisms form a category denoted by Alg(R).
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40.3. Tensor product of algebras. The tensor product A ⊗R B of two
R-algebras is an R-algebra defined by the product µA⊗B,

(A⊗RB)⊗R(A⊗RB)
IA⊗tw⊗IB �� (A⊗RA)⊗R(B⊗RB)

µA⊗µB �� A⊗RB ,

and the unit ιA⊗B(1R) = ιA(1R)⊗ ιB(1R) : R→ A⊗R B, 1R �→ 1A⊗ 1B. If B
is commutative, then the map

µA⊗B : (A⊗R B)⊗B (A⊗R B)→ A⊗R B

is B-linear, and hence A ⊗R B is a B-algebra (scalar extension of A by B).
A⊗R B is commutative if both A and B are commutative algebras.

40.4. A-modules and homomorphisms. Let A be an R-algebra. An
R-module M with an R-linear map

�M : A⊗RM →M, a⊗m �→ am,

is called a (unital) left A-module if

�M ◦ (µA ⊗ IM) = �M ◦ (IM ⊗ �M) and �M ◦ (ιA ⊗ IM) = IM .

The second condition means that 1Am = m, for all m ∈ M . So there is an
R-morphism M → A ⊗R M , m �→ 1A ⊗ m, and M is a direct summand of
A⊗RM as an R-module.

An R-linear map g : M → N between left A-modules is an A-morphism
(A-homomorphism, A-linear) if �M ◦(IA⊗g) = g◦�N , that is, g(am) = ag(m),
for all a ∈ A, m ∈ M. The set of A-morphisms M → N is denoted by

AHom(M,N) and forms an Abelian group that can be characterised by the
exact sequence

0 −→ AHom(M,N) −→ HomR(M,N)
β−→ HomR(A⊗M,N),

where β(f) = �N ◦ (IA⊗ f)− f ◦ �M . Left A-modules with the A-morphisms
form an additive category that is denoted by AM. This is simply the category
of F -algebras for the functor (monad) A⊗R − :MR →MR (see 38.28).

Right A-modules and related notions are defined in an obvious way, and the
category of right A-modules is denoted by MA. For the morphisms between
M,N ∈ MA we write HomA(M,N). Of course A itself is a left and right
A-module (defined by µA).

For notational convenience it is sometimes advantageous to write homo-
morphisms of left A-modulesM on the right side of the argument. ThenM is
an (A, S)-bimodule, where S denotes AEnd(M) acting from the right. Notice
that the switch from the left action to the right action of endomorphisms
changes the product to the opposite one. Symmetrically, morphisms of right
modules are acting from the left.
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40.5. Split exact sequences. A sequence K
f �� L

g ��M of morphisms
in AM is called exact provided Ke g = Im f , and is said to be split exact if it
is exact and the canonical morphism L/Im f →M is a coretraction.

Sequences K1
f1 �� K2

f2 �� K3
f3 �� · · · of morphisms are called (split)

exact if they are (split) exact at any Ki (where it makes sense).

40.6. Graded algebras. Let A be an R-algebra and G a monoid with
a neutral element e. A is said to be a G-graded algebra if there exists an
independent family of R-submodules Ag ⊂ A, g ∈ G, such that

A =
⊕

G
Ag and AgAh ⊂ Agh, for g, h ∈ G.

This implies in particular that Ae is an R-subalgebra of A. If A has a unit
1A and G is cancellable, then 1A ∈ Ae.

Let A =
⊕

GAg and B =
⊕

GBg be two G-graded R-algebras. A map-
ping φ : A → B is called a graded R-algebra morphism if φ is an R-algebra
morphism satisfying

φ(Ag) ⊂ Bg for each g ∈ G.

Graded modules. Let A be a G-graded algebra and M a left A-module.
M is called G-graded if there exists a family of R-modules {Mg}G such that

M =
⊕

G
Mg and AgMh ⊂Mgh, for g, h ∈ G.

G-graded right A-modules are defined symmetrically.
Obviously, any G-graded algebra A is a G-graded left and right module.

40.7. Product and coproduct. The product of a family of modules
{Mλ}Λ in AM is given by the Cartesian product

∏
ΛMλ with the canonical

projections πλ, where the module structure is defined by a componentwise
operation. It is characterised by the group isomorphism, for any N ∈ AM,

AHom(N,
∏

Λ
Mλ)→

∏
Λ
AHom(N,Mλ), f �→ (πλ ◦ f)λ∈Λ.

The coproduct of {Mλ}Λ can be realised as a submodule of the product,⊕
Λ
Mλ = {m ∈

∏
Λ
Mλ | πλ(m) �= 0 only for finitely many λ ∈ Λ},

with the injections

εµ :Mµ →
⊕

Λ
Mλ, mµ �→ (mµδµλ)λ∈Λ.

The defining property of the coproduct is the bijectivity of the map, N ∈ AM,

AHom(
⊕

Λ
Mλ, N)→

∏
Λ
AHom(Mλ, N), g �→ (g ◦ ελ)λ∈Λ.
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40.8. Dual modules. For any M ∈ AM and X ∈ MR, HomR(M,X) is a
right A-module by the right A-action fa(m) = f(am), for f ∈ HomR(M,X),
a ∈ A and m ∈ M . In particular, the R-dual M∗ = HomR(M,R) is a right
A-module by this multiplication.

Similar constructions apply to right A-modules and R-modules.

40.9. Bimodules. Let A,B be R-algebras. An R-module M is called an
(A,B)-bimodule if it is a left A-module and a right B-module and a(mb) =
(am)b, for all a ∈ A, b ∈ B and m ∈ M . Bimodule morphisms between
two (A,B)-bimodules M and N are maps that are both left A- and right
B-linear, and we denote them by AHomB(M,N). The category of all (A,B)-
bimodules with these morphisms is denoted by AMB. It can be identified
with the category of left modules over the algebra A⊗R Bop.

40.10. Tensor product of A-modules. Let N ∈MA and M ∈ AM. The
tensor product N ⊗AM is defined by the exact sequence of Abelian groups

N ⊗R A⊗RM δ �� N ⊗RM �� N ⊗AM �� 0,

where δ = N� ⊗ IM − IN ⊗ �M . For morphisms f : N → N ′ in MA and
g ∈M →M ′ in AM, the tensor product f ⊗ g is defined by

f ⊗ g : N ⊗AM → N ′ ⊗AM ′, n⊗m �→ f(n)⊗ g(m).

40.11. Tensor functor. Any L ∈MA induces a covariant functor

L⊗A − : AM→ Ab, M �→ L⊗AM, f �→ IL ⊗ f,

which is right exact and respects colimits. It is left exact if and only if L is
a flat A-module.

40.12. Hom-tensor relations. For R-algebras A,B, consider objects M ∈
MA, N ∈ BMA and Q ∈MB. Then the canonical map

νM : Q⊗B HomA(M,N)→ HomA(M,Q⊗B N), q ⊗ h �→ q ⊗ h(−) ,

is an isomorphism provided that (cf. [47, 15.7])

(1) Q is a flat B-module and M is a finitely presented A-module, or

(2) Q is a finitely generated and projective B-module, or

(3) M is a finitely generated and projective A-module.

40.13. Pure morphisms. Related to any morphism f : M → M ′ in AM,
there is an exact sequence

0 �� Ke f ��M
f ��M ′ �� Coke f �� 0 .
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Given L ∈ MA, we say the morphism f is L-pure if tensoring this sequence
with L⊗A− yields an exact sequence (in Ab). The morphism f is said to be
pure if it is L-pure for every L ∈MA. Since the tensor functor is right exact,
the following are equivalent:

(a) f is L-pure;

(b) 0 �� L⊗A Ke f �� L⊗AM
IL⊗f �� L⊗AM ′ is exact;

(c) Ke f →M and Im f →M ′ are L-pure (mono) morphisms.

For any inclusion i : N →M , the image of the map

IL ⊗ i : L⊗A N → L⊗AM

is called the canonical image of L⊗AN in L⊗AM . If IL⊗ i is injective (i.e.,
i is an L-pure morphism), then N is said to be an L-pure submodule and we
identify the canonical image of IL ⊗ i with L⊗A N . Obviously, if L is a flat
right A-module, then every morphism f :M →M ′ in AM is L-pure.

More generally, a sequence K1
f1 �� K2

f2 �� K3
f3 �� · · · of morphisms

in AM is called L-pure, for L ∈ MA, if it remains an exact sequence under
L ⊗A −. If this holds for every L ∈MA, the sequence is simply called pure.
Split exact sequences (see 40.5) are of this type.

40.14. Pure equalisers. Let f, g : M → M ′ be two morphismsm in AM
and L ∈MA. The equaliser

K
k ��M

f ��
g

��M ′

is called L-pure, if it remains an equaliser after tensoring with L⊗A −, that
is,

L⊗A K
IL⊗k �� L⊗AM

IL⊗f ��
IL⊗g

�� L⊗AM ′

is again an equaliser. An equaliser is called pure provided it is L-pure for
all L ∈MA. Since the equaliser of f, g can be characterised as the kernel of
f − g, it is (L-)pure if and only if f − g is an (L-)pure morphism.

40.15. Kernels of tensor products of maps. If f : N → N ′ in MA and
g ∈M →M ′ in AM are surjective, then f ⊗ g is surjective and Ke (f ⊗ g) is
the sum of the canonical images of Ke f ⊗AM ′ and N ′ ⊗A Ke g.

In case Ke f ⊂ N is M-pure and Ke g ⊂M is N-pure,

Ke (f ⊗ g) = Ke f ⊗AM +N ⊗A Ke g.
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40.16. Intersection property. Consider N ′ ∈MA and M
′ ∈ AM.

(1) Assume N ⊂ N ′ in MA and M ⊂M ′ in AM to be pure submodules, or

assume M ′ and M ′/M to be (N ′-) flat. Then

N ⊗AM = (N ⊗AM ′) ∩ (N ′ ⊗AM).

(2) Let U, V ⊂ N ′ be submodules and assume M ′ to be flat. Then

(U ⊗M ′) ∩ (V ⊗M ′) = (U ∩ V )⊗M ′.

Proof. (1) Under the given conditions we may identify N ⊗A M ′ and
N ′ ⊗A M with their canonical images in N ′ ⊗A M ′ and obtain the exact
commutative diagram in Ab,

0

��

0

��

0

��
0 �� N ⊗AM ��

��

N ⊗AM ′ ��

��

N ⊗AM ′/M ��

��

0

0 �� N ′ ⊗AM �� N ′ ⊗AM ′ �� N ′ ⊗AM ′/M �� 0 ,

where the left square is a pullback (e.g., [46, 10.3]). This implies the identi-
fication stated.

(2) This is shown with a similar argument as in the proof of (1). �
It is well known that the tensor product respects direct sums (coproducts).

The behaviour towards products is more complicated (e.g., [46, 12.9]).

40.17. Tensor product and products. For any family {Mλ}Λ of left A-
modules and U ∈MA, consider the map

ϕU : U ⊗A
∏

Λ
Mλ →

∏
Λ
U ⊗AMλ, u⊗ (mλ)Λ �→ (u⊗mλ)Λ.

(1) ϕU is surjective for any family {Mλ}Λ if and only if U is a finitely
generated A-module.

(2) ϕU is bijective for any family {Mλ}Λ if and only if U is a finitely pre-
sented A-module.

U is called a Mittag-Leffler module if ϕU is injective for any family {Mλ}Λ
in AM. Clearly, finitely presented and pure projective modules are Mittag-
Leffler modules.

40.18. The functor M ⊗B −. For M ∈ AMB and X ∈ BM, M ⊗B X is a
left A-module by

M�⊗ IX : A⊗RM ⊗B X →M ⊗B X,
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and, for N ∈ AM, AHom(M,N) is a left B-module by (bf)(m) = f(mb),
for b ∈ B, f ∈ AHom(M,N) and m ∈ M . These observations lead to the
functors

M ⊗B − : BM→ AM, AHom(M,−) : AM→ BM,

which form an adjoint pair by the isomorphism

AHom(M ⊗B X,N)→ BHom(X, AHom(M,N)), g �→ [x �→ g(−⊗ x)],

with inverse map h �→ [m⊗ x �→ h(x)(m)].

Proposition. If M ⊗B − has a left adjoint, then MB is finitely generated
and projective.

Proof. By 38.21, M ⊗B − preserves limits (hence monomorphisms) and
products. SoM is flat and finitely presented as a right B-module (see 40.17).
This implies that M is projective as a right B-module. �

A (B,A)-bimodule M is called a Frobenius bimodule if it is finitely gener-
ated and projective both in BM and inMA and there is an (A,B)-bimodule
isomorphism

∗M := BHom(M,B) � HomA(M,A) =:M∗ .

40.19. Frobenius functors. For additive covariant functors F : AM→ BM
and G : BM→ AM, the following are equivalent:

(a) (F,G) is a Frobenius pair of functors;

(b) there exists a Frobenius bimodule BMA such that

F �M ⊗A − and G � ∗M ⊗B −;
(c) F � M ⊗A − and G � N ⊗B −, for some bimodules BMA and ANB

that are finitely generated and projective as A- and B-modules, and
∗M � ANB and N∗ � BMA as bimodules.

Proof. (a) ⇒ (c) By the Eilenberg-Watts Theorem 39.4, there exist
bimodules BMA = F (A) and ANB = G(B) presenting the respective functors.
By adjointness there are bimodule isomorphisms

∗M � BHom(F (A), B) � AHom(A,G(B)) � N.

It follows from 40.18 that MA and NB are finitely generated and projective,
and the isomorphism implies that BM and AN are also finitely generated and
projective.

(c) ⇒ (b) is obvious.
(b) ⇒ (a) Since BM is finitely generated and projective, BHom(M,−) �

∗M ⊗B −. Since BHom(M,−) : BM → AM has a left adjoint, so has G �
∗M ⊗B−. A similar argument shows that F has a right adjoint and so (F,G)
is a Frobenius pair. �
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40.20. Induction and coinduction functors. Consider a ring morphism
φ : B → A. Then A is an (A,B)-bimodule and induces a covariant functor
A ⊗B − : BM → AM, called an induction functor. This is left adjoint
to the forgetful (restriction of scalars) functor B(−) : AM → BM by the
isomorphism

AHom(A⊗B N,M)→ BHom(N,M), f �→ f ◦ γ,
for N ∈ BM, M ∈ AM, where γ : N → A⊗B N, n �→ 1A ⊗ n.

Moreover, the coinduction functor BHom(A,−) : BM → AM is right
adjoint to B(−) by the isomorphism

AHom(M, BHom(A,N))→ BHom(M,N), g �→ g(m)(1),

with inverse map h �→ [m �→ h(−m)], where N ∈ BM, M ∈ AM.

40.21. Frobenius extensions. For a ring morphism φ : B → A the follow-
ing are equivalent:

(a) (A⊗B −, B(−)) is a Frobenius pair;
(b) (B(−), BHom(A,−)) is a Frobenius pair;
(c) BHom(A,−) � A⊗B −;
(d) A is finitely generated and projective as left B-module and

BHom(A,B) � A as (A,B)-bimodule.

If these conditions hold, then φ : B → A is called a Frobenius extension.

Proof. By 40.20, the first three equivalences are obvious; (a) ⇔ (d)
follows from 40.19. �

40.22. Separability. A ⊗B − is a separable functor if and only if B is a
direct summand of A as a (B,B)-submodule.

Proof. If A ⊗B − is separable, then the counit ηN : N → A ⊗B N
splits functorially in BM. In particular, ηB : B → A ⊗B B � A is split by
some γ : A → B in BM. Since A is also a left B-module, γ is left B-linear
by 39.5. Conversely, let γ : A → B be the splitting map in BMB. Then
γ ⊗ IN : A⊗B N → B ⊗B N � N is a functorial splitting of ηN . �

An adjoint pair of contravariant functors is given by (e.g., [46, 45.10])

40.23. The functors Hom(−, U). Let U be an (A,B)-bimodule, L ∈ MB

and N ∈ AM. The functors

AHom(−, U) : AM→MB, HomB(−, U) :MB → AM,

form a right adjoint pair by the functorial isomorphism

ΦL,N : HomB(L, AHom(N,U)) −→ AHom(N,HomB(L,U)),
f �−→ [n→ [f(−)](n)].
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(1) Associated with this are the (evaluation) homomorphisms

ΦN : N → HomB(AHom(N,U), U), n �→ [β �→ (n)β],

ΦL : L→ AHom(HomB(L,U), U), l �→ [α �→ α(l)].

(2) ΦL is injective if and only if L is cogenerated by UB, and ΦN is injective
if and only if N is cogenerated by AU .

(3) Denoting AHom(−, U) = ∗( ) and HomB(−, U) = ( )∗,

∗(ΦL) ◦ ΦL∗ = IL∗ in AM and (ΦN)
∗ ◦ Φ∗N = I∗N in MB.

References. Bourbaki [5]; Caenepeel, Militaru and Zhu [9]; Wisbauer
[46, 47].
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41 The category σ[M ]

Throughout A will denote an R-algebra and M a left A-module. The mod-
ule structure of M is reflected by the smallest Grothendieck category of A-
modules containing M , which we briefly describe in this and subsequent sec-
tions. For more details we refer the reader to [46].

An A-module N is called M-generated if there exists an epimorphism
M (Λ) → N for some set Λ. The class of all M -generated modules is denoted
by Gen(M).

41.1. The category σ[M ]. An A-module N is called M-subgenerated if it is
(isomorphic to) a submodule of an M -generated module. By σ[M ] we denote
the full subcategory of AM whose objects are all M -subgenerated modules.
This is the smallest full Grothendieck subcategory of AM containingM . σ[M ]
coincides with AM if and only if A embeds into some (finite) coproduct of
copies of M . This happens, for example, when M is a faithful A-module that
is finitely generated as a module over its endomorphism ring (see [46, 15.4]).

The trace functor T M : AM→ σ[M ], which sends any X ∈ AM to

T M(X) :=
∑

{f(N) | N ∈ σ[M ], f ∈ AHom(N,X)},

is right adjoint to the inclusion functor σ[M ]→ AM (e.g., [46, 45.11]). Hence,
by 38.21, for any family {Nλ}Λ of modules in σ[M ], the product in σ[M ] is

∏M

Λ
Nλ = T M(

∏
Λ
Nλ),

where the unadorned
∏
denotes the usual (Cartesian) product of A-modules

(see 40.7). Hence, for any P ∈ σ[M ],

AHom(P,
∏M

Λ
Nλ) �

∏
Λ
AHom(P,Nλ).

Moreover, for any injective A-module Q, T M(Q) is an injective object in the
category σ[M ].

By definition, σ[M ] is closed under direct sums, factor modules and sub-
modules in AM. Any subcategory that has these properties is said to be a
closed subcategory (of AM or σ[M ]). It is straightforward to see that any
closed subcategory is of type σ[N ] for some N in AM or σ[M ], respectively.

N ∈ σ[M ] is said to be a generator in σ[M ] if it generates all modules in
σ[M ], and M is called a self-generator if it generates all its own submodules.
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41.2. Properties of σ[M ]. (Cf. [46, Section 15].)

(1) Let {Nλ}Λ be a family of modules in σ[M ]. The coproduct (direct sum)⊕
ΛNλ in AM is also the coproduct in σ[M ].

(2) Finitely generated (cyclic) submodules of M (N) form a set of generators
in σ[M ]. The direct sum of these modules is a generator in σ[M ].

(3) Objects in σ[M ] are finitely (co)generated in σ[M ] if and only if they
are finitely (co)generated in AM.

(4) Every simple module in σ[M ] is a subfactor of M .

41.3. Injective modules. Let U and M be A-modules. U is said to be
M-injective if every diagram in AM with exact row

0 → K → M
↓
U

can be extended commutatively by some morphism M → U . This holds if

AHom(−, U) is exact with respect to all exact sequences of the form 0→ K →
M → N → 0 (in σ[M ]). U is injective in σ[M ] (in AM) if it is N -injective,
for every N ∈ σ[M ] (N ∈ AM, resp.).

U is said to be weakly M-injective if AHom(−, U) is exact on all exact
sequences 0→ K →Mk → N → 0, where k ∈ N and K is finitely generated.
Weakly R-injective modules are also called FP-injective.

41.4. Injectives in σ[M ]. (Cf. [46, 16.3, 16.11, 17.9].)

(1) For Q ∈ σ[M ] the following are equivalent:

(a) Q is injective in σ[M ];

(b) the functor AHom(−, Q) : σ[M ]→MR is exact;

(c) Q is M-injective;

(d) Q is N-injective for every (finitely generated) submodule N ⊂M ;

(e) every exact sequence 0→ Q→ N → L→ 0 in σ[M ] splits.

(2) Every (weakly) M-injective object in σ[M ] is M-generated.

(3) Every object in σ[M ] has an injective hull.

41.5. Projectivity. LetM and P be A-modules. P is said to beM-projective
if the functor AHom(P,−) is exact on all exact sequences of the form 0 →
K → M → N → 0 in AM. P is called projective in σ[M ] (in AM) if it is
N -projective, for every N ∈ σ[M ] (N ∈ AM, repectively).
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41.6. Projectives in σ[M ]. (Cf. [46, 18.3].)
For P ∈ σ[M ] the following are equivalent:

(a) P is projective in σ[M ];

(b) the functor AHom(P,−) : σ[M ]→MR is exact;

(c) P is M (Λ)-projective, for any index set Λ;

(d) every exact sequence 0→ K → N → P → 0 in σ[M ] splits.

If P is finitely generated, then (a)–(d) are equivalent to:

(e) P is M-projective;

(f) every exact sequence 0 → K ′ → N → P → 0 in σ[M ] with K ′ ⊂ M
splits.

A module P ∈ σ[M ] is called a progenerator in σ[M ] if it is finitely gen-
erated, projective and a generator in σ[M ]. Notice that there may be no
projective objects in σ[M ]. A module N ∈ σ[M ] is a subgenerator in σ[M ] if
σ[N ] = σ[M ].

41.7. Subgenerators. (Cf. [46, Section 15 and 16.3].)

(1) For N ∈ σ[M ] the following are equivalent:

(a) N is a subgenerator in σ[M ];

(b) N generates all injective modules in σ[M ];

(c) N generates the M-injective hull M̂ of M .

If σ[M ] has a progenerator G, then (a)–(c) are equivalent to:

(d) there exists a monomorphism G→ Nk, for some k ∈ N.

(2) For an A-module M the following are equivalent:

(a) M is a subgenerator in AM (that is, σ[M ] = AM);

(b) M generates all injective modules in AM;

(c) M generates the injective hull E(A) of AA;

(d) there is a monomorphism A→Mk, for some k ∈ N.

(3) A faithful module AM is a subgenerator in AM provided

(i) AM is finitely generated over EndA(M), or

(ii) AA is finitely cogenerated, or

(iii) σ[M ] is closed under products in AM.

41.8. Semisimple modules.

(1) The following are equivalent:

(a) M is a (direct) sum of simple modules;

(b) every submodule of M is a direct summand;
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(c) every module (in σ[M ]) is M-projective (or M-injective);

(d) every short exact sequence in σ[M ] splits;

(e) every simple module (in σ[M ]) is M-projective;

(f) every cyclic module (in σ[M ]) is M-injective.

Modules M with these properties are called semisimple modules.

(2) Assume M to be semisimple.

(i) There exists a fully invariant decomposition

M =
⊕

Tr(Eλ,M),

where {Eλ}Λ is a minimal representing set of simple submodules
of M and the Tr(Eλ,M) are minimal fully invariant submodules.

(ii) The ring S = AEnd(M) is von Neumann regular and M is semi-
simple as a right S-module.

(iii) If all simple submodules of AM are isomorphic, then all simple
submodules of MS are isomorphic.

Proof. The first parts are shown in [46, 20.2–20.6].
(2)(ii) Let Am ⊂ M be a simple submodule. We show that mS ⊂ M

is a simple S-submodule. For any t ∈ S with mt �= 0, Am � Amt. Since
these are direct summands in M , there exists some φ ∈ S with mtφ = m and
hence mS = mtS, implying that mS has no nontrivial S-submodules. As a
semisimple module,M =

∑
ΛAmλ with Amλ simple. NowM = A(

∑
ΛmλS),

showing that M is a sum of simple S-modules amλS, where a ∈ A.
(2)(iii) It is straightforward to show that, for any m,n ∈ M , Am � An

implies mS � nS. �
A finitely generated module N ∈ σ[M ] is said to be finitely presented in

σ[M ] if, for any exact sequence 0 → K → L → N → 0 in σ[M ], L finitely
generated implies that K is finitely generated.

41.9. Finitely presented modules in σ[M ]. (Cf. [46, 25.2].)
For a finitely generated P ∈ σ[M ] the following are equivalent:

(a) P is finitely presented in σ[M ];

(b) AHom(P,−) commutes with direct limits in σ[M ];
(c) AHom(P,−) commutes with direct limits of M-generated modules;

(d) AHom(P,−) commutes with direct limits of weaklyM-injective modules.

Definitions. A module M has finite length if it is Noetherian and Artinian.
M is called locally Noetherian (Artinian, of finite length) if every finitely
generated submodule of M is Noetherian (Artinian, of finite length). M is
called semi-Artinian if every factor module of M has a nonzero socle.
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41.10. Local finiteness conditions. (Cf. [46, 27.5, 32.5].)

(1) The following are equivalent for a left A-module M :

(a) M is locally Noetherian;

(b) every finitely generated module in σ[M ] is Noetherian;

(c) every finitely generated module is finitely presented in σ[M ];

(d) every weakly M-injective module is M-injective;

(e) any direct sum of M-injective modules is M-injective;

(f) every injective module in σ[M ] is a direct sum of uniform modules.

(2) The following are equivalent for a left A-module M :

(a) M is locally of finite length;

(b) every finitely generated module in σ[M ] has finite length;

(c) every injective module in σ[M ] is a direct sum ofM-injective hulls
of simple modules.

(3) A module M is locally Artinian if and only if every finitely generated
module in σ[M ] is Artinian.

(4) A module M is semi-Artinian if and only if every module in σ[M ] has
a nonzero socle.

Definitions. A submodule K ofM is said to be superfluous or small inM if,
for every submodule L ⊂M , K+L =M implies L =M . A small submodule
is denoted by K << M . An epimorphism π : P → N with P projective in
σ[M ] and Keπ << P is said to be a projective cover of N in σ[M ]. A module
is called local if it has a largest proper submodule.

41.11. Local modules. (Cf. [46, 19.7].)
For a projective module P ∈ σ[M ], the following are equivalent:

(a) P is local;

(b) P has a maximal submodule that is superfluous;

(c) P is cyclic and every proper submodule is superfluous;

(d) P is a projective cover of a simple module in σ[M ];

(e) End(AP ) is a local ring.

Definitions. Let U be a submodule of the A-module M . A submodule
V ⊂ M is called a supplement of U in M if V is minimal with the property
U + V = M . It is easy to see that V is a supplement of U if and only if
U + V = M and U ∩ V << V . Notice that supplements need not exist in
general. M is said to be supplemented provided each of its submodules has
a supplement. Examples of supplemented modules are provided by linearly
compact modules.
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41.12. Linearly compact modules. A left A-moduleM is called a linearly
compact module if, for any family of cosets {xi+Mi}Λ with the finite intersec-
tion property, where xi ∈M , andMi ⊂M are submodules,

⋂
Λ(xi+Mi) �= ∅.

For further descriptions of these modules we refer the reader to [46, 29.7].

41.13. Properties of linearly compact modules. (Cf. [46, 29.8., 41.10].)
If M is a linearly compact left A-module, then:

(1) M is supplemented.

(2) M/Rad(M) is finitely generated and semisimple.

(3) M is Noetherian if and only if Rad(U) �= U , for all submodules U ⊂M .

(4) M is Artinian if and only if M is semi-Artinian.

Definitions. A module P ∈ σ[M ] is said to be semiperfect in σ[M ] if every
factor module of N has a projective cover in σ[M ]. P is perfect in σ[M ] if
any direct sum P (Λ) is semiperfect in σ[M ].

41.14. Semiperfect modules. (Cf. [46, 42.5, 42.12].)
For a projective module P in σ[M ], the following are equivalent:

(a) P is semiperfect in σ[M ];

(b) P is supplemented;

(c) every finitely P -generated module has a projective cover in σ[M ];

(d) (i) P/Rad(P ) is semisimple and Rad(P ) << P , and

(ii) decompositions of P/Rad(P ) can be lifted to P ;

(e) every proper submodule is contained in a maximal submodule of P, and
every simple factor module of P has a projective cover in σ[M ];

(f) P is a direct sum of local modules and Rad(P ) << P .

41.15. Perfect modules. (Cf. [46, 43.2].)
For a projective module P in σ[M ], the following are equivalent:

(a) P is perfect in σ[M ];

(b) P is semiperfect and, for any set Λ, Rad(P (Λ)) << P (Λ);

(c) every P -generated module has a projective cover in σ[M ].

Definition. We call σ[M ] a (semi)perfect category if every (simple) module
in σ[M ] has a projective cover in σ[M ].

41.16. Semiperfect and perfect categories.

(1) For an A-module M the following are equivalent:

(a) σ[M ] is semiperfect;

(b) σ[M ] has a generating set of local projective modules;
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(c) in σ[M ] every finitely generated module has a projective cover.

(2) For M the following are equivalent:

(a) σ[M ] is perfect;

(b) σ[M ] has a projective generator that is perfect in σ[M ].

Proof. (1) (a)⇒ (b) The projective covers of all simple objects in σ[M ]
are local and form a generating set of σ[M ] (by [46, 18.5]). Notice that local
modules are supplemented.

(b)⇒ (c) Any finite direct sum of supplemented modules is supplemented.
Hence, for every finitely generated N ∈ σ[M ], there exists an epimorphism
P → N with some supplemented projective module P ∈ σ[M ]. By 41.14,
every factor module of P has a projective cover in σ[M ], and so does N .

(c) ⇒ (a) is trivial.
(2) (a)⇒ (b) Let P be the direct sum of projective covers of a representa-

tive set of the simple modules in σ[M ]. Then P is a projective generator and
every factor module of P (Λ) has a projective cover, and hence P is perfect.

(b) ⇒ (a) is obvious. �

41.17. Left perfect rings. (Cf. [46, 43.9].)
For A the following are equivalent:

(a) A is a perfect module in AM;

(b) A/Jac(A) is left semisimple and Jac(A) is right t-nilpotent;

(c) every left A-module has a projective cover;

(d) every (indecomposable) flat left A-module is projective;

(e) A satisfies the descending chain condition (dcc) on cyclic right ideals;

(f) every right A-module has the dcc on cyclic (finitely generated) submod-
ules.

41.18. (f-)semiperfect rings. A ring A is said to be semiperfect if A is
semiperfect as a left A-module or – equivalently – as a right A-module. From
41.14(d) we see that A is semiperfect if and only if A/Jac(A) is left (and
right) semisimple and idempotents lift modulo Jac(A). More generally, A is
called f-semiperfect (or semiregular) if A/Jac(A) is von Neumann regular and
idempotents lift modulo Jac(A). Note that A is semiperfect if and only if
finitely generated left and right A-modules have projective covers, and A is
f-semiperfect if and only if every finitely presented left (and right) A-module
has a projective cover (see [46, 42.11]). From [46, 42.12, 22.1] we recall:

41.19. (f-)semiperfect endomorphism rings. Put S = AEnd(M).

(1) Assume M to be projective in σ[M ]. Then:
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(i) S is semiperfect if and only ifM is finitely generated and semiper-
fect.

(ii) If M is semiperfect, then S is f-semiperfect.

(iii) If S is f-semiperfect, then Rad(M) << M and M is a direct sum
of cyclic modules.

(2) If M is self-injective, then S is f-semiperfect.

(3) If M is self-injective and Soc(M)✂M , then

Jac(S) = AHom(M/Soc(M),M).

41.20.
∑
-injective semiperfect modules. Let P be semiperfect and pro-

jective in σ[M ]. If P is
∑
-injective in σ[M ], then P is perfect in σ[M ].

Proof. Any coproduct P (Λ) is injective in σ[M ] and so AEnd(P
(Λ)) is

f-semiperfect. By 41.19, this implies Rad(P (Λ)) << P (Λ), showing that P is
perfect in σ[M ]. �
Definitions. A module P ∈ σ[M ] is said to be (semi)hereditary in σ[M ] if
every (finitely generated) submodule of P is projective in σ[M ]. We call a
module P ∈ σ[M ] (semi)cohereditary in σ[M ] if every factor module of P is
(weakly) M -injective.

Any finite direct sum of cohereditary modules in σ[M ] is again coheredi-
tary, and the corresponding statement for infinite direct sums holds provided
that M is locally Noetherian (see [208, 6.3]).

Denote by Inj (M) the class of all injective modules in σ[M ].

41.21. Cohereditary modules. (Cf. [208, 6.4].)

(1) If M is locally Noetherian, the following are equivalent:

(a) M̂ is cohereditary in σ[M ];

(b) every injective module is cohereditary in σ[M ];

(c) every indecomposable injective module is cohereditary in σ[M ].

In case σ[M ] has a projective subgenerator L, (a)–(c) are equivalent to:

(d) L is hereditary in σ[M ].

(2) For a subgenerator P ∈ σ[M ], the following are equivalent:

(a) Gen(P ) = Inj (M);

(b) P is locally Noetherian and cohereditary in σ[M ].

In the remaining part of this section we consider the relative properties of
A-modules related to a fixed ring morphism φ : B → A. In this case, any left
A-module M is naturally a left B-module and there is an interplay between
the properties of M as an A-module and those of M as a B-module.
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41.22. (A,B)-finite modules. The module M is said to be (A,B)-finite
if every finitely generated A-submodule of M is finitely generated as a B-
module. σ[M ] is said to be (A,B)-finite if every module in σ[M ] is (A,B)-
finite.

(1) The following are equivalent:

(a) σ[M ] is (A,B)-finite;

(b) M (N) is (A,B)-finite.

(2) If B is a left Noetherian ring and M is (A,B)-finite, then σ[M ] is
(A,B)-finite.

(3) Let σ[M ] be (A,B)-finite.

(i) If B is a right perfect ring, then every module in σ[M ] has the
dcc on finitely generated A-submodules.

(ii) If B is left Noetherian, then every module in σ[M ] is locally
Noetherian.

(iii) If B is left Artinian, then every module in σ[M ] has locally finite
length.

41.23. Socle of injectives. Let A be an R-algebra and M an (A,R)-finite
weakly M-injective A-module that is also (S,R)-finite, where S = End(AM).
Assume that M has only finitely many nonisomorphic simple submodules.
Then Soc(AM) is finitely generated as an R-module.

Proof. Let E1, . . . , Ek be a representative set of simple A-submodules of
M . By injectivity, Soc(AM) =

∑k
i=1EiS. Now (A,R)-finiteness implies that

each Ei is finitely R-generated, and, by (S,R)-finiteness, each EiS is finitely
R-generated. �

The following observations essentially follow from [133], where the basic
ideas were introduced, and from [47, Section 20], where these ideas were
extended to modules over algebras.

41.24. Relative notions. An exact sequence fi :Mi →Mi+1 in AM, i ∈ N,
is called (A,B)-exact if Im fi is a direct summand ofMi+1 as a left B-module.

LetM,P,Q be left A-modules. P is called (M,B)-projective if AHom(P,−)
is exact with respect to all (A,B)-exact sequences in σ[M ]. This is the case
if and only if every (A,B)-exact sequence L→ P → 0 in σ[M ] splits.

Q is called (M,B)-injective if AHom(−, Q) is exact with respect to all
(A,B)-exact sequences in σ[M ]. This happens if and only if every (A,B)-
exact sequence 0→ Q→ L in σ[M ] splits.

Over a semisimple ring B, (M,B)-projective and (M,B)-injective are syn-
onymous to projective and injective in σ[M ], respectively.
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41.25. (A,B)-projectives and (A,B)-injectives.

(1) For any B-module X, A⊗B X is (A,B)-projective.

(2) P ∈ AM is (A,B)-projective if and only if the map A ⊗B P → P ,
a⊗ p �→ ap, splits in AM.

(3) For any B-module Y , HomB(A, Y ) is (A,B)-injective.

(4) Q ∈ AM is (A,B)-injective if and only if the map Q → HomB(A,Q),
q �→ [a �→ aq], splits in AM.

The module M is called (A,B)-semisimple if every (A,B)-exact sequence
in σ[M ] splits. The ring A is said to be left (A,B)-semisimple if A is (A,B)-
semisimple as a left A-module.

41.26. (A,B)-semisimple modules.

(1) The following assertions are equivalent:

(a) M is (A,B)-semisimple;

(b) every A-module (in σ[M ]) is (M,B)-projective;

(c) every A-module (in σ[M ]) is (M,B)-injective.

(2) If M is (A,B)-semisimple, then:

(i) Every module in σ[M ] is (A,B)-semisimple.

(ii) For every ideal J ⊂ B, M/JM is (A/JA,B/J)-semisimple.

(iii) If B is hereditary and M is B-projective, then M is hereditary in
σ[M ].

41.27. Left (A,B)-semisimple rings.

(1) For A the following are equivalent:

(a) A is left (A,B)-semisimple;

(b) every left A-module is (A,B)-projective;

(c) every left A-module is (A,B)-injective.

(2) Let A be left (A,B)-semisimple. Then:

(i) If M is a flat B-module, then M is a flat A-module.

(ii) If M is a projective B-module, then M is a projective A-module.

(iii) If M is an injective B-module, then M is an injective A-module.

(iv) If B is a left hereditary ring and A is a projective B-module, then
A is a left hereditary ring.

References. Hochschild [133]; Wisbauer [46, 47, 207, 208].
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42 Torsion-theoretic aspects

In the preceding section we dealt with the internal structure of the category
σ[M ]. Now we will look at the properties of σ[M ] as a class of modules in

AM. This leads to some toplogical and torsion-theoretic considerations.

42.1. Finite topology. For sets X, Y we identify the set Map(X, Y ) of
all maps X → Y with the Cartesian product Y X . The finite topology on
Map(X, Y ) is the product topology where Y is considered as a discrete space.
For f ∈ Map(X, Y ), a basis of open neighbourhoods is given by the sets

{ g ∈ Map(X, Y ) | g(xi) = f(xi) for i = 1, . . . , n} ,

where {x1, . . . , xn} ranges over the finite subsets of X.
For subsets U ⊂ V of Map(X,X), we say that U is X-dense in V if it

is dense in the finite topology in Map(X,X), that is, for any v ∈ V and
x1, . . . , xn ∈ X there exists u ∈ U such that u(xi) = v(xi) for i = 1, . . . , n.

Throughout M will denote a left A-module with S = AEnd(M) acting
from the right. The finite topology on Map(M,M) induces the finite topology
on EndS(M). The importance of density in this topology is based on the
following facts (cf. [46, 15.7,15.8], [52]).

42.2. Density properties. Let M be faithful and B ⊂ A a subring.

(1) σ[BM ] = σ[AM ] if and only if B is M-dense in A.

(2) If M is a generator or a weak cogenerator in σ[M ], then A is M-dense
in EndS(M).

42.3. The M-adic topology. Let M be an A-module by an algebra mor-
phism ϕ : A → EndR(M). Considering EndR(M) with the finite topology,
the topology induced on A by ϕ is called an M-adic topology on A.

Open left ideals. A basis of the filter of open left ideals of A is given by

BM = {AnA(E) |E a finite subset of M},

and the filter of all open left ideals is

FM = {I ⊂ A | I is a left ideal and A/I ∈ σ[M ]}.

This filter yields a generator G in σ[M ] by putting G =
⊕

{A/I | I ∈ FM}.
Properties of the filter FM correspond to properties of the class σ[M ] of
modules in AM.

Closed left ideals. For a left ideal I ⊂ A the following are equivalent:

(a) I is closed in the M-adic topology;
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(b) I = AnA(W ) for some W ∈ σ[M ];

(c) A/I is cogenerated by some (minimal) cogenerator of σ[M ];

(d) I =
⋂

Λ Iλ, where A/Iλ ∈ σ[M ] and finitely cogenerated (cocyclic).

The last equivalence follows from the fact that the M -injective hulls of
simple modules form a cogenerating set in σ[M ].

Closure of left ideals. For any left ideal J ⊂ A the closure in the M-adic
topology is J = Ke AHom(A/J,K), for some cogenerator K in σ[M ].

Self-injective modules. If M is self-injective, then every finitely generated
right ideal of S is closed in the finite topology (e.g., [46, 28.1]).

For an (left, right) ideal or subring T ⊂ A, any A-module may be con-
sidered as a module over the (nonunital) ring T . So some knowledge about
modules over rings without units is useful.

Let T be any associative ring (without a unit). A left T -module N is
called s-unital if u ∈ Tu for every u ∈ N . T itself is called left s-unital if
it is s-unital as a left T -module. For an ideal T ⊂ A, every A-module is a
T -module and we observe the elementary properties (e.g., [201], [62]):

42.4. s-unital T -modules. For any subring T ⊂ A the following assertions
are equivalent:

(a) M is an s-unital T -module;

(b) for any m1, . . . ,mk ∈ N , there exists t ∈ T with mi = tmi for all i ≤ k;

(c) for any set Λ, N (Λ) is an s-unital T -module.

Proof. (a) ⇒ (b) We proceed by induction. Assume the assertion holds
for k−1 elements. Choose tk ∈ T such that tknk = nk and put ai = mi−mkni,
for all i ≤ k. By assumption there exists t′ ∈ T satisfying ai = t′ai, for all
i ≤ k − 1. Then t := t′ + tk − t′tk ∈ T is an element satisfying the condition
in (b). The remaining assertions are easily verified. �

42.5. Flat factor rings. For an ideal T ⊂ A the following are equivalent:

(a) A/T is a flat right A-module;

(b) for every left ideal I of A, TI = T ∩ I;
(c) every injective left A/T -module is A-injective;

(d) A/TM contains an A-injective cogenerator;

(e) for every A-module AL ⊂ AN , TL = TN ∩ L;
(f) T is left s-unital;

(g) T is idempotent and AT is a (self-)generator in σ[AT ].

Under these conditions T is a flat right A-module, and, for any N ∈AM, the
canonical map T ⊗A N → TN is an isomorphism.
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Proof. The equivalence of (a) and (b) is shown in [46, 36.6].
(a) ⇒ (c) Put D := A/T . Let N be an injective D-module and L ⊂ A a

left ideal. By (a), the sequence 0→ D ⊗A L → D ⊗A A is exact in DM and
there is a commutative diagram with exact rows and canonical isomorphisms,

DHom(D ⊗A A,N) ��

�
��

DHom(D ⊗A L,N)
�
��

�� 0

AHom(A,DHom(D,N)) ��

�
��

AHom(L,DHom(D,N)) ��

�
��

0

AHom(A,N) ��
AHom(L,M) �� 0 .

Since N is an injective D-module, the first row is exact and so are the others,
that is, N is injective as an A-module.

(d) ⇒ (a) Let N be a cogenerator in DM that is A-injective. For a left
ideal L ⊂ A there is an exact sequence 0→ K → D⊗A L→ D⊗A A in DM,
and we want to prove K = 0. Consider the exact sequence

DHom(D ⊗A A,N)→ DHom(D ⊗A L,N)→ DHom(K,N)→ 0.

Now in the above diagram the bottom row is exact (N is A-injective). This
implies that the top row is also exact, that is, DHom(K,N) = 0. Since N is
a cogenerator in DM, we conclude K = 0.

(g) ⇒ (f) Since T is a self-generator, for any t ∈ T there is an A-
epimorphism ϕ : T k → At. T 2 = T implies At = ϕ(T k) = Tϕ(T k) = Tt
and hence t ∈ Tt.

The remaining implications are straightforward to verify. �

42.6. Dense ideals and unital modules. Let AM be faithful. For an ideal
T ⊂ A the following are equivalent:

(a) T is M-dense in A;

(b) M is an s-unital T -module;

(c) for every A-submodule L ⊂M , L = TL;

(d) every N ∈ σ[M ] is an s-unital T -module;

(e) for every N ∈ σ[M ], N = TN ;

(f) for every N ∈ σ[M ], the canonical map ϕN : T ⊗A N → N is an
isomorphism.

If T ∈ σ[M ], then (a)–(f) are equivalent to:

(e) T 2 = T and T is a generator in σ[M ].
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Proof. (a) ⇒ (b) Apply the density property for the unit of A.
(b) ⇒ (a) Let a ∈ A and m1, . . . ,mk ∈ M . By 42.4, there exists t ∈ T

such that ami = t(ami) = (ta)mi, for i = 1, . . . , k. Since T is an ideal,
ta ∈ T , and this shows that T is N -dense in A.

The remaining implications follow from 42.4 and 42.5. �

42.7. Trace ideals. The trace ofM in A, Tr(M,A), is called the trace ideal of
M , and the trace of σ[M ] in A, T M(A) = Tr(σ[M ], A), is called the trace ideal
of σ[M ]. While Tr(M,A) is more directly related to properties of the module
M , T M(A) is better suited to study properties of σ[M ]. Clearly Tr(M,A) ⊂
T M(A), and the two ideals coincide provided that M is a generator in σ[M ],
or else if A is a left self-injective algebra.

42.8. Trace ideals of M . Denote ∗M = AHom(M,A), and T = Tr(M,A) =
∗M(M). Any f ∈ ∗M defines an A-linear map

φf :M → S, m �→ f(−)m.

∆ =
∑
f∈∗M Im φf is an ideal in S and M∆ ⊂ TM .

The following are equivalent:

(a) M = TM ;

(b) M =M∆;

(c) for any L ∈ AM, Tr(M,L) = TL.

If this holds, T and ∆ are idempotent ideals and ∆ = Tr(MS, S).

Proof. (a) ⇔ (b) are obvious from the definitions.
(a) ⇔ (c) Clearly T is M -generated, and M = TM implies that M -

generated A-modules are T -generated.
Assume the conditions hold. By definition, ∆ ⊂ Tr(MS, S). For any S-

linear map g : M → S and m ∈ M , write m =
∑
imiδi, where mi ∈ M and

δi ∈ ∆, to obtain

g(m) = g(
∑

i
miδi) =

∑
i
g(mi)δi ∈ ∆,

thus showing Tr(MS, S) ⊂ ∆. �

42.9. Canonical map. For any N ∈MA there is a map

αN,M : N ⊗AM → HomA(
∗M,N), n⊗m �→ [f �→ nf(m)],

which is injective if and only if

for any u ∈ N ⊗AM , (IN ⊗ f)(u) = 0 for all f ∈ ∗M , implies u = 0.
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We are interested in modules M for which αN,M is injective for all N ∈MA.
A module M is said to be locally projective if, for any diagram of left

A-modules with exact rows,

0 �� F
i �� M

g

��
L

f �� N �� 0,

where F is finitely generated, there exists h :M → L such that g◦i = f ◦h◦i.

42.10. Locally projective modules. With the notation from 42.8, the
following are equivalent:

(a) M is locally projective;

(b) αN,M is injective, for any (cyclic) right A-module N ;

(c) for each m ∈M , m ∈ ∗M(m)M ;

(d) for any m1, . . . ,mk ∈ M there exist x1, . . . , xn ∈ M , f1, . . . , fn ∈ ∗M ,
such that

mj =
∑

i
fi(mj)xi, for j = 1, . . . , k;

(e) M = TM , and M is an s-unital right ∆-module;

(f) M = TM and S/∆ is flat as a left S-module;

(g) M = TM and MS is a generator in σ[MS].

Proof. (a) ⇒ (d) Put N =M and L = A(Λ) in the defining diagram.
(d) ⇒ (a) follows by the fact that A is projective as left A-module.
(b) ⇒ (c) Assume αN,M to be injective for cyclic right A-modules N . For

any m ∈M put J = ∗M(m) and consider the monomorphism

φ :M/JM � A/J ⊗AM
αN,M−→ HomA(

∗M,A/J).

For x ∈M and f ∈ ∗M , φ(x+JM)(f) = f(x)+J , and hence φ(m+JM) = 0.
By injectivity of φ this implies m ∈ JM .

(d) ⇒ (b) Let N ∈ MA and let v =
∑r
j=1 nj ⊗mj ∈ N ⊗A M . Choose

x1, . . . , xn ∈ M and f1, . . . , fn ∈ ∗M such that mj =
∑
i fi(mj)xi, for j =

1, . . . , r. Then

v =
∑
i,j nj ⊗ fi(mj)xi =

∑
i αN,M(v)(fi)⊗ xi,

and hence v = 0 if αN,M(v) = 0, that is, αN,M is injective.
(c) ⇔ (d) ⇔ (e) For m ∈ M , m ∈ ∗M(m)M means that there are

x1, . . . , xn ∈M and f1, . . . , fn ∈ ∗M such that

m =
∑
i fi(m)xi = m[

∑
i fi(−)xi] ∈ m∆,
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showing that M is an s-unital right ∆-module (see 42.4).
(e) ⇔ (f) ⇔ (g) As observed in 42.8, TM = M implies M∆ = M , and

hence the equivalences follow by 42.6. �
Modules M with all αN,M injective are termed universally torsionless

(UTL) modules in [118], in [221] they are called locally projective, in [171]
trace modules, and in [181] modules plats et strictement de Mittag Leffler.

42.11. Properties. Let M be locally projective.

(1) M is flat and every pure submodule of M is locally projective.

(2) If M is finitely generated or A is left perfect, then M is projective.

(3) For any algebra morphism A → B, B ⊗A M is a locally projective B-
module.

Proof. (1) For monomorphisms f : L → N in MA and i : U → M in

AM, there are commutative diagrams:

L⊗AM
αL,M ��

f⊗IM
��

HomA(
∗M,L)

Hom(∗M,f)
��

N ⊗AM
αN,M �� HomA(

∗M,N),

N ⊗A U
αN,U ��

IN⊗i
��

HomA(
∗U,N)

Hom(i∗,N)
��

N ⊗AM
αN,M �� HomA(

∗M,N).

Since all α−,M are injective, the left-hand diagram implies that f ⊗ IM is
injective and hence M is flat. If i : U → M is pure, then IN ⊗ i is injective
and the right-hand diagram implies that αN,U is injective. Thus U is locally
projective.

(2) ForM finitely generated the assertion is clear from the definition. Over
left perfect rings A, any flat left A-module is projective and so the assertion
follows from (1).

(3) The algebra map A→ B yields maps AHom(M,A)→ AHom(M,B) �
BHom(B ⊗A M,B) = ∗(B ⊗AM) and, then, for any N ∈ BM, the commu-
tative diagram

N ⊗B (B ⊗AM)
αN,B⊗AM ��

�
��

HomB(
∗(B ⊗AM), N)

��
N ⊗AM

αN,M �� HomA(
∗M,N),

in which αN,M is injective and hence so is αN,B⊗AM . Thus B⊗AM is a locally
projective B-module. �

42.12. Right Noetherian rings. Consider the following conditions:

(a) M is locally projective;
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(b) the map ψM :M → (∗M)∗ → A
∗M , k �→ [f �→ f(k)] �→ (f(k))f∈∗M ,

is a pure monomorphism;

(c) M is a pure submodule of some product AΛ, Λ a set.

Then (a)⇒ (b)⇒ (c). If A is right Noetherian, then (a)⇔ (b)⇔ (c).

Proof. The map αN,M can be placed in the commutative diagram

N ⊗AM
IN⊗ψM ��

αN,M

��

N ⊗A A
∗M

ϕN
��

m⊗ k
� ��

	

��

m⊗ (f(k))f∈∗M	

��
HomA(M

∗, N) �
� �� N

∗M , [f �→ f(k)m] � �� (f(k)m)f∈∗M ,

where ϕN is the canonical map (see 40.17). So, if ψM is a pure monomor-
phisms then αN,M is injective provided ϕN is injective.

(a) ⇒ (b) If αN,M is injective for all N ∈ AM, then all IN ⊗ ψM are
injective, which means that ψM is a pure monomorphism.

(b) ⇒ (c) is trivial.
Now let A be right Noetherian.
(c)⇒ (a) For any index set Λ, there is an injection Λ→ ∗(AΛ) taking any

λ ∈ Λ to the canonical projection πλ in ∗(AΛ). This implies that the resulting
map ψAΛ : AΛ �→ A

∗(AΛ) is a splitting monomorphism and hence AΛ is locally
projective by (a)⇔ (b). As noticed in 42.11, any pure submodule of a locally
projective module is locally projective. �

42.13. Tensor product with morphisms. For Q ∈ AM consider the map

νM : AHom(M,A)⊗A Q→ AHom(M,Q), h⊗ q �→ [m �→ h(m)q].

If M is locally projective, then Im νM is dense in AHom(M,Q).

Proof. For anym1, . . . ,mk∈M , there are x1, . . . , xn∈M and f1, . . . , fn∈
∗M such that mj =

∑
ifi(mj)xi, for j = 1, . . . , k. For h ∈ AHom(M,Q), put

u :=
∑
i fi ⊗ h(xi) ∈ ∗M ⊗A Q. Then

νM(u)(mj) =
∑
i fi(mj)h(xi) = h(

∑
i fi(mj)xi) = h(mj), for j = 1, . . . , k,

proving that Im νM is dense in AHom(M,Q). �

42.14. σ[M ] closed under extensions. The following are equivalent:

(a) σ[M ] is closed under extensions in AM;

(b) for every X ∈ AM, T M(X/T M(X)) = 0;
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(c) there exists an A-injective Q ∈ AM such that

σ[M ] = {N ∈ AM | AHom(N,Q) = 0}.

Notice that Q can be obtained as the product of injective hulls of cyclic
modules X ∈ AM with T M(X) = 0.

Proof. For these assertions we refer to [47, 9.2–9.5]. �
Notice that σ[M ] is closed under extensions in AM if and only if the M -

adic topology is a Gabriel topology (see [44, Chapter VI]). In particular, the
lattice FM is closed under products. Under certain conditions this property
characterises the left exactness of T M . We say that FM is of finite type if every
J ∈ FM contains a finitely generated J̃ ∈ FM . This holds if and only if σ[M ]
contains a generating set of modules that are finitely presented in AM. For
M locally Noetherian this implies that all J ∈ FM are finitely generated. A
filter of left ideals of A is called bounded if every J ∈ FM contains a two-sided
ideal J̃ ∈ FM . The following is shown in [16, Proposition 5.7].

42.15. FM closed under products. Let M be locally Noetherian with FM
bounded and of finite type. If FM is closed under products, then σ[M ] is closed
under extensions.

42.16. T M as an exact functor. Putting T̃ = T M(A), the following asser-
tions are equivalent:

(a) the functor T M : AM→ σ[M ] is exact;

(b) σ[M ] is closed under extensions and the class {X ∈ AM | T M(X) = 0}
is closed under factor modules;

(c) for every N ∈ σ[M ], T̃N = N ;

(d) M is an s-unital T̃ -module;

(e) T̃ is an M-dense subring of A.

Proof. (a) ⇒ (b) Let T M be exact. For any exact sequence in AM as a
bottom row, there is a commutative diagram with exact rows,

0 �� T M(K) ��

��

T M(L) ��

��

T M(N)

��

�� 0

0 �� K �� L �� N �� 0 .

In case T M(K) = K and T M(N) = N this implies T M(L) = L, showing that
σ[M ] is closed under extensions. Moreover T M(L) = 0 implies T M(N) = 0
as required.
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(b) ⇒ (c) Since σ[M ] is closed under extensions, T M(A/T ) = 0. For any
N ∈ σ[M ], N/T̃N is generated by A/T̃ , and so by (b), T M(N/T̃N) = 0 and
hence N = T̃N .

(c) ⇒ (a) First observe that the hypothesis implies T M(X) = TX, for
any X ∈ AM. Consider an exact sequence in AM, 0 → K → L → N → 0.
Since TA is flat (see 42.5), tensoring with T ⊗A − yields an exact sequence
0→ T̃K → T̃L→ T̃N → 0.

(c) ⇔ (d) ⇔ (e) is shown in 42.6. �
We say σ[M ] is closed under small epimorphisms if, for any epimorphism

f : P → N in AM, where Ke f << P and N ∈ σ[M ], we obtain P ∈ σ[M ].

42.17. Corollary. Assume that the functor T M : AM→ σ[M ] is exact.

(1) σ[M ] is closed under small epimorphisms.

(2) If P is finitely presented in σ[M ], then P is finitely presented in AM.

(3) If P is projective in σ[M ], then P is projective in AM.

Proof. (1) Put T̃ = T M(A). Consider an exact sequence 0 → K →
P → N → 0 in AM, where K << P and N ∈ σ[M ]. From this we obtain the
following commutative diagram with exact rows:

0 �� K ��

��

P ��

=

��

N ��

��

0

0 �� K + T̃P �� P �� P/(K + T̃P ) �� 0.

Clearly P/(K+ T̃P ) ∈ σ[M ] and by condition 42.16(b), T̃ (P/(K+ T̃P )) = 0.
This implies P = K + T̃P , that is, P ∈ σ[M ].

(2) It is enough to show this for any cyclic module P ∈ σ[M ] that is
finitely presented in σ[M ]. For this we construct the following commutative
diagram with exact rows (applying T M):

0 �� L0
��

��

L1
��

��

P ��

=

��

0

0 �� I ��

��

A ��

��

P �� 0

I/L0
� �� A/L1,

where L0 and L1 are suitable finitely generated modules in σ[M ]. So I/L0 is
finitely generated, and hence so is I and P is finitely presented in AM.

(3) This is shown with a similar diagram as in the proof of (2). �
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42.18. Corollary. Suppose that σ[M ] has a generator that is locally projective
in AM. Then T M : AM→ σ[M ] is an exact functor.

Proof. Let P ∈ σ[M ] be a locally projective generator. Then clearly
σ[M ] = σ[P ] and T̃ = T M(A) = Tr(P,A). By 42.8 and 42.10, T̃ 2 = T̃ and
T̃P = P . So T̃ generates P and 42.16 applies. �

42.19. Projective covers in σ[M ]. Let σ[M ] be locally Noetherian and
suppose that A is f-semiperfect. Then the following are equivalent:

(a) the functor T M : AM→ σ[M ] is exact;

(b) σ[M ] has a generator that is (locally) projective in AM;

(c) there are idempotents {eλ}Λ in A such that the Aeλ are in σ[M ] and
form a generating set in σ[M ];

(d) σ[M ] is a semiperfect category.

Proof. (a) ⇒ (c) Let S be any simple module in σ[M ]. S is finitely
presented in σ[M ] and hence in AM (by 42.17(2)). Since A is f-semiperfect,
S has a projective cover P in AM (see 41.18). By 42.17(1), P ∈ σ[M ] and
clearly P � Ae for some idempotent e ∈ A. Now a representing set of simple
modules in σ[M ] yields the required family of idempotents.

(c) ⇒ (b) is obvious and (b)⇒ (a) follows from 42.18.
(c) ⇔ (d) This is clear by 41.16. �
A class of A-modules is said to be stable in AM provided it is closed under

essential extensions in AM (e.g., [207, 5.1]).

42.20. σ[M ] stable in AM. For M the following assertions are equivalent:

(a) σ[M ] is stable in AM;

(b) σ[M ] is closed under injective hulls in AM;

(c) every M-injective module in σ[M ] is A-injective;

(d) for every injective A-module Q, Tr(M,Q) is a direct summand in Q;

(e) for every injective A-module Q, Tr(M,Q) is A-injective.

If σ[M ] is stable in AM, then σ[M ] is closed under extensions in AM.

Notice that σ[M ] stable in AM does not imply that T M is an exact functor.
Consider the Z-module M := Q/Z. Clearly σ[M ] is stable in MZ. However,
T̃ := T M(Z) = 0, and hence 0 = T̃M �=M .

References. Albu and Wisbauer [52]; Berning [62]; Prest and Wisbauer
[175]; Wisbauer [46, 207, 209]; Zimmermann [219]; Zimmermann-Huisgen
[220, 221].
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43 Cogenerating and generating conditions

Throughout this section A is an R-algebra, M is a left A-module and S =

AEnd(M) denotes its endomorphism ring acting from the right, so that M is
an (A, S)-bimodule.

Definitions. M is called a self-cogenerator if it cogenerates all its factor
modules. N ∈ σ[M ] is a cogenerator in σ[M ] if it cogenerates all modules in
σ[M ]. M is said to be a weak cogenerator (in σ[M ]) if, for every finitely gen-
erated submodule K ⊂ Mn, n ∈ N, the factor module Mn/K is cogenerated
by M .

It is a most interesting fact that generating (cogenerating) properties of

AM imply certain projectivity (injectivity) conditions on MS, and vice versa
(e.g., [46, 48.1, 47.7, 47.8]).

43.1. Weak cogenerators. For M the following are equivalent:

(a) AM is a weak cogenerator (in σ[M ]);

(b) MS is weakly MS-injective, and every finitely generated submodule of
Mn, n ∈ N, is M-reflexive.

If AM is a finitely generated weak cogenerator, then MS is FP-injective.

43.2. Injectivity of MS.

(1) MS is FP-injective if and only if AM cogenerates the cokernels of mor-
phisms Mk →Mn, k, n ∈ N.

(2) The following are equivalent:

(a) for any finitely generated left ideal L ⊂ S, the canonical map
HomS(S,M)→ HomS(L,M) is surjective;

(b) AM cogenerates the cokernels of morphisms M →Mn, n ∈ N.

If this holds and AM is linearly compact, then MS is S-injective.

(3) If AM is a self-cogenerator and MS is S-injective, then AM is linearly
compact.

(4) If AM cogenerates all finitelyM-generated modules, then AM is linearly
compact if and only if MS is S-injective.

A weaklyM -injective weak cogeneratorM is called a weak quasi-Frobenius
(weak QF) module. From [46, 48.2] we obtain the following characterisation.

43.3. Weak QF modules. If AM is faithful, the following are equivalent:

(a) AM is a weak QF module;

(b) (i) AM is weakly AM-injective and MS is weakly MS-injective, and

(ii) A is dense in EndS(M);
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(c) MS is a weak QF module and A is dense in EndS(M);

(d) AM and MS are weak cogenerators in σ[AM ] and σ[MS], respectively.

For any weak QF module AM , Soc AM = SocMS.

A locally Noetherian weak QF module M is an injective cogenerator
in σ[M ] (by [46, 16.5]). A Noetherian weak QF module is called a quasi-
Frobenius or QF module. A ring is a QF ring if it is QF as a left (or right)
module. The reader should be warned that “quasi Frobenius” is given varying
meanings in the literature.

43.4. Corollary. LetM be a balanced (A, S)-module, which is locally Noethe-
rian both as a left A-module and as a right S-module. Then the following are
equivalent:

(a) AM is an injective cogenerator in σ[AM ];

(b) MS is an injective cogenerator in σ[MS];

(c) AM and MS are cogenerators in σ[AM ] and σ[MS], respectively.

43.5. QF modules. If AM is finitely generated, the following are equivalent
(cf [46, 48.14,48.15]):

(a) M is a self-projective QF module;

(b) M is a Noetherian (Artinian) projective cogenerator in σ[M ];

(c) M is a Noetherian injective generator in σ[M ];

(d) M is self-injective and injectives are projective in σ[M ];

(e) M is a generator and projectives are injective in σ[M ];

(f) M is a projective generator in σ[M ] and S is a QF ring.

43.6. QF rings. For a ring A the following are equivalent:

(a) AA is a QF module;

(b) A is left Noetherian (Artinian) and a cogenerator in AM;

(c) A is left Noetherian (Artinian) and injective;

(d) all injectives are projective in AM;

(e) all projectives are injective in AM;

(f) A(N) is an injective cogenerator in AM;

(g) AA is a QF module.

43.7. Cogenerator with commutative endomorphism ring. (Cf. [46,
48.16].) If S = AEnd(M) is commutative, then the following are equivalent:

(a) M is a cogenerator in σ[M ];

(b) M is self-injective and a self-cogenerator;
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(c) M �
⊕

ΛÊλ, where {Eλ}Λ is a minimal representing set of simple

modules in σ[M ], and Êλ denotes the injective hull of Eλ in σ[M ];

(d) M is a direct sum of indecomposable modules N that are cogenerators
in σ[N ].

If (any of) these conditions are satisfied, then:

(1) Every A-submodule of M is fully invariant and hence self-injective and
a self-cogenerator.

(2) For every λ ∈ Λ, the category σ[Êλ] contains only one simple module
(up to isomorphisms).

(3) If the Êλ are finitely generated A-modules, then M generates all simple
modules in σ[M ].

(4) If M is projective in σ[M ], then M is a generator in σ[M ].

(5) If M is finitely generated, then M is finitely cogenerated.

Let σf [M ] denote the full subcategory of σ[M ] whose objects are sub-
modules of finitely M -generated modules. With this notation σf [SS] is the
category of submodules of finitely generated right S-modules. This type of
category is of particular interest in studying dualities.

43.8. Morita dualities.

(1) The following are equivalent:

(a) AHom(−,M): σf [M ]→ σf [SS] is a duality;

(b) AM is an injective cogenerator in σ[M ], and MS is an injective
cogenerator in MS;

(c) AM is linearly compact, finitely cogenerated, and an injective co-
generator in σ[M ].

(2) If M is an injective cogenerator in σ[M ], the following are equivalent:

(a) AM is Artinian;

(b) AM is semi-Artinian and MS is S-injective;

(c) MS is a Σ-injective cogenerator in MS;

(d) S is right Noetherian.

Proof. Part (1) is shown in [46, 47.12].
(2) (a) ⇔ (b) follows by 43.2 and the fact that linearly compact semi-

Artinian modules are in fact Artinian (see 41.13(4)).
(a) ⇔ (d) follows from the fact that descending chains of submodules of

AM correspond to ascending chains of right ideals of S.
(a) ⇒ (c) Over a right Noetherian ring S, any (FP-)injective module is

Σ-injective. Now the assertion is clear by (1).
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(c) ⇒ (d) Since MS has a Σ-injective cogenerator, S is Noetherian (e.g.,
[46, 27.3]). �

43.9. Hom and tensor functors. (Cf. [46, 45.8].) The functors

M ⊗S − : SM→ AM, AHom(M,−) : AM→ SM,

form an adjoint pair by the isomorphism, for any N ∈ AM and X ∈ SM,

AHom(M ⊗S X,N)→ SHom(X, AHom(M,N)), δ �→ [x �→ δ(−⊗ x)] ,

with inverse map ϕ �→ [m ⊗ x �→ ϕ(x)(m)]. Thus the counit and unit of
adjunction come out as

ψN :M ⊗S AHom(M,N)→ N, m⊗ f �→ f(m),

ηX : X → AHom(M,M ⊗S X), x �→ [m �→ m⊗ x].

Each of the following compositions of maps yields the identity:

AHom(M,N)
ηHom(M,N)−→ AHom(M,M⊗SAHom(M,N))

Hom(M,ψN )−→ AHom(M,N),

M ⊗S X
id⊗ηX−→ M ⊗S AHom(M,M ⊗S X)

ψM⊗X−→ M ⊗S X.

Notice that the image of the tensor functor M ⊗S − lies in σ[M ], and
hence by (co-)restriction we obtain the adjoint pair of functors

M ⊗S − : SM→ σ[M ], AHom(M,−) : σ[M ]→ SM.

43.10. Static and adstatic modules. An A-module N is called M-static
if ψN in 43.9 is an isomorphism and the class of all M -static A-modules is
denoted by Stat(M). An S-module X is called M-adstatic if ηX in 43.9
is an isomorphism and we denote the class of all M -adstatic S-modules by
Adst(M). Clearly, for everyM -static module N , AHom(M,N) isM -adstatic,
and, for each M -adstatic module SX, M ⊗S X is M -static.

43.11. Basic equivalence. The functor AHom(M,−) :Stat(M)→ Adst(M)
defines an equivalence with inverse M ⊗S −.

43.12. M as generator in σ[M ]. Putting B = EndS(M) and Ā =
A/An(M), the following statements are equivalent:

(a) M is a generator in σ[M ];

(b) the functor AHom(M,−) : σ[M ]→ SM is faithful;

(c) M generates every (cyclic) submodule of M (N);

(d) for every (cyclic) submodule K ⊂M (N), ψK (see 43.9) is surjective;



43. Cogenerating and generating conditions 449

(e) MS is flat and every (finitely) M-generated module N is M-static;

(f) MS is flat and every injective module in σ[M ] is M-static;

(g) MS is flat, Ā is dense in B, and, for injective modules V ∈ σ[M ], the
canonical map M ⊗S AHom(M,V )→ AHom(B, V ) is injective;

(h) Stat(M) = σ[M ].

Proof. The equivalences of (a) to (d) are shown in [46, 15.5 and 15.9].
(a) ⇔ (h) It suffices to show that ψN : M ⊗S AHom(M,N) → N is

injective, for any N ∈ σ[M ]. Let u ∈ KeψN , that is,
u =

∑k
i=1mi ⊗ fi ∈M ⊗S AHom(M,N) with

∑
imifi = 0.

By assumption, (m1, . . . ,mk) =
∑
j ajgj, for some aj ∈ M and morphisms

gj ∈ AHom(M,Ke (
∑
i fi)), where∑
i
fi :M

k → N, (x1, . . . , xk) �→
∑

i
xifi .

With the canonical projections πi : M
k → M ,

∑
i gjπifi = 0 for all j, and

hence ∑k

i=1
mi ⊗ fi =

∑
i

∑
j
ajgjπi ⊗ fi =

∑
j
aj ⊗

∑
i
gjπifi = 0 ,

which shows that ψN is injective.
(a)⇒ (e),(f) By [46, 15.9], any generator in σ[M ] is flat over its endomor-

phism ring.
(e)⇒ (d) ForK ⊂Mk, k ∈ N, consider the canonical projection g :Mk →

Mk/K =: N . By assumption, we may construct the exact commutative
diagram (tensoring over S)

0 ��M⊗AHom(M,K) ��

ψK

��

M⊗AHom(M,Mk) ��

�
��

M⊗AHom(M,N)

ψN
��

0 �� K �� Mk
g �� N ,

where ψN is an isomorphism and hence ψK is surjective.
(f) ⇒ (a) For any K ∈ σ[M ], there exists an exact sequence 0 → K →

Q1 → Q2, where Q1, Q2 are injectives in σ[M ] and hence are M -static. We
construct an exact commutative diagram (tensoring over S)

0 ��M⊗AHom(M,K) ��

ψK

��

M⊗AHom(M,Q1) ��

�
��

M⊗AHom(M,Q2)

�
��

0 �� K �� Q1
g �� Q2 ,

showing that ψK is an isomorphism and so K is M -generated.
(f) ⇔ (g) By the Density Theorem (see [46, 15.7]), Ā is dense in B. This

implies AHom(B, V ) � HomB(B, V ) � V . �
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43.13. Self-progenerator. For AM finitely generated, the following asser-
tions are equivalent (cf.[46, 18.5]):

(a) M is a projective generator in σ[M ];

(b) M is a generator in σ[M ] and MS is faithfully flat;

(c) (i) for every left ideal J ⊂ S, MJ �=M , and

(ii) every finitely M-generated A-module is M-static;

(d) there are functorial isomorphisms

I
SM � AHom(M,M ⊗S −) and M ⊗S AHom(M,−) � Iσ[M ];

(e) AHom(M,−) : σ[M ]→ SM is an equivalence of categories.

References. Wisbauer [46, 208, 209]; Zimmermann-Huisgen [220].
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44 Decompositions of σ[M ]

In this section decompositions of closed categories into “direct sums” of closed
subcategories are considered. Again let A be an R-algebra and M a left A-
module with S = AEnd(M).

A submodule N ⊂ M is said to be fully invariant if it is invariant under
endomorphisms of M , that is, N is an (A, S)-submodule. The ring of (A, S)-
endomorphisms of M is the centre of S (e.g., [47, 4.2]).

44.1. Decompositions and idempotents. LetM =
⊕

ΛMλ be a decompo-
sition with A-submodules Mλ ⊂M . Then there exists a family of orthogonal
idempotents {eλ}Λ in S, where Mλ = Meλ, for each λ ∈ Λ. If all the Mλ

are fully invariant (fully invariant decomposition), then all the eλ are central
idempotents of S.

44.2. Big cogenerators. An M -injective module Q ∈ σ[M ] is said to be a
big injective cogenerator in σ[M ] if every cyclic module in σ[M ] is isomorphic
to a submodule of Q(N). Clearly every big injective cogenerator in σ[M ] is a
cogenerator as well as a subgenerator in σ[M ]. Such modules always exist:

Let {Nλ}Λ be a representing set of the cyclic modules in σ[M ]. Then the
M-injective hull of

⊕
ΛNλ is a big injective cogenerator in σ[M ].

If M is locally Noetherian and {Eλ}Λ a representing set of the indecom-
posable M-injectives in σ[M ], then

⊕
ΛEλ is a big injective cogenerator in

σ[M ].
If M is locally of finite length, every injective cogenerator in σ[M ] is big.

In 42.7, for any A-module L, we defined T M(L) := Tr(σ[M ], L). Recall
that every closed subcategory of AM is of type σ[N ], for some A-module N .

44.3. Correspondence relations. Let Q be a big injective cogenerator in
the category σ[M ].

(1) For every N ∈ σ[M ], σ[N ] = σ[Tr(N,Q)].

(2) The assignment σ[N ] �→ Tr(N,Q) yields a bijective correspondence be-
tween the closed subcategories of σ[M ] and the fully invariant submod-
ules of Q.

(3) If σ[N ] is closed under essential extensions (injective hulls) in σ[M ],
then Tr(N,Q) is an A-direct summand of Q.

(4) If M is locally Noetherian and Tr(N,Q) is an A-direct summand of Q,
then σ[N ] is closed under essential extensions in σ[M ].

(5) N ∈ σ[M ] is semisimple if and only if Tr(N,Q) ⊂ Soc(AQ).

Proof. Since Q is M -injective, Tr(σ[N ], Q) = Tr(N,Q).
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(1) Tr(N,Q) is a fully invariant submodule that, by definition, belongs
to σ[N ]. Consider any finitely generated L ∈ σ[N ]. Then, by assumption,
L ⊂ Qk, for some k ∈ N, and hence L ⊂ Tr(L,Q)k ⊂ Tr(N,Q)k. This implies
N ∈ σ[Tr(N,Q)].

Parts (2) and (5) are immediate consequences of (1).
(3) If σ[N ] is closed under essential extensions in σ[M ], then Tr(N,Q) is

an A-direct sumand in Q (and hence is injective in σ[M ]).
(4) Let M be locally Noetherian and Tr(N,Q) a direct summand of Q.

Consider any N -injective module L in σ[N ]. Then L is a direct sum of N -
injective uniform modules U ∈ σ[M ]. Clearly U is (isomorphic to) a direct
summand of Tr(N,Q) and hence of Q; that is, U is M -injective and so L is
M -injective, too. �

44.4. Sum and decomposition of closed subcategories. For any K,L ∈
σ[M ] we write σ[K] ∩ σ[L] = 0, provided σ[K] and σ[L] have no nonzero
module in common. Given a family {Nλ}Λ of modules in σ[M ], define∑

Λ
σ[Nλ] := σ[

⊕
Λ
Nλ].

This is the smallest closed subcategory of σ[M ] containing all the Nλ. More-
over, we write

σ[M ] =
⊕

Λ
σ[Nλ],

provided, for every module L ∈ σ[M ], L =
⊕

ΛT Nλ(L) (internal direct sum).
This decomposition of σ[M ] is known as a σ-decomposition. The category
σ[M ] is σ-indecomposable provided it has no nontrivial σ-decomposition. In
view of the fact that every closed subcategory of AM is of type σ[N ], for
some A-module N , these constructions describe the decomposition of any
closed subcategory into closed subcategories.

44.5. σ-decomposition of modules. For a decomposition M =
⊕

ΛMλ,
the following are equivalent (cf. [211]):

(a) for any distinct λ, µ ∈ Λ, Mλ and Mµ have no nonzero isomorphic
subfactors;

(b) for any distinct λ, µ ∈ Λ, AHom(Kλ, Kµ) = 0, where Kλ, Kµ are sub-
factors of Mλ,Mµ, respectively;

(c) for any distinct λ, µ ∈ Λ, σ[Mλ] ∩ σ[Mµ] = 0;

(d) for any µ ∈ Λ, σ[Mµ] ∩ σ[
⊕

λ�=µMλ] = 0;

(e) for any L ∈ σ[M ], L =
⊕

Λ T Nλ(L).
If these conditions hold, we call M =

⊕
ΛMλ a σ-decomposition and in this

case
σ[M ] =

⊕
Λ
σ[Mλ].
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44.6. Corollary. Let σ[M ] =
⊕

Λ σ[Nλ] be a decomposition of σ[M ]. Then:

(1) each σ[Nλ] is closed under essential extensions and small epimorphisms
in σ[M ];

(2) any L ∈ σ[Nλ] is M-injective if and only if it is Nλ-injective;

(3) any P ∈ σ[Nλ] is projective in σ[M ] if and only if it is projective in
σ[Nλ];

(4) any L ∈ σ[Nλ] is projective in σ[M ] if and only if it is projective in
σ[Nλ];

(5) M =
⊕

Λ T Nλ(M) is a σ-decomposition of M .

44.7. Corollary. Let σ[M ] =
⊕

Λ σ[Nλ] be a σ-decomposition of σ[M ]. Then
the trace functor T M is exact if and only if the trace functors T Nλ are exact,
for all λ ∈ Λ.

44.8. Corollary. If M is a projective generator or an injective cogenerator
in σ[M ], then any fully invariant decomposition of M is a σ-decomposition.

Proof. Let M =
⊕

ΛMλ be a fully invariant decomposition. If M is a
projective generator in σ[M ], then every submodule of Mλ is generated by
Mλ. Since theMλ are projective in σ[M ], any nonzero (iso)morphism between
(sub)factors of Mλ and Mµ yields a nonzero morphism between Mλ and Mµ.
So the assertion follows from 44.5.

Now suppose that M is an injective cogenerator in σ[M ]. Then every
subfactor of Mλ must be cogenerated by Mλ. From this it follows that for
λ �= µ, there are no nonzero maps between subfactors of Mλ and Mµ and so
44.5 applies. �

A module M is said to be σ-indecomposable if it has no non-trivial σ-
decompositions.

44.9. Corollary. For M the following assertions are equivalent:

(a) σ[M ] is σ-indecomposable;

(b) M is σ-indecomposable;

(c) any subgenerator in σ[M ] is σ-indecomposable;

(d) an injective cogenerator, which is a subgenerator in σ[M ], has no non-
trivial fully invariant decomposition.

If there exist projective generators in σ[M ], then (a)–(d) are equivalent to:

(e) projective generators in σ[M ] have no fully invariant decompositions.

Note that the category AM is σ-indecomposable if and only if A has no
nontrivial central idempotents.
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44.10. σ-decomposition when AEnd(M) is commutative. (Cf. 43.7)
Let M be a cogenerator in σ[M ] with a commutative endomorphism ring

AEnd(M). Then M �
⊕

ΛÊλ, where {Eλ}Λ is a minimal representing set of
simple modules in σ[M ]. This is a σ-decomposition of M and

σ[M ] =
⊕

Λ
σ[Êλ],

where each σ[Êλ] is σ-indecomposable and has only one simple module.

As an example, consider the Z-module Q/Z =
⊕

p primeZp∞ and the de-
composition of the category of torsion Abelian groups as a direct sum of the
categories of p-groups,

σ[Q/Z] =
⊕

p prime
σ[Zp∞ ].

Notice that, although Q/Z is an injective cogenerator in MZ with a non-
trivial σ-decomposition,MZ is σ-indecomposable. This is possible since Q/Z
is not a subgenerator in MZ.

To find σ-decompositions of modules, some technical observations are first
required.

44.11. Relations on families of modules. Consider any family of A-
modules {Mλ}Λ in σ[M ]. Define a relation ∼ on {Mλ}Λ by putting

Mλ ∼Mµ if there exist non-zero morphisms Mλ →Mµ or Mµ →Mλ.

Clearly ∼ is symmetric and reflexive, and we denote by ≈ the smallest equiv-
alence relation on {Mλ}Λ determined by ∼, that is,

Mλ ≈Mµ if there exist λ1, . . . , λk ∈ Λ,
such that Mλ =Mλ1 ∼ · · · ∼Mλk =Mµ .

Then {Mλ}Λ is the disjoint union of the equivalence classes {[Mω]}Ω, where
[Mω] = {Mλ}Λω , Λ =

·⋃
Ω Λω. In case each Mλ = Êλ, the M -injective hull of

some simple module Eλ ∈ σ[M ], then

Êλ ∼ Êµ if and only if ExtM(Eλ, Eµ) �= 0 or ExtM(Eµ, Eλ) �= 0.

A decomposition M =
⊕

ΛMλ is said to complement direct summands if,
for every direct summand K of M , there exists a subset Λ′ ⊂ Λ such that
M = K ⊕ (

⊕
Λ′ Mλ) (cf. [2, § 12]).

44.12. Lemma. LetM =
⊕

ΛMλ be a decomposition that complements direct
summands, where all Mλ are indecomposable. Then M has a decomposition
M =

⊕
α∈I Nα, where each Nα ⊂ M is a fully invariant submodule and does

not decompose nontrivially into fully invariant submodules.
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Proof. Consider the equivalence relation ≈ on {Mλ}Λ (see 44.11) with
the equivalence classes {[Mω]}Λα and Λ =

·⋃
Ω Λω. Then Nω :=

⊕
Λω
Mλ is a

fully invariant submodule of M , for each ω ∈ Ω, and

M =
⊕

ω∈Ω
(⊕

Λω
Mλ

)
=

⊕
ω∈ΩNω.

Assume Nω = K ⊕ L for fully invariant submodules K,L ⊂ Nω. Since the
defining decomposition of Nω complements direct summands, we may assume
that Λω has subsets X, Y such that

K =
⊕

XMλ, L =
⊕

YMλ.

By construction, for any x ∈ X, y ∈ Y , we observe that Mx ≈ My, and it is
easy to see that this implies the existence of nonzero morphisms K → L or
L→ K, contradicting our assumption. So Nω does not decompose into fully
invariant submodules. �

44.13. Proposition. Let M =
⊕

ΛMλ with each AEnd(Mλ) a local ring.

(1) If M is M-injective, the decomposition complements direct summands.

(2) If M is projective in σ[M ] and Rad(M) << M , then the decomposition
complements direct summands.

Proof. For the first assertion we refer to [15, 8.13]. The second condition
characterises M as semiperfect in σ[M ] (see 41.14) and the assertion follows
from [15, 8.12]. �

44.14. σ-decomposition for locally Noetherian modules. Let M be a
locally Noetherian A-module. Then M has a σ-decomposition M =

⊕
ΛMλ

and
σ[M ] =

⊕
Λ
σ[Mλ],

where each σ[Mλ] is σ-indecomposable.

(1) σ[M ] is σ-indecomposable if and only if, for any indecomposable injec-
tives K,L ∈ σ[M ], K ≈ L (as defined in 44.11).

(2) If M has locally finite length, then σ[M ] is σ-indecomposable if and only

if, for any simple modules S1, S2 ∈ σ[M ], Ŝ1 ≈ Ŝ2 (M-injective hulls).

Proof. Let Q be an injective cogenerator that is also a subgenerator in
σ[M ]. Then Q is a direct sum of indecomposable M -injective modules, and
this is a decomposition that complements direct summands (by 44.13). By
Lemma 44.12, Q has a fully invariant decomposition Q =

⊕
ΛQλ such that

Qλ has no nontrivial fully invariant decomposition. Now the assertions follow
from Corollaries 44.8, 44.9 and 44.6.



456 Appendix

Part (1) is clear from the above discussion, and in (2) – by the assumption
– every indecomposableM -injective module is anM -injective hull of a simple
module in σ[M ]. �

44.15. σ-decomposition for semiperfect generators. If M is a pro-
jective generator that is semiperfect in σ[M ], then M (and σ[M ]) has a σ-
decomposition M =

⊕
ΛMλ, where each Mλ is σ-indecomposable.

In particular, every semiperfect ring A has a σ-decomposition A = Ae1 ⊕
· · · ⊕Aek, where the ei are central idempotents of A that are not a nontrivial
sum of orthogonal central idempotents.

Proof. By [46, 42.5] and 44.13,M has a decomposition that complements
direct summands. By Lemma 44.12, M has a fully invariant decomposition,
and the assertions follow from Corollaries 44.8, 44.9 and 44.6. �

References. Garćıa, Jara and Merino [116]; Nǎstǎsescu and Torrecillas
[165]; Vanaja [202]; Wisbauer [211].
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293 (1995)

[28] Knus, M.A., Ojanguren, M., Théorie de la descente et algèbres d’Azu-
maya, LNM 389, Springer, Berlin (1974)

[29] Loday, J.L., Stasheff, J., Voronov, A.A., (Eds.), Operads: Proceedings
of Renaissance Conferences, Contemp. Math. 202 (1997)

[30] Lusztig, G., Introduction to Quantum Groups, Birkhäuser, Basel (1993)
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[117] Garćıa, J.M., Jara, P., Merino, L.M., Decomposition of comodules,
Comm. Algebra 27(4), 1797–1805 (1999)

[118] Garfinkel, G.S., Universally torsionless and trace modules, Trans. Amer.
Math. Soc. 215, 119–144 (1976)

[119] Gerstenhaber, M., The cohomology structure of an associative ring,
Ann. Math. 78, 267–288 (1963)

[120] Gerstenhaber, M., Schack, S.D., Algebras, bialgebras, quantum groups
and algebraic deformations, in Deformation Theory and Quantum
Groups with Applications to Mathematical Physics, Gerstenhaber and
Stasheff (Eds.), AMS Contemp. Math. 134, 51–92 (1992)
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[122] Gómez-Torrecillas, J., Separable functors in corings, Int. J. Math. Math.
Sci. 30, 203–225 (2002)



464 Bibliography
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quasi-finite, 114, 233
relative injective, 32
relative semisimple, 106
(semi)simple, 50, 201
static, 188

comonad, 405
comp, 302
complex, acyclic, 290
composition of morphisms, 395
connection, 251

flat, 292
convolution algebra, 4
coproduct, 1, 170

in a category, 399
of a ×A-coalgebra, 314
of coalgebras, 12
of a comonad, 405
of comodules, 24, 182
of corings, 178
of modules, 418

coretraction, 397
coring, 170

entwining structure, 325
canonical, 251
co-Frobenius, 273
comatrix, 179
coseparable, 256, 301
noncounital, 260

cosplit, 262, 306
D-coseparable, 261
defined by preorders, 171
Ehresmann, 350
Frobenius, 265
Galois, 284, 342
gauge, 350
Hochschild cohomology, 303, 306
left regular module, 319
matrix, 172
morphism, 177, 240
noncounital, 260
over QF ring, 208
(semi)simple, 201
Sweedler, 251
trivial, 171
left module, 319

valued differential forms, 288, 292
weak, 358

cosimplicial object, 307
cotensor product, 93, 102, 217, 224

exactness, 94, 218
cotranslation map, 354
cotriple, 405
counit, 1, 170

morphism, 241
of a ×A-coalgebra, 314
of a comonad, 405
of adjunction, 402

counital source map, 371
cup product, 302
curvature, 292

D2 quasibasis, 315
dcc, 431
degeneracy, 307
density criterion, 70
depth-2 extension, 315
derivation, 288
descending chain condition, 431
descent datum, 253
diagonal (co)action, 132
diagonal action of a bialgebroid, 311
difference (co)kernel, 399
direct limit, 400

of corings, 179
direct sum of coalgebras, 12
Doi-Koppinen datum, 338

alternative, 339, 340
over an algebra, 389

Doi-Koppinen module, 337
over an algebra, 389

dual coring theorem, 174

Eilenberg-Watts Theorem, 412
endomorphism ring of C, 184
endomorphism ring of C, 27
entwined module, 325
entwining map, 324
entwining structure, 324

alternative Doi-Koppinen, 339
canonical, 346, 353
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Doi-Koppinen, 337, 338
dual-relative, 337
equivariant cohomology, 334
relative, 336
self-duality, 325
Yetter-Drinfeld, 339

epimorphism, 397
equaliser, 399

pure, 420
equivalence, 402

comodule categories, 113, 232
exact sequence, 400
exterior product, 156

F -algebra, 406
f-semiperfect, 431
factorisation theorem, 10, 178
filter of finite type, 442
final object, 398
finite dual of a bialgebra, 157
finite dual of an algebra, 58
Finiteness Theorem, 195
flat factor rings, 436
Frobenius system, 266

element, 264
extension, 46, 264, 423
homomorphism, 264
index-1 algebra, 380
pair, 403

fully invariant decompositions, 451
fully invariant submodules, 451
functor, 396

additive, 397
adjoint, 402
between comodules, 110, 230
coinduction, 101, 105, 423
comparison, 285
for a coring, 286

contravariant, 396
corestriction, 105, 227
cotensor, 94, 218
covariant, 396
Frobenius, 46, 267, 403
between comodules, 112

faithful, full, 398

fully faithful, 398
g-coinvariants, 276
induction, 242, 279, 423
preserving a property, 396
rational, 66, 212
exact, 71, 214

reflecting a property, 396
representative, 398
separable, 398, 401

functorial morphism, 397

g-coinvariants, 277
Galois isomorphism, 284
Galois weak coring structure theorem,

364
generator, 147, 149

for comodules, 188
graded derivation, 288
grouplike element, 276
groupoid, 311

H-separable extension, 315
Hom-cotensor relation, 221
Hom-tensor relation, 25, 36, 183, 419
Hopf algebra, 129, 144

co-Frobenius, 163
cosemisimple 164
fundamental theorem, 147
(H,R)-cosemisimple, 164

Hopf algebroid, 311
Hopf-Galois extension, 342, 347
Hopf ideal, 145
Hopf module, 134

morphism, 134
relative, 336

initial object, 398
injective cogenerator for comodules,

76, 209
injective in MC , 34
injective objects, 398
injector, 117, 325
integral, 133, 141

in bialgebra, 141
map, normalised, 330
normalised, 330
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total, 164
intersection property, 421
invariants, 141
inverse limit, 400

kernels, 399
and cokernels, 23
of tensor products of maps, 420

Koppinen’s smash product, 338

left bialgebroid module, 317
Leibniz rule, 288
limit, 400

inductive, projective, 400

Maschke-type theorem for corings, 257
module, 417

(A,B)-semisimple, 434
cohereditary, 432
crossed, 339
finitely presented, 428
firm, 259
FP-injective, 426
graded, 418
hereditary, 432
linearly compact, 430
local, 429
locally Artinian, 428
locally Noetherian, 428
locally of finite length, 428
locally projective, 71
M -generated, 425
M -injective, 426
M -projective, 426
M -subgenerated, 425
Mittag-Leffler, 421
quasi-Frobenius, QF, 445
s-unital, 436
self-cogenerator, 445
self-generator, 425
self-progenerator, 450
semi-Artinian, 428
semi-cohereditary, 432
semi-hereditary, 432
semiperfect, 430
semiregular, 431

semisimple, 427
supplemented, 429
weakly M -injective, 426

module coring of a bialgebroid, 319
monad, 406
monoid ring, 58
monoidal category, 407
monomorphism, 397
Morita-Takeuchi Theorem, 113, 121

for corings, 238
Morita-Takeuchi theory, 110
morphism, 395

between corings, 240
effective descent, 286
g-inclusion, 280
of weak comodules, 360
pure, 94, 419, 420
of corings, 243

identity, 241, 395
inclusion, 254
zero, 397

natural transformation, 397
nondegenerate bilinear forms, 64

pre-Lie system, 301
preoperad, 302
product in a category, 399
product of modules, 418
progenerator, 427

for comodules, 189
projective cover in σ[M ], 429
projective in MC , 35
projective objects, 398
pullback, 400
pure equaliser, 420
pure submodule, 420
purity for comodules, 96, 219
pushout, 400

quantum group, 129
quantum groupoid, 311, 312
quantum homogeneous space, 343

rational element, 66, 212
rational pairing, 53
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rational (sub)module, 67, 68, 212
of C∗∗, 68

relative bar resolution, 304
relative differential forms, 293
relative injective bicomodule, 37, 225,

300
relative injective comodule, 32, 186
relative injective resolution, 300
relative semisimple, 37, 434
representative function, 57
resolution, 291, 299
retraction, 397

Σ-notation, 2, 170
σ-decomposition, 453
σ-indecomposable, 452
s-rational, 92
s-unital ideals, 436
scalar extension, 4, 417
section, 397
semi-grouplike element, 276
(semi)simple object, 398
separable A-ring, 258
separable extension, 256
shorth exact sequence, 400
small submodule, 429
smash product, 143
source map, 308
split extension, 260
stable class, 444
strict comodule algebra, 321
strict left comodule, 321
sub-bialgebra, 130
subcategory, 396

closed, 425
full, 396

subcoalgebra, 8, 11
subcomodule, 24, 182
subgenerator, 427
superfluous submodule, 429
supplement in M , 429

T -object, 410

target map, 308
tensor product, 416, 421

of algebras, 417
of coalgebras, 13
of comodules of a bialgebra, 132
of modules of a bialgebra, 131

terminal object, 398
tower of Frobenius corings, 274
trace ideal, 68

and decompositions, 72, 215
for corings, 213
trace ideal of σ[M ], 438

translation map, 345, 346
weak, 387

triple, 406
two-sided decompositions, 216

unifying Hopf modules, 337
unit of adjunction, 402
universal enveloping algebra, 157
universal property of S(M), 155
universal property of Λ(M), 156
universal property of T (M), 153

weak bialgebra, 370, 373, 380, 385
weak coalgebra-Galois extension, 387
weak cogenerator, 445
weak comodule algebra, 389, 390
weak comodules, 359
weak coring, 357, 358

Galois, 363
weak Doi-Koppinen datum, 389, 390
weak Doi-Koppinen module, 389, 390
weak entwined module, 384
weak entwining structure, 382

self-dual, 385, 386
weak module coalgebra, 389, 390
weak translation map, 387

Yetter-Drinfeld modules, 339
Yoneda Lemma, 397

zero object, 398
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